Entirely Anatolian Hydrobiid (Caenogastropoda–Truncatelloidea–Hydrobiidae) Clade Revisited: Two More New Genera and Six New Species †
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Molecular Part
3.2. Shell Biometry
3.3. Systematic Part
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Radoman, P. Hydrobioidea a Superfamily of Prosobranchia (Gastropoda). I Systematics; Serbian Academy of Sciences and Arts: Belgrade, Serbia, 1983; Volume 57, pp. 1–256. [Google Scholar]
- Yildirim, M.Z.; Koca, S.B.; Kebapçi, U. Supplement to the Prosobranchia (Mollusca: Gastropoda) Fauna of Fresh and Brackish Waters of Turkey. Turk. J. Zool. 2006, 30, 197–204. [Google Scholar]
- Çaĝlan, D.C.; Yildirim, M.Z.; Szarowska, M.; Falniowski, A. Phylogenetic position of Tefennia Schütt et Yildirim, 2003 (Caenogastropoda: Rissooidea). Folia Malacol. 2012, 20, 271–277. [Google Scholar] [CrossRef]
- Gürlek, M.E. Three new truncatelloidean gastropod species from Turkey (Caenogastropoda: Littorinimorpha). Turk. J. Zool. 2017, 41, 991–997. [Google Scholar] [CrossRef]
- Gürlek, M.E.; Şahin Koşal, S.; Dokumcu, N.; Yildirim, M.Z. Checklist of the Freshwater Mollusca of Turkey (Mollusca: Gastropoda, Bivalvia). Fresenius Environ. Bull. 2019, 28, 2992–3013. Available online: https://www.researchgate.net/publication/332422818 (accessed on 17 May 2025).
- Odabaşı, S.; Odabaşı, D.A.; Acar, S. New species of freshwater molluscs from Gökçeada (northeastern Aegean Sea), Turkey (Gastropoda: Hydrobiidae, Bythinellidae). Arch. Molluskenkd. 2019, 148, 185–195. [Google Scholar] [CrossRef]
- Ekin, I. Endemic microsnail Sheitanok amidicus (Caenogastropoda: Hydrobiidae) additional locations, distribution, shell morphology, and near-threatened. J. Conchol. 2023, 44, 431–438. [Google Scholar]
- Yıldırım, M. The Prosobranchia (Gastropoda: Mollusca) species of Turkey and their zoogeographic distribution 1. Fresh and brackish water. Turk. J. Zool. 1999, 23, 877–900. [Google Scholar]
- Mittermeier, R.A.; Gil, P.R.; Hoffman, M.; Pilgrim, J.; Brooks, T.; Mittermeier, J.C.; Lamoreux, J.; da Fonseca, G.A.B. Hotspots Revisited: Earth’s Biologically Richest and Most Endangered Terrestrial Ecoregions; Amsterdam University Press: Amsterdam, The Netherlands, 2004; ISBN 9781840642070. [Google Scholar]
- Delicado, D.; Gürlek, M.E. Taxonomic transfer of two species of hydrobiid snails from western Anatolia (Caenogastropoda, Truncatelloidea) to two new genera, based on molecular and morphological evidence. Arch. Molluskenkd. 2021, 150, 119–131. [Google Scholar] [CrossRef]
- Odabaşı, D.A.; Odabaşı, S.; Deniz, O. New Grossuana (Littorinimorpha: Hydrobiidae) species from Mount Kazdağı, northwestern Turkey. Zool. Middle East 2022, 68, 145–155. [Google Scholar] [CrossRef]
- Odabaşı, D.A.; Mercan, D.; Odabaşı, S.; Arslan, N. A new species of Pseudorientalia (Gastropoda: Hydrobiidae) from midwestern Turkiye with notes on Pseudorientalia natolica (Küster, 1853). Zootaxa 2024, 5415, 585–592. [Google Scholar] [CrossRef]
- Odabaşı, D.A.; Falniowski, A.; Hofman, S.; Jaszczyńska, A. A new member of an entirely Anatolian clade of the Horatiinae D.W. Taylor, 1966, Hydrobiidae W. Stimpson, 1865. Molluscan Res. 2025, 45, 233–242. [Google Scholar] [CrossRef]
- Delicado, D.; Hauffe, T.; Wilke, T. Fifth mass extinction event triggered the diversification of the largest family of freshwater gastropods (Caenogastropoda: Truncatelloidea: Hydrobiidae). Cladistics 2024, 40, 82–96. [Google Scholar] [CrossRef] [PubMed]
- Schütt, H.; Şeşen, R. Eine besondere Quellschnecke aus Ostanatolien (Prosobranchia: Hydrobiidae). Arch. Molluskenkd. 1991, 120, 175–178. [Google Scholar] [CrossRef]
- Şahin, S.K.; Koca, S.B.; Yildirim, M.Z. New genera Anatolidamnicola and Sivasi (Gastropoda: Hydrobiidae) from Sivas and Malatya (Turkey). Acta Zoo. Bulg. 2012, 64, 341–346. Available online: https://www.researchgate.net/publication/289105219 (accessed on 12 June 2025).
