Molecular Insights into Intramuscular Unsaturated Fatty Acid Deposition in Lambs Through Multi-Omics Profiling
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Sample Collection
2.2. Meat Quality Traits and Fatty Acid Composition
2.3. Transcriptome Sequencing and Analysis
2.4. Metabolomics Analysis
2.5. Quantitative Real-Time PCR (qPCR)
2.6. Western Blot Analysis (WB)
2.7. Gene Set Enrichment Analysis (GSEA)
2.8. Statistical Analysis
3. Results
3.1. Comparison of Meat Quality Traits and Fatty Acid Composition Between High- and Low-UFA Groups
3.2. Transcriptomic Analysis Between High- and Low-UFA Groups
3.3. Metabolomic Differences in Muscle Tissues Between High- and Low-UFA Groups
3.4. Validation by Quantitative PCR and Western Blotting
3.5. Comparison of Muscle Fiber Composition Between Groups
3.6. GSEA Analysis of the MYH7 Gene
4. Discussion
4.1. Potential Regulatory Networks Revealed by Differentially Expressed Genes
4.2. MYH7 as a Key Link Between Slow-Twitch Fibers and Lipid Deposition
4.3. Metabolomic Characteristics Reveal the Biochemical Basis of Lipid Deposition
4.4. Limitations and Future Perspectives
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
UFAs | Unsaturated Fatty Acids |
SFAs | Saturated Fatty Acids |
DEGs | Differentially Expressed Genes |
RT-qPCR | Real-Time Quantitative Polymerase Chain Reaction |
WB | Western Blot |
GO | Gene Ontology |
KEGG | Kyoto Encyclopedia of Genes and Genomes |
PCA | Principal Component Analysis |
TCA cycle | Tricarboxylic Acid Cycle |
LC–MS | Liquid Chromatography–Mass Spectrometry |
FASN | Fatty Acid Synthase |
FABP3 | Fatty Acid-Binding Protein 3 |
MYH7 | Myosin Heavy Chain 7 |
IMF | Intramuscular Fat |
TAG | Triacylglycerol |
RNA-Seq | RNA Sequencing |
FC | Fold Change |
ATP | Adenosine Triphosphate |
NADH | Nicotinamide Adenine Dinucleotide (Reduced form) |
References
- Ding, W.; Lu, Y.; Xu, B.; Chen, P.; Li, A.; Jian, F.; Yu, G.; Huang, S. Meat of Sheep: Insights into Mutton Evaluation, Nutritive Value, Influential Factors, and Interventions. Agriculture 2024, 14, 1060. [Google Scholar] [CrossRef]
- Trbović, D.; Lukić, M.; Vranić, D.; Dordevic, V.; Stanisic, N.; Parunović, N.; Ćirić, J. Comprehensive Levels of Fatty Acids in Meat: Implications for Human Health. Baltica 2023, 36, 45–63. [Google Scholar] [CrossRef]
- Fowler, S.; Morris, S.; Hopkins, D. Nutritional Composition of Lamb Retail Cuts from the Carcases of Extensively Finished Lambs. Meat Sci. 2019, 154, 126–132. [Google Scholar] [CrossRef] [PubMed]
- Mahmud, I.; Karadaş, F. Effects of Melatonin and Vitamin E (Alpha-Tocopherol Acetate) as Antioxidants on Biochemical Blood Parameters, Lipid Profile, and Muscle Vitamin E Concentration in Awassi Lambs Fed a High-Energy Diet and Normal Diet. Arch. Razi Inst. 2023, 78, 249–259. [Google Scholar]
- Keady, T.; Hanrahan, J.; Fagan, S. Cobalt Supplementation, Alone or in Combination with Vitamin B and Selenium: Effects on Lamb Performance and Mineral Status. J. Anim. Sci. 2017, 95, 379–386. [Google Scholar] [PubMed]
