Risk Factors for Intramammary Infections on Bavarian Dairy Farms—A Herd-Level Analysis
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Herd Selection
2.2. Laboratory Analysis
2.3. Statistical Analysis
3. Results
3.1. Herd Description and Farm Analysis
3.2. Prevalence of Mastitis Pathogens
3.3. Risk Factors on a Herd Level
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AIC | Akaike Information Criterion |
BTSCC | Bulk Tank Somatic Cell Count |
CM | Clinical Mastitis |
CMT | California Mastitis Test |
DHI | Dairy Herd Improvement Association |
DVG | German Veterinary Association |
E. | Escherichia |
G. | Group |
ICD | Intermediate Cluster Disinfection |
IDF | International Dairy Federation |
IQR | Inter-Quartile Range |
NAS | Non-Aureus Staphylococci |
NMC | National Mastitis Council |
PCR | Polymerase Chain Reaction |
QMS | Quarter Milk Sample |
T. | Trueperella |
TMR | Total Mixed Ration |
SCM | Subclinical Mastitis |
S. | Staphylococcus |
Strep. | Streptococcus |
References
- Morales-Ubaldo, A.L.; Rivero-Perez, N.; Valladares-Carranza, B.; Velazquez-Ordonez, V.; Delgadillo-Ruiz, L.; Zaragoza-Bastida, A. Bovine mastitis, a worldwide impact disease: Prevalence, antimicrobial resistance, and viable alternative approaches. Vet. Anim. Sci. 2023, 21, 100306. [Google Scholar] [CrossRef]
- Broom, D.M. Effects of dairy cattle breeding and production methods on animal welfare. In Proceedings of the 21st World Buiatrics Congress, Punta del Este, Uruguay, 4–8 December 2000; pp. 1–7. [Google Scholar]
- Siivonen, J.; Taponen, S.; Hovinen, M.; Pastell, M.; Lensink, B.J.; Pyörälä, S.; Hänninen, L. Impact of acute clinical mastitis on cow behaviour. Appl. Anim. Behav. Sci. 2011, 132, 101–106. [Google Scholar] [CrossRef]
- Cyples, J.A.; Fitzpatrick, C.E.; Leslie, K.E.; DeVries, T.J.; Haley, D.B.; Chapinal, N. Short communication: The effects of experimentally induced Escherichia coli clinical mastitis on lying behavior of dairy cows. J. Dairy Sci. 2012, 95, 2571–2575. [Google Scholar] [CrossRef]
- Medrano-Galarza, C.; Gibbons, J.; Wagner, S.; de Passille, A.M.; Rushen, J. Behavioral changes in dairy cows with mastitis. J. Dairy Sci. 2012, 95, 6994–7002. [Google Scholar] [CrossRef]
- Ginger, L.; Ledoux, D.; Bouchon, M.; Rautenbach, I.; Bagnard, C.; Lurier, T.; Foucras, G.; Germon, P.; Durand, D.; de Boyer des Roches, A. Using behavioral observations in freestalls and at milking to improve pain detection in dairy cows after lipopolysaccharide-induced clinical mastitis. J. Dairy Sci. 2023, 106, 5606–5625. [Google Scholar] [CrossRef]
- Bar, D.; Grohn, Y.T.; Bennett, G.; Gonzalez, R.N.; Hertl, J.A.; Schulte, H.F.; Tauer, L.W.; Welcome, F.L.; Schukken, Y.H. Effect of repeated episodes of generic clinical mastitis on milk yield in dairy cows. J. Dairy Sci. 2007, 90, 4643–4653. [Google Scholar] [CrossRef]
- Puerto, M.A.; Shepley, E.; Cue, R.I.; Warner, D.; Dubuc, J.; Vasseur, E. The hidden cost of disease: I. Impact of the first incidence of mastitis on production and economic indicators of primiparous dairy cows. J. Dairy Sci. 2021, 104, 7932–7943. [Google Scholar] [CrossRef] [PubMed]
- Pfützner, M.; Ózsávri, L. The Financial Impact of Decreased Milk Production Due to Subclinical Mastitis in German Dairy Herds. J. Fac. Vet. Med. Istanb. Univ. 2017, 40, 110–115. [Google Scholar] [CrossRef]
- Seegers, H.; Fourichon, C.; Beaudeau, F. Production effects related to mastitis and mastitis economics in dairy cattle herds. Vet. Res. 2003, 34, 475–491. [Google Scholar] [CrossRef] [PubMed]
- BMEL. Visualisierung der Tabelle Rinderbestand und Rinderbestände nach Nutzungsrichtung und Rinderrassen. Available online: https://www.bmel-statistik.de/landwirtschaft/tierhaltung/rinderhaltung (accessed on 12 February 2025).
- Milcherzeugerverband, B. Milchwirtschaft | Vergleich Deutschland und Bayern. 2024. Available online: https://www.milcherzeugerverband-bayern.de/milcherzeugung (accessed on 18 June 2025).
- Tergast, H.; Hansen, H.; Weber, E.-C. Steckbriefe zur Tierhaltung in Deutschland: Milchkühe; Thünen-Institut für Betriebswirtschaft: Braunschweig, Germany, 2022; p. 17. [Google Scholar]
- Buonaiuto, G.; Lopez-Villalobos, N.; Costa, A.; Niero, G.; Degano, L.; Mammi, L.M.E.; Cavallini, D.; Palmonari, A.; Formigoni, A.; Visentin, G. Stayability in Simmental cattle as affected by muscularity and body condition score between calvings. Front. Vet. Sci. 2023, 10, 1141286. [Google Scholar] [CrossRef] [PubMed]
- Miciński, J.; Maršálek, M.; Pogorzelska, J.; Vrobová, A. The comporative analysis of milk performance in Czech Pied Cattle raised in the Czech Republic versus Polish Holstein-Friesian, Simmental and Czech Pied Cattle raised in Poland. Vet. Ir Zootech. 2014, 67, 75–80. [Google Scholar]
- Karslioglu Kara, N.; Koyuncu, M. A Research on longevity, culling reasons and milk yield trait between Holstein and Simmental cows. Mediterrean Agric. Sci. 2018, 31. [Google Scholar] [CrossRef]
- Zablotski, Y.; Knubben-Schweizer, G.; Hoedemaker, M.; Campe, A.; Muller, K.; Merle, R.; Dopfer, D.; Oehm, A.W. Non-linear change in body condition score over lifetime is associated with breed in dairy cows in Germany. Vet. Anim. Sci. 2022, 18, 100275. [Google Scholar] [CrossRef] [PubMed]
- Wellnitz, O.; Bruckmaier, R.M. The innate immune response of the bovine mammary gland to bacterial infection. Vet. J. 2012, 192, 148–152. [Google Scholar] [CrossRef] [PubMed]
- IDF. Suggested Interpretation of Mastitis Terminology (Revision of Bulletin of IDF No. 338/1999). Available online: https://fil-idf.org/wp-content/uploads/woocommerce_uploads/2011/03/Bulletin-of-the-IDF-No.-448_2011-Suggested-Interpretation-of-Mastitis-Terminology-revision-of-Bulletin-of-IDF-N°-338_1999-1-fdvlh1.pdf (accessed on 17 June 2025).