- Rueden, D.T.; Schindelin, J.; Hiner, M.C.; Dezonia, B.E.; Walter, A.E.; Arena, E.T.; Eliceiri, K.W. ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinform. 2017, 18, e529. [Google Scholar] [CrossRef]
- Falniowski, A.; Grego, J.; Rysiewska, A.; Osikowski, A.; Hofman, S. A new genus and species of Hydrobiidae Stimpson, 1865 (Caenogastropoda, Truncatelloidea) from Peloponnese, Greece. ZooKeys 2021, 1037, 161–179. [Google Scholar] [CrossRef] [PubMed]
- Ter Braak, C.J.F.; Šmilauer, P. Canoco Reference Manual and User’s Guide: Software for Ordination, Version 5.1x; Microcomputer Power: Ithaca, NY, USA, 2018; 536p. [Google Scholar]
- Šmilauer, P.; Lepš, J. Multivariate Analysis of Ecological Data Using Canoco 5, 2nd ed.; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Falniowski, A. Anatomical characters and SEM structure of radula and shell in the species-level taxonomy of freshwater prosobranchs (Mollusca: Gastropoda: Prosobranchia): A comparative usefulness study. Folia Malacol. 1990, 4, 53–142+78. [Google Scholar] [CrossRef]
- Szarowska, M.; Osikowski, A.; Hofman, S.; Falniowski, A. Pseudamnicola Paulucci, 1878 (Caenogastropoda: Truncatelloidea) from the Aegean Islands: A long or short story? Org. Divers. Evol. 2016, 16, 121–139. [Google Scholar] [CrossRef]
- Ratnasingham, S.; Hebert, P.D.N. bold: The barcode of life data system (http://www.barcodinglife.org). Mol. Ecol. Notes 2007, 7, 355–364. [Google Scholar] [CrossRef]
- Edgar, R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acid Res. 2004, 32, 1792–1797. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [PubMed]
- Hall, T.A. BioEdit: A user friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- Xia, X. Data Analysis in Molecular Biology and Evolution; Kluwer Academic Publishers: Boston, MA, USA, 2000. [Google Scholar]
- Xia, X.; Xie, Z.; Salemi, M.; Chen, L.; Wang, Y. An index of substitution saturation and its application. Mol. Phylogenet. Evol. 2003, 26, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Xia, X. DAMBE: A comprehensive software package for data analysis in molecular biology and evolution. Mol. Biol. Evol. 2013, 30, 1720–1728. [Google Scholar] [CrossRef]
- Miller, M.; Pfeiffer, A.W.; Schwartz, T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In Proceedings of the Gateway Computing Environments Workshop (GCE), New Orleans, LA, USA, 14 November 2010; pp. 1–8. [Google Scholar] [CrossRef]
- Kozlov, A.M.; Darriba, D.; Flouri, T.; Morel, B.; Stamatakis, A. RAxML NG: A fast, scalable and user friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 2019, 35, 4453–4455. [Google Scholar] [CrossRef]
- Ronquist, F.; Teslenko, M.; van der Mark, P.; Ayres, D.L.; Darling, A.; Höhna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P. Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012, 61, 539–542. [Google Scholar] [CrossRef] [PubMed]
- Rambaut, A.; Drummond, A.J.; Xie, D.; Baele, G.; Suchard, A.A. Posterior summarisation in Bayesian phylogenetics using Tracer1.7. Syst. Biol. 2018, 67, 901–904. [Google Scholar] [CrossRef]
- Rambaut, A. FigTree v1.3.1. 2010. Available online: http://tree.bio.ed.ac.uk/software/figtree (accessed on 21 March 2025).