- Sainsbury, J.; Schönfeldt, H.; Heerden, S. The nutrient composition of South African mutton. J. Food Compos. Anal. 2011, 24, 720–726. [Google Scholar] [CrossRef]
- Li, S.; Li, X.; Ma, Q.; Wang, Z.; Fang, F.; Zhang, D. Consumer Preference, Behaviour and Perception about Lamb Meat in China. Meat Sci. 2022, 192, 108878. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Li, J.; Yuan, C.; Xi, B.; Yang, B.; Meng, X.; Guo, T.; Yue, Y.; Gao, Y.; Liu, J.; et al. Evaluation of Mutton Quality Characteristics of Dongxiang Tribute Sheep Based on Membership Function and Gas Chromatography and Ion Mobility Spectrometry. Front. Nutr. 2022, 9, 852399. [Google Scholar] [CrossRef]
- Xu, X.; Liu, H.; Wang, X.; Zhang, Q.; Guo, T.; Hu, L.; Xu, S. Evaluation of the Longissimus Thoracis et Lumborum Muscle Quality of Chaka and Tibetan Sheep and the Analysis of Possible Mechanisms Regulating Meat Quality. Animals 2023, 13, 2494. [Google Scholar] [CrossRef]
- Xu, X.; Guo, T.; Zhang, Q.; Liu, H.; Wang, X.; Li, N.; Wang, Y.; Wei, L.; Hu, L.; Xu, S. Comparative Evaluation of the Nutrient Composition and Lipidomic Profile of Different Parts of Muscle in the Chaka Sheep. Food Sci. Anim. Resour. 2024, 44, 1305–1326. [Google Scholar] [CrossRef]
- McPherson, R.; Spiller, G. Effects of Dietary Fatty Acids and Cholesterol on Cardiovascular Disease Risk Factors in Man. In Handbook of Lipids in Human Nutrition; CRC Press: Boca Raton, FL, USA, 2020; pp. 41–50. [Google Scholar]
- Borges, M.C.; Haycock, P.C.; Zheng, J.; Hemani, G.; Holmes, M.V.; Smith, G.D.; Hingorani, A.D.; Lawlor, D.A. Role of Circulating Polyunsaturated Fatty Acids on Cardiovascular Diseases Risk: Analysis Using Mendelian Randomization and Fatty Acid Genetic Association Data from Over 114,000 UK Biobank Participants. BMC Med. 2022, 20, 210. [Google Scholar] [CrossRef]
- De Souza, R.; Mente, A.; Maroleanu, A.; Cozma, A.; Ha, V.; Kishibe, T.; Uleryk, E.; Budylowski, P.; Schünemann, H.; Beyene, J.; et al. Intake of Saturated and Trans Unsaturated Fatty Acids and Risk of All Cause Mortality, Cardiovascular Disease, and Type 2 Diabetes: Systematic Review and Meta-Analysis of Observational Studies. BMJ 2015, 351, h3978. [Google Scholar] [CrossRef]
- Mykolaichuk, L.P.; Lesnovskaya, O.V.; Sanzhara, R.A.; Pokhyl, O.M.; Gutyj, B.V.; Dochkin, D.O.; Mylostyvyi, R.V. The Fatty Acid Composition of Lamb Makes It a Valuable Raw Material for the Meat Processing Industry. Sci. Messenger LNU Vet. Med. Biotechnol. 2024, 26, 109–112. [Google Scholar] [CrossRef]
- Yao, Y.; Wang, H.; Lu, Z.; Nian, F.; Zheng, C.; Li, F.; Tang, D. Improving Shelf Life and Content of Unsaturated Fatty Acids in Meat of Lambs Fed a Diet Supplemented with Grape Dregs. Foods 2023, 12, 4204. [Google Scholar] [CrossRef]
- Liu, Y.; Li, R.; Ying, Y.; Zhang, Y.; Huang, Y.; Wu, H.; Lin, K. Non-genetic Factors Affecting the Meat Quality and Flavor of Inner Mongolian Lambs: A Review. Front. Vet. Sci. 2022, 9, 1067880. [Google Scholar] [CrossRef]