- Cobirka, M.; Tancin, V.; Slama, P. Epidemiology and Classification of Mastitis. Animals 2020, 10, 2212. [Google Scholar] [CrossRef]
- Meçaj, R.; Muça, G.; Koleci, X.; Sulçe, M.; Turmalaj, L.; Zalla, P.; Koni, A.; Tafaj, M. Bovine Environmental Mastitis and Their Control: An Overview. Int. J. Agric. Biosci. 2023, 12, 216–221. [Google Scholar] [CrossRef] [PubMed]
- Keefe, G. Update on Control of Staphylococcus aureus and Streptococcus agalactiae for Management of Mastitis. Vet. Clin. N. Am. Food Anim. Pract. 2012, 28, 203–216. [Google Scholar] [CrossRef]
- Wente, N.; Krömker, V. Streptococcus dysgalactiae-Contagious or Environmental? Animals 2020, 10, 2185. [Google Scholar] [CrossRef]
- Lundberg, A.; Nyman, A.K.; Aspan, A.; Borjesson, S.; Unnerstad, H.E.; Waller, K.P. Udder infections with Staphylococcus aureus, Streptococcus dysgalactiae, and Streptococcus uberis at calving in dairy herds with suboptimal udder health. J. Dairy Sci. 2016, 99, 2102–2117. [Google Scholar] [CrossRef]
- Todhunter, D.A.; Smith, K.L.; Hogan, J.S. Environmental streptococcal intramammary infections of the bovine mammary gland. J. Dairy Sci. 1995, 78, 2366–2374. [Google Scholar] [CrossRef]
- De Buck, J.; Ha, V.; Naushad, S.; Nobrega, D.B.; Luby, C.; Middleton, J.R.; De Vliegher, S.; Barkema, H.W. Non-aureus Staphylococci and Bovine Udder Health: Current Understanding and Knowledge Gaps. Front. Vet. Sci. 2021, 8, 658031. [Google Scholar] [CrossRef]
- Pyorälä, S.; Taponen, S. Coagulase-negative staphylococci-emerging mastitis pathogens. Vet. Microbiol. 2009, 134, 3–8. [Google Scholar] [CrossRef]
- Neave, F.K.; Dodd, F.H.; Kingwill, R.G.; Westgarth, D.R. Control of mastitis in the dairy herd by hygiene and management. J. Dairy Sci. 1969, 52, 696–707. [Google Scholar] [CrossRef] [PubMed]
- Dodd, F.H.; Westgarth, D.R.; Neave, F.K.; Kingwill, R.G. Mastitis—The strategy of control. J. Dairy Sci. 1969, 52, 689–695. [Google Scholar] [CrossRef]
- Hillerton, E.; Booth, J.M. The Five-Point Mastitis Control Plan—A Revisory Tutorial! In Proceedings of the NMC Annual Meeting Proceedings, Tucson, AZ, USA, 30 January–2 February 2018. [Google Scholar]
- Döpfer, D.; Barkema, H.W.; Lam, T.J.; Schukken, Y.H.; Gaastra, W. Recurrent clinical mastitis caused by Escherichia coli in dairy cows. J. Dairy Sci. 1999, 82, 80–85. [Google Scholar] [CrossRef] [PubMed]
- Zadoks, R.N.; Allore, H.G.; Barkema, H.W.; Sampimon, O.C.; Wellenberg, G.J.; Grohn, Y.T.; Schukkent, Y.H. Cow- and quarter-level risk factors for Streptococcus uberis and Staphylococcus aureus mastitis. J. Dairy Sci. 2001, 84, 2649–2663. [Google Scholar] [CrossRef] [PubMed]
- Cheng, W.N.; Han, S.G. Bovine mastitis: Risk factors, therapeutic strategies, and alternative treatments—A review. Asian-Australas. J. Anim. Sci. 2020, 33, 1699–1713. [Google Scholar] [CrossRef]
- Ruegg, P.L. A 100-Year Review: Mastitis detection, management, and prevention. J. Dairy Sci. 2017, 100, 10381–10397. [Google Scholar] [CrossRef]
- Hertl, J.A.; Schukken, Y.H.; Bar, D.; Bennett, G.J.; Gonzalez, R.N.; Rauch, B.J.; Welcome, F.L.; Tauer, L.W.; Grohn, Y.T. The effect of recurrent episodes of clinical mastitis caused by gram-positive and gram-negative bacteria and other organisms on mortality and culling in Holstein dairy cows. J. Dairy Sci. 2011, 94, 4863–4877. [Google Scholar] [CrossRef]
- Elghafghuf, A.; Dufour, S.; Reyher, K.; Dohoo, I.; Stryhn, H. Survival analysis of clinical mastitis data using a nested frailty Cox model fit as a mixed-effects Poisson model. Prev. Vet. Med. 2014, 117, 456–468. [Google Scholar] [CrossRef]
- Mirazei, A.; Ararooti, T.; Ghavami, M.; Tamadon, A. Sub-clinical Mastitis and Reproduction: Season, Parity and Stage of Lactation Effects on Conception Rate and Milk Somatic Cell Count. J. Infertil. Reprod. Biol. 2023, 11, 55–60. [Google Scholar] [CrossRef]
- Jamali, H.; Barkema, H.W.; Jacques, M.; Lavallee-Bourget, E.M.; Malouin, F.; Saini, V.; Stryhn, H.; Dufour, S. Invited review: Incidence, risk factors, and effects of clinical mastitis recurrence in dairy cows. J. Dairy Sci. 2018, 101, 4729–4746. [Google Scholar] [CrossRef]
- Grohn, Y.T.; Eicker, S.W.; Hertl, J.A. The association between previous 305-day milk yield and disease in New York State dairy cows. J. Dairy Sci. 1995, 78, 1693–1702. [Google Scholar] [CrossRef]