- Zhang, J.; Kapli, P.; Pavlidis, P.; Stamatakis, A. A general species delimitation method with applications to phylogenetic placements. Bioinformatics 2013, 29, 2869–2876. [Google Scholar] [CrossRef] [PubMed]
- Puillandre, N.; Lambert, A.; Brouillet, S.; Achaz, G. ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Mol. Ecol. 2011, 21, 1864–1877. [Google Scholar] [CrossRef]
- Puillandre, N.; Brouillet, S.; Achaz, G. ASAP: Assemble species by automatic partitioning. Mol. Ecol. Resour. 2021, 21, 609–620. [Google Scholar] [CrossRef]
- Merckelbach, L.; Borges, L. Make every species count: FastaChar software for rapid determination of molecular diagnostic characters to describe species. Mol. Ecol. Resour. 2020, 20, 1761–1768. [Google Scholar] [CrossRef] [PubMed]
- Hütter, T.; Ganser, M.H.; Kocher, M.; Halkic, M.; Agatha, S.; Augsten, N. DeSignate: Detecting signature characters in gene sequence alignments for taxon diagnoses. BMC Bioinform. 2020, 21, 151. [Google Scholar] [CrossRef] [PubMed]
- Delicado, D.; Pešić, V.; Ramos, M. Arganiella Giusti & Pezzoli, 1980 (Caenogastropoda: Truncatelloidea: Hydrobiidae): A widespread genus or several narrow-range endemic genera? Eur. J. Taxon. 2021, 750, 140–155. [Google Scholar] [CrossRef]
- Wilke, T.; Davis, G.M.; Falniowski, A.; Giusti, F.; Bodon, M.; Szarowska, M. Molecular systematics of Hydrobiidae (Mollusca: Gastropoda: Rissooidea): Testing monophyly and phylogenetic relationships. Proc. Acad. Nat. Sci. Phila. 2001, 151, 1–21. [Google Scholar] [CrossRef]
- Osikowski, A.; Hofman, S.; Rysiewska, A.; Sket, B.; Prevorčnik, S.; Falniowski, A. A case of biodiversity overestimation in the Balkan Belgrandiella A. J. Wagner, 1927 (Caenogastropoda: Hydrobiidae): Molecular divergence not paralleled by high morphological variation. J. Nat. Hist. 2018, 52, 323–344. [Google Scholar] [CrossRef]
- Szarowska, M.; Hofman, S.; Osikowski, A.; Falniowski, A. Daphniola Radoman, 1973 (Caenogastropoda: Truncatelloidea) at east Aegean islands. Folia Malacol. 2014, 22, 269–275. [Google Scholar] [CrossRef]
- Osikowski, A.; Hofman, S.; Georgiev, D.; Kalcheva, S.; Falniowski, A. Aquatic snails Ecrobia maritima (Milaschewitsch, 1916) and E. ventrosa (Montagu, 1803) (Caenogastropoda: Hydrobiidae) in the east Mediterranean and Black Sea. Ann. Zool. 2016, 66, 477–486. [Google Scholar] [CrossRef]
- Wilke, T.; Albrecht, C.; Anistratenko, V.V.; Sahin, S.K.; Yildirim, M.Z. Testing biogeographical hypotheses in space and time: Faunal relationships of the putative ancient Lake Eğirdir in Asia Minor. J. Biogeogr. 2007, 34, 1807–1821. [Google Scholar] [CrossRef]
- Hofman, S.; Grego, J.; Fehér, Z.; Erőss, Z.P.; Rysiewska, A.; Osikowski, A.; Falniowski, A. New data on the valvatiform-shelled Hydrobiidae (Caenogastropoda, Truncatelloidea) from southern Greece. ZooKeys 2021, 1062, 31–47. [Google Scholar] [CrossRef]
- Falniowski, A.; Georgiev, D.; Osikowski, A.; Hofman, S. Radiation of Grossuana Radoman, 1973 (Caenogastropoda: Truncatelloidea) in the Balkans. J. Molluscan Stud. 2016, 82, 305–313. [Google Scholar] [CrossRef]