- Sacchetti, M.; Saltin, B.; Osada, T.; Hall, G. Intramuscular Fatty Acid Metabolism in Contracting and Non-contracting Human Skeletal Muscle. J. Physiol. 2002, 540, 387–395. [Google Scholar] [CrossRef]
- Schultz, K.; Marmorstein, R. Molecular Basis for Regulation of Mammalian Fatty Acid Synthase. FASEB J. 2022, 36, L8108. [Google Scholar] [CrossRef]
- Zheng, Q.; Liu, L.; Guo, X.; Zhu, F.; Huang, Y.; Qin, Q.; Huang, X. Fish ELOVL7a Is Involved in Virus Replication via Lipid Metabolic Reprogramming. Fish Shellfish Immunol. 2024, 149, 109530. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Chen, Y.; Han, X.; Tan, D.; Chen, J.; Lai, C.; Yang, X.; Shan, X.; Silva, L.H.P.; Jiang, H. Effects of Muscle Fiber Composition on Meat Quality, Flavor Characteristics, and Nutritional Traits in Lamb. Foods 2025, 14, 2309. [Google Scholar] [CrossRef] [PubMed]
- Lee, L.A.; Barrick, S.K.; Meller, A.; Walklate, J.; Lotthammer, J.M.; Tay, J.W.; Stump, W.T.; Bowman, G.; Geeves, M.A.; Greenberg, M.J.; et al. Functional divergence of the sarcomeric myosin, MYH7b, supports species-specific biological roles. J. Biol. Chem. 2023, 299, 1102657. [Google Scholar] [CrossRef] [PubMed]
- Carrillo, J.A.; He, Y.; Li, Y.; Liu, J.; Erdman, R.A.; Sonstegard, T.S.; Song, J. Integrated metabolomic and transcriptome analyses reveal finishing forage affects metabolic pathways related to beef quality and animal welfare. Sci. Rep. 2016, 6, 25948. [Google Scholar] [CrossRef] [PubMed]
- Diniz, W.; Ward, A. 282 Multi-omics approaches to improve animal production. J. Anim. Sci. 2021, 99, 20–21. [Google Scholar] [CrossRef]
- Kumar, S.T.; Zheng, Y.; Xu, J.; Zhao, Z.; Zhang, Q.; Zhang, Y.; Li, M.; Zou, H.; Azeem, R.M.; Sun, W.S.; et al. Transcriptome and Metabolome Insights into Key Genes Regulating Fat Deposition and Meat Quality in Pig Breeds. Animals 2024, 14, 3560. [Google Scholar] [CrossRef] [PubMed]
- Frezarim, G.B.; Mota, L.F.M.; Fonseca, L.F.S.; Salatta, B.M.; Arikawa, L.M.; Schmidt, P.I.; Silva, D.B.S.; Albuquerque, L.G. Multi-omics integration identifies molecular markers and biological pathways for carcass and meat quality traits in Nellore cattle. Sci. Rep. 2025, 15, 10467. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; Luo, H.; He, J.; Huang, X.; Chen, S.; Fu, X.; Zeng, W.; Tian, Y.; Liu, S.; Li, C.; et al. Comprehensive transcriptome and methylome analysis delineates the biological basis of hair follicle development and wool-related traits in Merino sheep. BMC Biol. 2021, 19, 197. [Google Scholar] [CrossRef] [PubMed]
- Wen, W.-X.; Mei, Z.-Q.; Wang, X.-Y.; Wang, J.-X.; Zhang, J.-H. Lipid metabolism in longissimus thoracis muscle of Tibetan sheep at different ages: Transcriptomic insights. Front. Nutr. 2022, 9, 847077. [Google Scholar]
- GB 5009.168–2016; The National Health and Family Planning Commission of the People’s Republic of China. National Food Safety Standard: Determination of Fatty Acid in Food. China Standards Press: Beijing, China, 2016; pp. 1–6.