- Hamel, J.; Zhang, Y.; Wente, N.; Krömker, V. Heat stress and cow factors affect bacteria shedding pattern from naturally infected mammary gland quarters in dairy cattle. J. Dairy Sci. 2021, 104, 786–794. [Google Scholar] [CrossRef] [PubMed]
- O’Rourke, D. Nutrition and udder health in dairy cows: A review. Ir. Vet. J. 2009, 62 (Suppl. 4), S15–S20. [Google Scholar] [CrossRef]
- Zigo, F.; Vasil, M.; Ondrasovicova, S.; Vyrostkova, J.; Bujok, J.; Pecka-Kielb, E. Maintaining Optimal Mammary Gland Health and Prevention of Mastitis. Front. Vet. Sci. 2021, 8, 607311. [Google Scholar] [CrossRef] [PubMed]
- Hogan, J.S.; Smith, K.L.; Hoblet, K.H.; Todhunter, D.A.; Schoenberger, P.S.; Hueston, W.D.; Pritchard, D.E.; Bowman, G.L.; Heider, L.E.; Brockett, B.L.; et al. Bacterial counts in bedding materials used on nine commercial dairies. J. Dairy Sci. 1989, 72, 250–258. [Google Scholar] [CrossRef]
- Patel, K.; Godden, S.M.; Royster, E.; Crooker, B.A.; Timmerman, J.; Fox, L. Relationships among bedding materials, bedding bacteria counts, udder hygiene, milk quality, and udder health in US dairy herds. J. Dairy Sci. 2019, 102, 10213–10234. [Google Scholar] [CrossRef] [PubMed]
- Rowbotham, R.F.; Ruegg, P.L. Associations of selected bedding types with incidence rates of subclinical and clinical mastitis in primiparous Holstein dairy cows. J. Dairy Sci. 2016, 99, 4707–4717. [Google Scholar] [CrossRef]
- Breen, J.E.; Green, M.J.; Bradley, A.J. Quarter and cow risk factors associated with the occurrence of clinical mastitis in dairy cows in the United Kingdom. J. Dairy Sci. 2009, 92, 2551–2561. [Google Scholar] [CrossRef]
- Barkema, H.W.; Schukken, Y.H.; Lam, T.J.; Beiboer, M.L.; Benedictus, G.; Brand, A. Management practices associated with the incidence rate of clinical mastitis. J. Dairy Sci. 1999, 82, 1643–1654. [Google Scholar] [CrossRef]
- Dufour, S.; Frechette, A.; Barkema, H.W.; Mussell, A.; Scholl, D.T. Invited review: Effect of udder health management practices on herd somatic cell count. J. Dairy Sci. 2011, 94, 563–579. [Google Scholar] [CrossRef]
- Abebe, R.; Hatiya, H.; Abera, M.; Megersa, B.; Asmare, K. Bovine mastitis: Prevalence, risk factors and isolation of Staphylococcus aureus in dairy herds at Hawassa milk shed, South Ethiopia. BMC Vet. Res. 2016, 12, 270. [Google Scholar] [CrossRef]
- Noorlander, D.O. The Milking Machine as It Relates to Mastitis. J. Food Prot. 1977, 40, 643–645. [Google Scholar] [CrossRef]
- Groh, L.J.; Mansfeld, R.; Baumgartner, C.; Sorge, U.S. Mastitis pathogens in Bavaria, Southern Germany: Apparent prevalence and herd-level risk factor. Milk Sci. Int. 2023, 76, 15–23. [Google Scholar] [CrossRef]
- Bechtold, V.; Petzl, W.; Huber-Schlenstedt, R.; Sorge, U.S. Distribution of Bovine Mastitis Pathogens in Quarter Milk Samples from Bavaria, Southern Germany, between 2014 and 2023-A Retrospective Study. Animals 2024, 14, 2504. [Google Scholar] [CrossRef] [PubMed]
- Bundestierärztekammer. Verordnung über Tierärztliche Hausapotheken, TÄHAV. Available online: https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://www.bundestieraerztekammer.de/tieraerzte/leitlinien/downloads/DTBl_04_2018-TAeHAV.pdf&ved=2ahUKEwirlvXg58GPAxXR3QIHHVT9AbgQFnoECBkQAQ&usg=AOvVaw087KXwp_x8m-o0wnsqi5S7 (accessed on 17 June 2025).
- TAMG. Gesetz über den Verkehr mit Tierarzneimitteln und zur Durchführung unionsrechtlicher Vorschriften betreffend Tierarzneimittel (Tierarzneimittelgesetz—TAMG). Available online: https://www.gesetze-im-internet.de/tamg/BJNR453010021.html (accessed on 17 June 2025).
- Lavrijsen-Kromwijk, L.; Demba, S.; Muller, U.; Rose, S. Impact of Automation Level of Dairy Farms in Northern and Central Germany on Dairy Cattle Welfare. Animals 2024, 14, 3699. [Google Scholar] [CrossRef]
- Cook, N.B.; Reinemann, D. A Tool Box for Assessing Cow, Udder and Teat Hygiene. In Proceedings of the 46th Annual Meeting National Mastitis Council, San Antonio, TX, USA, 21–24 January 2007; pp. 31–43. [Google Scholar]
- University Cornell. Hock Assessment Chart for Cattle. Available online: https://ecommons.cornell.edu/server/api/core/bitstreams/bb254090-ac6b-4cc1-ab41-9739fba71d96/content (accessed on 17 February 2025).