- Rysiewska, A.; Prevorčnik, S.; Osikowski, A.; Hofman, S.; Beran, L.; Falniowski, A. Phylogenetic relationships in Kerkia and introgression between Hauffenia and Kerkia (Caenogastropoda: Hydrobiidae). J. Zool. Syst. Evol. Res. 2017, 55, 106–117. [Google Scholar] [CrossRef]
- Falniowski, A.; Lewarne, B.; Rysiewska, A.; Osikowski, A.; Hofman, S. Crenobiont, stygophile and stygobiont molluscs in the hydrographic area of the Trebišnjica River Basin. ZooKeys 2021, 1047, 61–89. [Google Scholar] [CrossRef] [PubMed]
- Beran, L.; Osikowski, A.; Hofman, S.; Falniowski, A. Islamia zermanica (Radoman, 1973) (Caenogastropoda: Hydrobidae): Morphological and molecular distinctness. Folia Malacol. 2016, 24, 25–30. [Google Scholar] [CrossRef]
- Szarowska, M.; Hofman, S.; Osikowski, A.; Falniowski, A. Divergence preceding Island formation among Aegean insular populations of the freshwater snail genus Pseudorientalia (Caenogastropoda: Truncatelloidea). Zool. Sci. 2014, 31, 680–686. [Google Scholar] [CrossRef] [PubMed]
- Falniowski, A.; Szarowska, M.; Glöer, P.; Pešić, V. Molecules vs. morphology in the taxonomy of the Radomaniola/Grossuana group of Balkan Rissooidea (Mollusca: Caenogastropoda). J. Conchol. 2012, 41, 19–36. [Google Scholar]
- Szarowska, M.; Falniowski, A. Species distinctness of Sadleriana robici (Clessin, 1890) (Gastropoda: Rissooidea). Folia Malacol. 2013, 21, 127–133. [Google Scholar] [CrossRef]
- Falniowski, A. Species Distinction and Speciation in Hydrobioid Gastropods (Mollusca: Caenogastropoda: Truncatelloidea). Arch. Zool. Stud. 2018, 1, 003. [Google Scholar] [CrossRef]
- Pecina, L.; Vďačný, P. Morphological versus molecular delimitation of ciliate species: A case study of the family Clevelandellidae (Protista, Ciliophora, Armophorea). Eur. J. Taxon. 2020, 697, 1–46. [Google Scholar] [CrossRef]
- Duminil, J.; Di Michele, M. Plant species delimitation: A comparison of morphological and molecular markers. Plant Biosyst. 2009, 143, 528–542. [Google Scholar] [CrossRef]
- Tödter, L.; Worsaae, K.; Schmidt-Rhaesa, A. Comparative molecular and morphological species delineation of Halammohydra Remane, 1927 (Hydrozoa) with the description of four new species. Org. Divers. Evol. 2023, 23, 455–476. [Google Scholar] [CrossRef]
- Lefébure, T.; Douady, C.J.; Gouy, M.; Gibert, J. Relationship between morphological taxonomy and molecular divergence within Crustacea: Proposal of a molecular threshold to help species delimitation. Mol. Phylogenet. Evol. 2006, 40, 435–447. [Google Scholar] [CrossRef]
- Szarowska, M. Molecular phylogeny, systematics and morphological character evolution in the Balkan Rissooidea (Caenogastropoda). Folia Malacol. 2006, 14, 99–168. [Google Scholar] [CrossRef]
- Radoman, P. New Classification of Fresh and Brackish Water Prosobranchia from the Balkans and Asia Minor; Posebna Izdanja; Prirodnjacki Musej u Beogradu: Belgrade, Serbia, 1973; Volume 32, pp. 1–30. [Google Scholar]
- Radoman, P. Hydrobioidea, a Superfamily of Prosobranchia (Gastropoda). II. Origin, Zoogeography, Evolution in the Balkans and Asia Minor; Serbian Academy of Sciences and Arts, Faculty of Science–Department of Biology Monographs: Belgrade, Serbia, 1985; Volume 1, pp. 1–173. [Google Scholar]