- Salavati, M.; Caulton, A.; Clark, R.; Gazova, I.; Smith, T.P.L.; Worley, K.C.; Cockett, N.E.; Archibald, A.L.; Clarke, S.; Murdoch, B.M.; et al. Global analysis of transcription start sites in the new ovine reference genome (Oar rambouillet v1.0). Front. Genet. 2020, 11, 580580. [Google Scholar] [CrossRef]
- Kim, D.; Paggi, J.M.; Park, C.; Bennett, C.; Salzberg, S.L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 2019, 37, 907–915. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef]
- Yu, G.; Wang, L.G.; Han, Y.; He, Q.Y. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS A J. Integr. Biol. 2012, 16, 284–287. [Google Scholar] [CrossRef]
- Pang, Z.; Lu, Y.; Zhou, G.; Hui, F.; Xu, L.; Viau, C.; Spigelman, A.F.; MacDonald, P.E.; Wishart, D.S.; Li, S. MetaboAnalyst 6.0: Towards a unified platform for metabolomics data processing, analysis and interpretation. Nucleic Acids Res. 2024, 52, W398–W406. [Google Scholar] [CrossRef] [PubMed]
- Hou, M.; Sun, W.; Ye, H.; Zhai, X.; Xue, Y.; Tang, R.; Teng, S.; Wu, R.; Luo, H. Comparative Analysis for Nutrients, Flavor Compounds, and Lipidome Revealed the Edible Value of Pond-Cultured Male Pelodiscus sinensis with Different Ages. Food Chem. 2024, 454, 139795. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Lin, P.; Wang, Y.; Chen, Y.; Zhang, Z.; Li, F.; Feng, J. FADD Cooperates with Caspase-8 to Positively Regulate the Innate Immune Response and Promote Apoptosis Following Bacterial Infection in Japanese Eel. Fish Shellfish Immunol. 2025, 157, 110110. [Google Scholar] [CrossRef]
- Ranjan, K.; Pathak, C. Cellular Dynamics of Fas-Associated Death Domain in the Regulation of Cancer and Inflammation. Int. J. Mol. Sci. 2024, 25, 3228. [Google Scholar] [CrossRef]
- Tang, J.; Li, M.; Liu, X.; Wang, Y.; Zhang, J.; Shu, H.; Liu, Z.; Zhang, C.; Fu, L.; Hu, J.; et al. FADD Regulates Adipose Inflammation, Adipogenesis, and Adipocyte Survival. Cell Death Discov. 2024, 10, 323. [Google Scholar] [CrossRef] [PubMed]
- Mallilankaraman, K.; Doonan, P.; Cardenas, C.; Chandramoorthy, H.C.; Muller, M.; Miller, R.; Hoffman, N.E.; Gandhirajan, R.K.; Molgo, J.; Birnbaum, M.J.; et al. MICU1 is an essential gatekeeper for MCU-mediated mitochondrial Ca2+ uptake that regulates cell survival. Cell 2012, 151, 630–644. [Google Scholar] [CrossRef]
- Tidhar, R.; Futerman, A.H. The complexity of sphingolipid biosynthesis in the endoplasmic reticulum. Biochim. Et Biophys. Acta 2013, 1833, 2511–2518. [Google Scholar] [CrossRef]
- Koob, S.; Reichert, A.S. Novel intracellular functions of apolipoproteins: The ApoO protein family as constituents of the Mitofilin/MINOS complex determines cristae morphology in mitochondria. Biol. Chem. 2014, 395, 285–296. [Google Scholar] [CrossRef]
- Álvarez-Guaita, A.; Patel, S.; Lim, K.; Haider, A.; Dong, L.; Conway, O.J.; Ma, M.K.; Chiarugi, D.; Saudek, V.; O’rAhilly, S.; et al. Phenotypic characterization of Adig null mice suggests roles for adipogenin in the regulation of fat mass accrual and leptin secretion. Cell Rep. 2021, 34, 108810. [Google Scholar] [CrossRef]