- NMC. Guidelines for Evaluating Teat Skin Condition. Available online: https://www.nmconline.org/wp-content/uploads/2016/09/Guidelines-for-Evaluating.pdf (accessed on 17 February 2025).
- Besse, N.G.; Couquil, A.; Vignaud, M.-L.; Barre, L.; Deperrois, V.; Voitoux, E.; Obabaka, M.-B.; Lombard, B. Comparative Study of Different Milk Samples Preservation Procedures for Bacteriologic Examination. Food Anal. Methods 2008, 1, 36–42. [Google Scholar] [CrossRef]
- DVG. Leitlinien zur Labordiagnostik der Mastitis: Probenahme und Mikrobiologische Untersuchung, 3rd ed.; Deutsche Veterinärmedizinische Gesellschaft/Fachgruppe Milchhygiene: Giessen, Germany, 2018. [Google Scholar]
- IDF. Laboratory Methods for Use in Mastitis Work; International Dairy Federation: Brussels, Belgium, 1981. [Google Scholar]
- NMC. Laboratory Handbook on Bovine Mastitis; National Mastitis Council: New Prague, MN, USA, 1999. [Google Scholar]
- IDF. Guidelines for the Use and Interpretation of Bovine Milk Somatic Cell Counts (SCC) in Dairy Industry. Available online: https://shop.fil-idf.org/products/guidelines-for-the-use-and-interpretation-of-bovine-milk-somatic-cell-counts-scc-in-the-dairy-industry (accessed on 18 June 2025).
- Nyman, A.K.; Persson Waller, K.; Emanuelson, U.; Frossling, J. Sensitivity and specificity of PCR analysis and bacteriological culture of milk samples for identification of intramammary infections in dairy cows using latent class analysis. Prev. Vet. Med. 2016, 135, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Condas, L.A.Z.; De Buck, J.; Nobrega, D.B.; Carson, D.A.; Roy, J.P.; Keefe, G.P.; DeVries, T.J.; Middleton, J.R.; Dufour, S.; Barkema, H.W. Distribution of non-aureus staphylococci species in udder quarters with low and high somatic cell count, and clinical mastitis. J. Dairy Sci. 2017, 100, 5613–5627. [Google Scholar] [CrossRef] [PubMed]
- Piepers, S.; De Meulemeester, L.; de Kruif, A.; Opsomer, G.; Barkema, H.W.; De Vliegher, S. Prevalence and distribution of mastitis pathogens in subclinically infected dairy cows in Flanders, Belgium. J. Dairy Res. 2007, 74, 478–483. [Google Scholar] [CrossRef] [PubMed]
- Wuytack, A.; De Visscher, A.; Piepers, S.; Boyen, F.; Haesebrouck, F.; De Vliegher, S. Distribution of non-aureus staphylococci from quarter milk, teat apices, and rectal feces of dairy cows, and their virulence potential. J. Dairy Sci. 2020, 103, 10658–10675. [Google Scholar] [CrossRef] [PubMed]
- Smistad, M.; Bakka, H.C.; Solverod, L.; Jorgensen, H.J.; Wolff, C. Prevalence of udder pathogens in milk samples from Norwegian dairy cows recorded in a national database in 2019 and 2020. Acta Vet. Scand. 2023, 65, 19. [Google Scholar] [CrossRef]
- Sampimon, O.C.; Barkema, H.W.; Berends, I.M.; Sol, J.; Lam, T.J. Prevalence and herd-level risk factors for intramammary infection with coagulase-negative staphylococci in Dutch dairy herds. Vet. Microbiol. 2009, 134, 37–44. [Google Scholar] [CrossRef]
- Pitkälä, A.; Haveri, M.; Pyorala, S.; Myllys, V.; Honkanen-Buzalski, T. Bovine mastitis in Finland 2001--prevalence, distribution of bacteria, and antimicrobial resistance. J. Dairy Sci. 2004, 87, 2433–2441. [Google Scholar] [CrossRef]
- Vakkamäki, J.; Taponen, S.; Heikkila, A.M.; Pyorala, S. Bacteriological etiology and treatment of mastitis in Finnish dairy herds. Acta Vet. Scand. 2017, 59, 33. [Google Scholar] [CrossRef]
- Traversari, J.; van den Borne, B.H.P.; Dolder, C.; Thomann, A.; Perreten, V.; Bodmer, M. Non-aureus Staphylococci Species in the Teat Canal and Milk in Four Commercial Swiss Dairy Herds. Front. Vet. Sci. 2019, 6, 186. [Google Scholar] [CrossRef]
- Gygax, L.; Neuffer, I.; Kaufmann, C.; Hauser, R.; Wechsler, B. Comparison of functional aspects in two automatic milking systems and auto-tandem milking parlors. J. Dairy Sci. 2007, 90, 4265–4274. [Google Scholar] [CrossRef]
- Mahmmod, Y.S.; Klaas, I.C.; Svennesen, L.; Pedersen, K.; Ingmer, H. Communications of Staphylococcus aureus and non-aureus Staphylococcus species from bovine intramammary infections and teat apex colonization. J. Dairy Sci. 2018, 101, 7322–7333. [Google Scholar] [CrossRef] [PubMed]
- Oliver, S.P.; King, S.H.; Torre, P.M.; Shull, E.P.; Dowlen, H.H.; Lewis, M.J.; Sordillo, L.M. Prevention of Bovine Mastitis by a Postmilking Teat Disinfectant Containing Chlorous Acid and Chlorine Dioxide in a Soluble Polymer Gel. J. Dairy Sci. 1989, 72, 3091–3097. [Google Scholar] [CrossRef] [PubMed]
- Tenhagen, B.A.; Koster, G.; Wallmann, J.; Heuwieser, W. Prevalence of mastitis pathogens and their resistance against antimicrobial agents in dairy cows in Brandenburg, Germany. J. Dairy Sci. 2006, 89, 2542–2551. [Google Scholar] [CrossRef]
- Schmenger, A.; Krömker, V. Characterization, Cure Rates and Associated Risks of Clinical Mastitis in Northern Germany. Vet. Sci. 2020, 7, 170. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, D.; Diesterbeck, U.S.; Failing, K.; Konig, S.; Brugemann, K.; Zschock, M.; Wolter, W.; Czerny, C.P. Somatic cell counts and bacteriological status in quarter foremilk samples of cows in Hesse, Germany--a longitudinal study. J. Dairy Sci. 2010, 93, 5716–5728. [Google Scholar] [CrossRef]
- Cicconi-Hogan, K.M.; Gamroth, M.; Richert, R.; Ruegg, P.L.; Stiglbauer, K.E.; Schukken, Y.H. Risk factors associated with bulk tank standard plate count, bulk tank coliform count, and the presence of Staphylococcus aureus on organic and conventional dairy farms in the United States. J. Dairy Sci. 2013, 96, 7578–7590. [Google Scholar] [CrossRef]
- European Commission. Regulation (EC) No 2018/848 of 30 May 2018, Rules for Organic Production and Labeling of Organic Products with Regard to Organic Production, Labeling and Control; European Commission: Brussels, Belgium, 2018.
- U.S.D.A. 7 CFR Part 205. Available online: https://www.ecfr.gov/current/title-7/subtitle-B/chapter-I/subchapter-M/part-205 (accessed on 17 June 2025).
- Ericsson Unnerstad, H.; Lindberg, A.; Persson Waller, K.; Ekman, T.; Artursson, K.; Nilsson-Ost, M.; Bengtsson, B. Microbial aetiology of acute clinical mastitis and agent-specific risk factors. Vet. Microbiol. 2009, 137, 90–97. [Google Scholar] [CrossRef]
- Sherwin, V.E.; Egan, S.A.; Green, M.J.; Leigh, J.A. Survival of Streptococcus uberis on bedding substrates. Vet. J. 2021, 276, 105731. [Google Scholar] [CrossRef]
- Barth, K.; Murk, K.; Brinkmann, J.; March, S.; Volling, O.; Weiler, M.; Weiß, M.; Drerup, C.; Krömker, V. Einstreumanagement in der Ökologischen Milchviehhaltung. Available online: https://literatur.thuenen.de/digbib_extern/dn048515.pdf (accessed on 17 June 2025).
- Matos, J.S.; White, D.G.; Harmon, R.J.; Langlois, B.E. Isolation of Staphylococcus aureus from sites other than the lactating mammary gland. J. Dairy Sci. 1991, 74, 1544–1549. [Google Scholar] [CrossRef]
- Capurro, A.; Aspan, A.; Ericsson Unnerstad, H.; Persson Waller, K.; Artursson, K. Identification of potential sources of Staphylococcus aureus in herds with mastitis problems. J. Dairy Sci. 2010, 93, 180–191. [Google Scholar] [CrossRef] [PubMed]
- Neely, A.N.; Maley, M.P. Survival of enterococci and staphylococci on hospital fabrics and plastic. J. Clin. Microbiol. 2000, 38, 724–726. [Google Scholar] [CrossRef]
- Devries, T.J.; Aarnoudse, M.G.; Barkema, H.W.; Leslie, K.E.; von Keyserlingk, M.A. Associations of dairy cow behavior, barn hygiene, cow hygiene, and risk of elevated somatic cell count. J. Dairy Sci. 2012, 95, 5730–5739. [Google Scholar] [CrossRef] [PubMed]
- Lindena, T.; Hess, S. Is animal welfare better on smaller dairy farms? Evidence from 3085 dairy farms in Germany. J. Dairy Sci. 2022, 105, 8924–8945. [Google Scholar] [CrossRef]
- Sartori, C.; Boss, R.; Bodmer, M.; Leuenberger, A.; Ivanovic, I.; Graber, H.U. Sanitation of Staphylococcus aureus genotype B-positive dairy herds: A field study. J. Dairy Sci. 2018, 101, 6897–6914. [Google Scholar] [CrossRef] [PubMed]
- Washburn, S.P.; White, S.L.; Green, J.T., Jr.; Benson, G.A. Reproduction, mastitis, and body condition of seasonally calved Holstein and Jersey cows in confinement or pasture systems. J. Dairy Sci. 2002, 85, 105–111. [Google Scholar] [CrossRef]
- Curone, G.; Filipe, J.; Cremonesi, P.; Trevisi, E.; Amadori, M.; Pollera, C.; Castiglioni, B.; Turin, L.; Tedde, V.; Vigo, D.; et al. What we have lost: Mastitis resistance in Holstein Friesians and in a local cattle breed. Res. Vet. Sci. 2018, 116, 88–98. [Google Scholar] [CrossRef]
- Gibson, A.J.; Woodman, S.; Pennelegion, C.; Patterson, R.; Stuart, E.; Hosker, N.; Siviter, P.; Douglas, C.; Whitehouse, J.; Wilkinson, W.; et al. Differential macrophage function in Brown Swiss and Holstein Friesian cattle. Vet. Immunol. Immunopathol. 2016, 181, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Mylostyvyi, R.; Lacetera, N.; Amadori, M.; Sejian, V.; Freire Souza-Junior, J.B.; Hoffmann, G. The autumn low milk yield syndrome in Brown Swiss cows in continental climates: Hypotheses and facts. Vet. Res. Commun. 2023, 48, 203–213. [Google Scholar] [CrossRef] [PubMed]
- Genc, M.; Coban, O.; Ozenturk, U.; Eltas, O. Influence of breed and parity on teat and milking characteristics in dairy cattle. Maced. Vet. Rev. 2018, 41, 169–176. [Google Scholar] [CrossRef]
- Jørgensen, H.J.; Nordstoga, A.B.; Sviland, S.; Zadoks, R.N.; Solverod, L.; Kvitle, B.; Mork, T. Streptococcus agalactiae in the environment of bovine dairy herds--rewriting the textbooks? Vet. Microbiol. 2016, 184, 64–72. [Google Scholar] [CrossRef]
- NMC. A Practical Look at Environmental Mastitis. Available online: https://www.nmconline.org/wp-content/uploads/2023/06/Fact-Sheet-A-Practical-Look-at-Environmental-Mastitis-Formatted.pdf (accessed on 30 March 2025).