- Picard, B.; Lefaucheur, L.; Berri, C.; Duclos, M.J. Muscle fibre ontogenesis in farm animal species. Reprod. Nutr. Dev. 2002, 42, 415–431. [Google Scholar] [CrossRef]
- Wood, J.D.; Richardson, R.I.; Nute, G.R.; Fisher, A.V.; Campo, M.M.; Kasapidou, E.; Sheard, P.R.; Enser, M. Effects of fatty acids on meat quality: A review. Meat Sci. 2004, 66, 21–32. [Google Scholar] [CrossRef]
- Komiya, Y.; Sakazaki, Y.; Goto, T.; Kawabata, F.; Suzuki, T.; Sato, Y.; Sawano, S.; Nakamura, M.; Tatsumi, R.; Ikeuchi, Y.; et al. Eicosapentaenoic Acid Increases Proportion of Type 1 Muscle Fibers Through PPARδ and AMPK Pathways in Rats. iScience 2024, 27, 109816. [Google Scholar] [CrossRef]
- Ryu, Y.C.; Kim, B.C. The relationship between muscle fiber characteristics, postmortem metabolic rate, and meat quality of pig longissimus dorsi muscle. Meat Sci. 2005, 71, 351–357. [Google Scholar] [CrossRef] [PubMed]
- Saedi, A.; Debruin, D.; Hayes, A.; Hamrick, M. Lipid Metabolism in Sarcopenia. Bone 2022, 164, 116539. [Google Scholar] [CrossRef]
- Arnold, P.; Finley, L. Regulation and function of the mammalian tricarboxylic acid cycle. J. Biol. Chem. 2023, 299, 102838. [Google Scholar] [CrossRef] [PubMed]
- Frisard, M.I.; McMillan, R.P.; Marchand, J.; Wahlberg, K.A.; Wu, Y.; Voelker, K.A.; Heilbronn, L.; Haynie, K.; Muoio, B.; Li, L.; et al. Toll-like receptor 4 modulates skeletal muscle substrate metabolism. Am. J. Physiol.-Endocrinol. Metab. 2010, 298, E988–E998. [Google Scholar] [CrossRef]
- Hoene, M.; Weigert, C. The role of interleukin-6 in insulin resistance, body fat distribution and energy balance. Obes. Rev. 2008, 9, 20–29. [Google Scholar] [CrossRef]
- Yoshino, J.; Mills, K.F.; Yoon, M.J.; Imai, S.I. Nicotinamide mononucleotide, a key NAD+ intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice. Cell Metab. 2011, 14, 528–536. [Google Scholar] [CrossRef]
- Wakil, S.J.; Stoops, J.K.; Joshi, V.C. Fatty acid synthesis and its regulation. Annu. Rev. Biochem. 1983, 52, 537–579. [Google Scholar] [CrossRef] [PubMed]
- Wu, G. Functional amino acids in nutrition and health. Amino Acids 2013, 45, 407–411. [Google Scholar] [CrossRef]
Fatty Acid | L | H | p-Value | Cohen’s d |
---|---|---|---|---|
Oleic acid (C18:1n9) | 44.17 ± 0.57 | 47.73 ± 0.50 | 0.0016 | 2.17 |
Arachidonic acid (C20:4n6) | 1.18 ± 0.05 | 1.93 ± 0.19 | 0.0023 | 1.73 |
Palmitic acid (C16:0) | 25.27 ± 0.47 | 23.05 ± 0.54 | 0.0128 | 1.4 |
Stearic acid (C18:0) | 19.55 ± 0.59 | 17.27 ± 0.58 | 0.0572 | 1.29 |
Myristic acid (C14:0) | 2.08 ± 0.09 | 1.63 ± 0.13 | 0.0522 | 1.33 |
Heptadecanoic acid (C17:0) | 0.89 ± 0.07 | 0.69 ± 0.04 | 0.0797 | 1.17 |
Linoleic acid (C18:2n6) | 4.78 ± 0.32 | 5.56 ± 0.52 | 0.1801 | 0.63 |
Palmitoleic acid (C16:1) | 1.61 ± 0.10 | 1.68 ± 0.11 | 0.738 | 0.21 |
Pentadecanoic acid (C15:0) | 0.19 ± 0.01 | 0.11 ± 0.03 | 0.0601 | 1.22 |