- MPR. Jahresauswertung 2022—Zellzahl 2022. Available online: https://www.mpr-bayern.de/de/Infothek (accessed on 16 April 2025).
Parameter | Variable |
---|---|
Herd Size | Group 1 = 9–29 cows, Group 2 = 30–47 cows, Group 3 = 48–69 cows, Group 4 = ≥70 cows |
Season | Spring, Summer, Fall, Winter |
Farm- and herd structure | Farm organization (organic, conventional), breed (Simmental, Brown Swiss, Holstein, German Yellow cattle, mixed), DHI 1, farm type (dairy farming, young stock raising, bull fattening, field crop, biodigester, other), open farm 1 (biocontrol of purchased animals 1) |
Udder health | Rolling herd average (kg), bulk tank somatic cell count, bulk tank bacteria count, flaming of the udder hair, trimming of tail tassel, frequency of hoof care per year, hygiene score 2, teat end score 2, and hock score 3 of adult cows |
Milking and milking system | Milking (robotic milking, milking parlor, pipe milking system, other 5), liner (rubber, silicone), maintenance agreement 1, system service (regular, only when required), number of milking units Hygiene of milking system, hygiene milking clusters, hygiene milk filter, frequency of milk filter change Automatic cluster removal 1, machine stripping (never, automatic, manual by pushing the claw down), cluster position 1, audible liner slips 1, disposable gloves 1, overmilking (never, at start or end of milking, both), milking sequence 1, pre-stripping (never, with pre-milk cup, without pre-milk cup), restless cows during milking 1, teat cleaning (not done, dry, moist, with pre-dip), post-dip 1, dip coverage (<50% of teat, ≥50% of teat), dip agent category (iodine, lactic acid, chlorhexidine, chlorine dioxide, other 6), intermediate cluster disinfection (ICD) (none, automatic, manual), ICD-type (peracetic acid, steam, other 7) Milking robot: attachment works without problems 1, selection pen 1, exit protected 1, fetched cows/day (%), manual cleaning of exterior of the robot (times/day), interior rinse (minutes after last cow), main cleaning cycles (times/day) |
Feeding | Head locks 1, clean feeding table 1, rough feeding table surface 1, fresh food (n/day), push up of feed (n/day), cattle sort feed 1, assessment of feed (no feed on feed bunk at visit, insufficient, good) Total mixed ration (TMR) 1, partial TMR 1, hay 1, fresh cut greens 1, minerals 1, wet feedstuffs (none, spent grains, wet pulp, mix), feed stuff analysis (frequency/year), transit feed ration (yes, no, anionic salts) |
Water | Water source (municipal, tested or untested well), regular cleaning of water troughs 1, hygiene of water trough (clean, slightly soiled, severely soiled), sufficient number of water throughs (>9 cm/cow) 1, adequate water flow (>15 L/min) 1 |
Housing | Housing (freestall, tiestall), mattress or deep bedded cubicles, calving pen (yes, no, also used as sick pen), pasture-access 1, outdoor pen 1, ventilators 1, correctly lying 1, unobstructed standing up and lying down 1, robotic manure scraper 1, frequency/day of manure scraper, overcrowding 1, bedding (none, lime, straw with lime, lime-straw mattress, straw or hay, sawdust, recycled manure solids (incl. biodigester substrate, other 8)) |
Dry cow management | Type of dry-off (abrupt, intermittent, other 9) at dry-off 4: CMT, milk samples for bacteriological determination, antimicrobial treatment during lactation at the end of lactation, antibiotic dry-off therapy, internal teat sealant, bolus, homeopathy |
Parameter | Group 1 | Group 2 | Group 3 | Group 4 | Overall |
---|---|---|---|---|---|
N | 77 | 75 | 76 | 77 | 305 |
Herd size 1, n | |||||
Total dairy cows | 22 (19–25) | 35 (32–40) | 56 (51–63) | 87 (75–125) | 48 (29–70) |
Dry cows | 2 (1–3) | 4 (2–5) | 6 (5–9) | 10 (7–15) | 5 (3–8) |
Rolling herd average milk, kg | 7226 (5854–8198) | 7728 (6552–8793) | 8005 (7085–8955) | 9067 (7900–9897) | 7974 (6991–9076) |
Bulk tank bacteria count (103/mL) | 13 (9–20) | 14 (8–25) | 11 (8–20) | 14 (9–20) | 13 (9–20) |
Bulk tank somatic cell count (103/mL) | 144 (100–207) | 168 (111–235) | 166 (123–217) | 184 (130–220) | 168 (117–220) |
Organic production, % | 13 | 27 | 17 | 12 | 17 |
Member dairy herd improvement association, % | 74 | 81 | 91 | 95 | 85 |
Breed, % | |||||
Simmental | 86 | 74 | 75 | 78 | 78 |
Brown Swiss | 7 | 7 | 11 | 5 | 7 |
Holstein | 0 | 0 | 3 | 4 | 2 |
other 2 | 8 | 19 | 12 | 13 | 13 |
Hygiene score ≥ 3 3, % | 38 (21–75) | 44 (14–77) | 40 (14–64) | 31 (10–60) | 39 (13–70) |
Hock score ≥ 2 4, % | 46 (17–95) | 35 (10–91) | 49 (19–97) | 36 (17–96) | 44 (15–95) |
Teat cleanliness score ≥ 3 5, % | 23 (8–50) | 25 (10–66) | 36 (10–63) | 40 (18–68) | 30 (10–60) |
Hyperkeratosis score ≥ 3 6, % cows/herd | 0 (0–4) | 0 (0–5) | 0 (0–6) | 0 (0–2) | 0 (0–4) |
Milking system, % | |||||
Milking parlor | 30 | 51 | 63 | 51 | 49 |
Pipe milking system | 68 | 36 | 9 | 0 | 28 |
Robotic milking system | 1 | 12 | 26 | 46 | 21 |
Other 7 | 1 | 1 | 1 | 4 | 2 |
Housing, % | |||||
Freestall | 35 | 67 | 93 | 100 | 74 |
Tiestall | 65 | 33 | 7 | 0 | 26 |
Mattress stalls cubicles | 18 | 28 | 49 | 40 | 34 |
Deep bedded cubicles | 13 | 32 | 49 | 61 | 39 |
Pasture | 26 | 34 | 22 | 13 | 23 |
Dry cow management, % cows/herd | |||||
Internal teat sealant | 0 (0–0) | 0 (0–30) | 0 (0–90) | 0 (0–100) | 0 (0–50) |
Antibiotic dry-off | 50 (8–100) | 30 (0–90) | 37 (13–90) | 50 (20–100) | 40 (10–100) |
All Quarter Milk Samples (n = 57,251) | Pathogen-Positive | |||||
---|---|---|---|---|---|---|
Overall (n = 6625) | Healthy (n = 1269) | Subclinical (n = 4910) | Clinical (n = 344) | |||
Pathogen | n | % | % | % | % | % |
Non-aureus Staphylococci (NAS) | 2847 | 5.0 | 42.9 | 62.9 | 40.6 | 8.4 |
Streptococcus uberis | 1062 | 1.9 | 16.0 | 5.3 | 19.4 | 32.3 |
Staphylococcus aureus | 1020 | 1.8 | 15.4 | 20.4 | 13.6 | 14.0 |
Streptococcus dysgalactiae | 521 | 0.9 | 7.9 | 2.7 | 8.9 | 8.7 |
Lactococcus garviae | 265 | 0.5 | 4.0 | 2.1 | 4.4 | 1.7 |
Enterococcus faecalis | 235 | 0.4 | 3.5 | 2.0 | 4.0 | 1.2 |
Streptococcus agalactiae | 99 | 0.2 | 0.7 | 0.5 | 1.8 | 0.3 |
Serratia spp. | 92 | 0.2 | 1.5 | 0.1 | 1.2 | 6.4 |
Lactococcus lactis | 80 | 0.2 | 1.4 | 0.8 | 1.3 | 0.9 |
Trueperella pyogenes | 78 | 0.1 | 1.2 | 1.7 | 0.8 | 5.2 |
Escherichia coli | 69 | 0.1 | 1.2 | 0.1 | 0.8 | 10.2 |
Other 1 | 44 | 0.1 | 1.0 | 0.2 | 0.2 | 2.3 |
Citrobacter spp. | 42 | 0.1 | 0.6 | 0.3 | 0.7 | 0.6 |
Other esculin-pos. Streptococci | 33 | 0.1 | 0.5 | 0.3 | 0.3 | 0.9 |
Enterococcus spp. | 31 | 0.1 | 0.5 | 0.2 | 0.5 | 0.3 |
Klebsiella spp. | 26 | <0.1 | 0.4 | 0.1 | 0.4 | 2.0 |
Yeast | 26 | <0.1 | 0.4 | 0 | 0.4 | 2.0 |
Streptococcus gallolyticus | 24 | <0.1 | 0.4 | 0.3 | 0.4 | 0.3 |
Other esculin-neg. Streptococci | 14 | <0.1 | 0.2 | 0.2 | 0.1 | 1.7 |
Prototheca spp. | 8 | <0.1 | 0.1 | 0.1 | 0.1 | 0.6 |
Streptococcus canis | 5 | <0.1 | 0.1 | <0.1 | <0.1 | <0.1 |
Pathogen | Within-Herd Prevalence (%) | Herds Positive n (%) | ||||
---|---|---|---|---|---|---|
Group 1 | Group 2 | Group 3 | Group 4 | All | All | |
Herd size, range of cows | 9–29 | 30–47 | 48–69 | 70–250 | 9–250 | |
Non-aureus Staphylococci (NAS) | 11 (0–19) | 13 (7–19) | 13 (8–20) | 14 (9–24) | 13 (7–20) | 279 (92) |
Staphylococcus aureus | 4 (0–11) | 4 (0–10) | 2 (0–6) | 1 (1–3) | 3 (0–8) | 211 (69) |
Streptococcus uberis | 0 (0–6) | 3 (0–7) | 3 (0–7) | 4 (2–8) | 3 (0–7) | 205 (67) |
Streptococcus dysgalactiae | 0 (0–5) | 2 (0–5) | 2 (0–4) | 1 (0–3) | 2 (0–4) | 173 (57) |
Streptococcus agalactiae | 0 (0–0) | 0 (0–0) | 0 (0–0) | 0 (0–0) | 0 (0–0) | 11 (4) |
Escherichia coli | 0 (0–0) | 0 (0–0) | 0 (0–0) | 0 (0–1) | 0 (0–0) | 51 (17) |
Parameter | Prevalence | 95% CL | p-Value | ||
---|---|---|---|---|---|
n | Ratio | Lower | Upper | ||
Intercept | −4.09 | −5.04 | −3.12 | <0.01 | |
Breed | |||||
Brown Swiss | 22 | 3.01 | 1.12 | 7.85 | 0.02 |
Simmental | 238 | 1.86 | 0.73 | 4.52 | 0.17 |
Mix | 38 | 2.05 | 0.79 | 5.14 | 0.13 |
Holstein | 5 | Reference | |||
Production system | |||||
Organic | 52 | 1.58 | 1.17 | 2.15 | <0.01 |
Conventional | 253 | Reference | |||
Bedding 1 | |||||
Recycled manure solids | 9 | 0.87 | 0.41 | 1.86 | 0.72 |
Lime | 24 | 1.04 | 0.60 | 1.81 | 0.88 |
Lime-straw mattress | 44 | 1.24 | 0.52 | 2.00 | 0.45 |
Straw with lime | 57 | 1.70 | 1.06 | 2.60 | 0.02 |
Straw | 92 | 1.41 | 0.92 | 2.12 | 0.12 |
Sawdust | 38 | 0.69 | 0.39 | 1.19 | 0.17 |
Mattress cubicle, none | 41 | Reference | |||
Dispersion | 0.52 | 0.36 | 0.73 |