cis-10-Heptadecenoic acid (C17:1) | 0.61 ± 0.03 | 0.55 ± 0.02 | 0.1732 | 0.83 |
cis-10-Pentadecenoic acid (C15:1) | 0.07 ± 0.03 | 0.03 ± 0.02 | 0.4143 | 0.57 |
Saturated Fatty Acids (SFAs) | 47.94 ± 0.35 | 42.43 ± 0.80 | 0.0001 | 3.44 |
Unsaturated Fatty Acids (UFAs) | 52.08 ± 0.36 | 57.31 ± 0.79 | 0.0001 | 3.48 |
Monounsaturated Fatty Acids (MUFAs) | 46.46 ± 0.74 | 49.99± 0.71 | 0.0064 | 1.98 |
Polyunsaturated Fatty Acids (PUFAs) | 5.62 ± 0.40 | 7.31 ± 0.87 | 0.1094 | 1.01 |
FC | log2(FC) | p-Value | |
---|---|---|---|
Ala-Lys | 2.235 | 1.1603 | 0.0048582 |
Palmitic acid | 1.6827 | 0.75082 | 0.0058927 |
Prostaglandin e2 methyl ester | 0.51287 | −0.96334 | 0.0059498 |
Aspartic acid | 2.9882 | 1.5793 | 0.0060464 |
2-(5-oxovaleryl)phosphatidylcholine | 0.30046 | −1.7348 | 0.008306 |
Resolvin d2 methyl ester | 2.6036 | 1.3805 | 0.0083364 |
3,8-Dihydroxy-9-methoxypterocarpan | 0.64406 | −0.63474 | 0.010545 |
D-aspartic acid | 2.1818 | 1.1255 | 0.011801 |
Prostaglandin F1a | 0.4956 | −1.0127 | 0.014185 |
NCGC00169093-01 | 1.6099 | 0.68698 | 0.015147 |
Glycerol tricaprylate | 0.57869 | −0.78914 | 0.018894 |
Pentadecanoic acid | 1.524 | 0.60791 | 0.023797 |
Cytochalasin Npho | 0.48678 | −1.0387 | 0.025344 |
Dethiobiotin | 1.6431 | 0.7164 | 0.026165 |
(-)-Ditryptophenaline | 1.7832 | 0.83444 | 0.031486 |
Isoanhydroicaritin | 1.6412 | 0.71477 | 0.031982 |
Lys-Trp-Arg | 3.1238 | 1.6433 | 0.032825 |
2′-deoxycytidine | 0.58106 | −0.78323 | 0.039292 |
N6-2-(4-aminophenyl)ethyladenosine | 0.3957 | −1.3375 | 0.040449 |
6-Phospho-D-gluconate | 0.49474 | −1.0153 | 0.040617 |
Prostaglandin d1 | 0.4935 | −1.0189 | 0.040847 |
Ciprofloxacin piperazinyl-n4-sulfate | 2.0831 | 1.0587 | 0.0416 |
3-Hydroxytetradecanoic acid | 1.5959 | 0.67441 | 0.041679 |
Glutamyllysine | 3.391 | 1.7617 | 0.042961 |
Idebenone | 0.63487 | −0.65546 | 0.043434 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, X.; Liu, X.; Fu, Y.; Chen, J.; Lai, C.; Yang, X.; Shan, X.; Chen, Y.; Jiang, H. Molecular Insights into Intramuscular Unsaturated Fatty Acid Deposition in Lambs Through Multi-Omics Profiling. Animals 2025, 15, 2617. https://doi.org/10.3390/ani15172617
Han X, Liu X, Fu Y, Chen J, Lai C, Yang X, Shan X, Chen Y, Jiang H. Molecular Insights into Intramuscular Unsaturated Fatty Acid Deposition in Lambs Through Multi-Omics Profiling. Animals. 2025; 15(17):2617. https://doi.org/10.3390/ani15172617
Chicago/Turabian StyleHan, Xuewen, Xudong Liu, Yu Fu, Jinlin Chen, Cuiyu Lai, Xiaofan Yang, Xuesong Shan, Yang Chen, and Huaizhi Jiang. 2025. "Molecular Insights into Intramuscular Unsaturated Fatty Acid Deposition in Lambs Through Multi-Omics Profiling" Animals 15, no. 17: 2617. https://doi.org/10.3390/ani15172617
APA StyleHan, X., Liu, X., Fu, Y., Chen, J., Lai, C., Yang, X., Shan, X., Chen, Y., & Jiang, H. (2025). Molecular Insights into Intramuscular Unsaturated Fatty Acid Deposition in Lambs Through Multi-Omics Profiling. Animals, 15(17), 2617. https://doi.org/10.3390/ani15172617