Parameter | Prevalence | 95% CL | p-Value | ||
---|---|---|---|---|---|
n | Ratio | Lower | Upper | ||
Intercept | −3.59 | −4.19 | −2.98 | <0.01 | |
Group | |||||
1 | 77 | 2.93 | 1.77 | 4.82 | <0.01 |
2 | 75 | 2.09 | 1.26 | 3.45 | <0.01 |
3 | 76 | 2.01 | 1.21 | 3.30 | <0.01 |
4 | 77 | Reference | |||
Production system | |||||
Organic | 52 | 2.05 | 1.37 | 3.12 | <0.01 |
Conventional | 253 | Reference | |||
Hygiene milking system | |||||
Visibly clean | 199 | 1.55 | 1.08 | 2.22 | 0.02 |
Visibly soiled | 105 | Reference | |||
Bedding | |||||
Recycled manure solids | 9 | 0.62 | 0.23 | 1.83 | 0.36 |
Lime-only | 24 | 0.64 | 0.31 | 1.36 | 0.23 |
Lime-straw mattress | 44 | 0.26 | 0.15 | 0.54 | <0.01 |
Straw with lime | 57 | 0.48 | 0.26 | 0.85 | 0.01 |
Straw | 92 | 0.73 | 0.43 | 1.21 | 0.23 |
Sawdust | 38 | 0.85 | 0.47 | 1.55 | 0.60 |
Mattress cubicle, none | 41 | Reference | |||
Dispersion | 1.01 | 0.76 | 1.34 |
Parameter | Prevalence | 95% CL | p-Value | ||
---|---|---|---|---|---|
n | Ratio | Lower | Upper | ||
Intercept | −2.57 | −3.12 | −2.03 | <0.01 | |
Teat cleaning | |||||
Moist | 136 | 1.05 | 0.79 | 1.41 | 0.73 |
None | 19 | 0.43 | 0.22 | 0.86 | 0.02 |
Predip 1 | 28 | 1.33 | 0.82 | 2.16 | 0.25 |
Dry | 122 | Reference | |||
Application of post-dip | |||||
No | 129 | 1.36 | 1.03 | 1.79 | 0.03 |
Yes | 176 | Reference | |||
Bedding | |||||
Recycled manure solids | 9 | 0.84 | 0.39 | 1.80 | 0.65 |
Lime | 24 | 0.96 | 0.57 | 1.62 | 0.87 |
Lime-straw mattress | 44 | 0.21 | 0.11 | 0.39 | <0.01 |
Straw with lime | 57 | 0.70 | 0.45 | 1.07 | 0.05 |
Straw | 92 | 0.57 | 0.38 | 0.87 | 0.01 |
Sawdust | 38 | 0.77 | 0.46 | 1.28 | 0.31 |
Mattress cubicle, none | 41 | Reference | |||
Antibiotic dry-off 2 | 0.99 | 0.98 | 0.99 | <0.01 | |
Rolling herd average, kg | 0.99 | 0.98 | 0.99 | 0.01 | |
Dispersion | 0.45 | 0.27 | 0.75 |
Parameter | Prevalence | 95% CL | p-Value | ||
---|---|---|---|---|---|
n | Ratio | Lower | Upper | ||
Intercept | −2.36 | −2.82 | −1.90 | <0.01 | |
Milking system | |||||
Robotic milking system | 65 | 1.74 | 1.36 | 2.14 | <0.01 |
Milking parlor | 153 | 1.12 | 0.91 | 1.37 | 0.28 |
Pipe milking system | 87 | Reference | |||
Dip agent base | |||||
Chlorine dioxide | 3 | 0.24 | 0.10 | 0.60 | <0.01 |
Chlorhexidine | 20 | 0.98 | 0.65 | 1.48 | 0.94 |
Iodine | 87 | 0.81 | 0.58 | 1.12 | 0.21 |
Other | 15 | 0.85 | 0.61 | 1.18 | 0.33 |
Lactic acid | 51 | 0.96 | 0.67 | 1.36 | 0.80 |
No post-dip used | 129 | Reference | |||
Agitated cows during milking | |||||
Yes | 42 | 1.34 | 1.09 | 1.66 | <0.01 |
No | 257 | Reference | |||
Dispersion | 0.23 | 0.17 | 0.31 |
Parameter | Odds | 95% CL | p-Value | ||
---|---|---|---|---|---|
n | Ratio | Lower | Upper | ||
Intercept (estimate) | 0.59 | ||||
Group | |||||
1 | 77 | 0.03 | 0.003 | 0.26 | <0.01 |
2 | 75 | 0.21 | 0.06 | 0.69 | 0.01 |
3 | 76 | 0.51 | 0.17 | 1.45 | 0.20 |
4 | 77 | Reference | |||
Audible liner slips | |||||
No | 202 | 0.16 | 0.05 | 0.45 | <0.01 |
Yes | 32 | Reference |
Parameter | Odds | 95% CL | p-Value | ||
---|---|---|---|---|---|
n | Ratio | Lower | Upper | ||
Intercept (estimate) | −2.67 | <0.01 | |||
Maintenance contract, milking system | |||||
No | 237 | 0.28 | 0.08 | 0.97 | 0.04 |
Yes | 67 | Reference | |||
Water trough cleaning | |||||
Irregularly | 31 | 4.36 | 1.04 | 18.34 | 0.04 |
Regularly | 274 | Reference |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalverkamp, K.; Petzl, W.; Sorge, U.S. Risk Factors for Intramammary Infections on Bavarian Dairy Farms—A Herd-Level Analysis. Animals 2025, 15, 2616. https://doi.org/10.3390/ani15172616
Kalverkamp K, Petzl W, Sorge US. Risk Factors for Intramammary Infections on Bavarian Dairy Farms—A Herd-Level Analysis. Animals. 2025; 15(17):2616. https://doi.org/10.3390/ani15172616
Chicago/Turabian StyleKalverkamp, Klara, Wolfram Petzl, and Ulrike S. Sorge. 2025. "Risk Factors for Intramammary Infections on Bavarian Dairy Farms—A Herd-Level Analysis" Animals 15, no. 17: 2616. https://doi.org/10.3390/ani15172616
APA StyleKalverkamp, K., Petzl, W., & Sorge, U. S. (2025). Risk Factors for Intramammary Infections on Bavarian Dairy Farms—A Herd-Level Analysis. Animals, 15(17), 2616. https://doi.org/10.3390/ani15172616