- Lyubas, A.A.; Tomilova, A.A.; Kondakov, A.V.; Konopleva, E.S.; Vikhrev, I.V.; Gofarov, M.Y.; Eliseeva, T.A.; Aksenova, O.V.; Bovykina, G.V.; Kryuk, D.V.; et al. Phylogeography and genetic diversity of Duck Mussel Anodonta anatina (Bivalvia: Unionidae) in Eurasia. Diversity 2023, 15, 260. [Google Scholar] [CrossRef]
- Neubauer, T.A.; Wesselingh, F.P. The Early Pleistocene freshwater mollusks of the Denizli Basin (Turkey): A new long-lived lake fauna at the crossroads of Pontocaspian and Aegean-Anatolian realms. Zitteliana 2023, 97, 53–88. [Google Scholar] [CrossRef]
- Ghanavi, H.R.; Rahimi, P.; Tavana, M.; Tavabe, K.R.; Jouladeh- Roudbar, A.; Doadrio, I. The evolutionary journey of freshwater crabs of the genus Potamon (Decapoda: Brachyura: Potamidae). Mol. Phylogenet. Evol. 2023, 180, 107690. [Google Scholar] [CrossRef] [PubMed]
- Kosswig, C. Zoogeography of the Near East. Syst. Zool. 1955, 4, 49–73+96. [Google Scholar] [CrossRef]
Id | Locality | Coordinates | Altitudes | Species (Extraction Number) | |
---|---|---|---|---|---|
1 | Sarız Çayı, Near Yamanlı Village, Tufanbeyli District, Adana Province. | 38°10′21″ N | 36°14′53″ E | 1325 m | Adaniya tufanbeyi n. sp. (3K47) |
2 | Küçükçamurlu Spring, Göksun District, Kahramanmaraş Province. | 37°52′32″ N | 36°23′24″ E | 1452 m | Adaniya ozbeki n. sp. (3K46) |
3 | Küp Şelalesi, Doğan Çayı, Aladağ District, Adana Province. | 37°41′23″ N | 35°30′12″ E | 476 m | Adaniya cuneytsolaki n. sp. (3K42, 3K43); Anadoludamnicola ayhani n. sp. (3K44) |
4 | Spring in Finik Harabeleri (Finik Ruins), Eskiyapı, Güçlükonak, Şırnak. No.1. | 37°24′26″ N | 42°04′41″ E | 443 m | Dicle bilgini n. sp. (3L24, 3L25); Sheitanok esmaae n. sp. (3L22) |
5 | Spring in Finik Harabeleri (Finik Ruins), Eskiyapı, Güçlükonak, Şırnak. No.3. | 37°24′25″ N | 42°04′21″ E | 444 m | Dicle bilgini n. sp. (3L30, 3L31); Sheitanok esmaae n. sp. (3L28, 3L29) |
Species | GB Numbers | References |
---|---|---|
Anadoludamnicola gloeri Şahin, Koca & Yıldırım, 2012 | OP096205 | Delicado et al. 2024 [14] |
Arganiella pescei Giusti & Pezzoli, 1980 | MW553909 | Delicado et al. 2021 [40] |
Belgrandia thermalis (Linnaeus, 1767) | AF367648 | Wilke et al. 2001 [41] |
Belgrandiella cf. kuesteri (Boeters, 1970) | MG551325 | Osikowski et al. 2018 [42] |
Chilopyrgula zilchi Schütt, 1964 | OP096298 | Delicado et al. 2024 [14] |
Daphniola louisi Falniowski & Szarowska, 2000 | KM887915 | Szarowska et al. 2014 [43] |
Ecrobia maritima (Milaschewitsch, 1916) | KX355835 | Osikowski et al. 2016 [44] |
Erosiconcha geldiayana (Schütt & Bilgin, 1970) | MZ606137 | Delicado & Gürlek 2021 [10] |
Falsipyrgula pfeiferi (A. Weber, 1927) | EF379296 | Wilke et al. 2007 [45] |
Fissuria boui Boeters, 1981 | AF367654 | Wilke et al. 2001 [41] |
Graecoanatolica lacustristurca Radoman, 1973 | OP096234 | Delicado et al. 2024 [14] |
Graecoanatolica pamphylica (Schütt, 1964) | OP096236 | Delicado et al. 2024 [14] |
Graecoarganiella parnassiana Falniowski & Szarowska, 2011 | MZ093454 | Hofman et al. 2021 [46] |
Graecoanatolica tenuis Radoman, 1973 | OP096237 | Delicado et al. 2024 [14] |
Grossuana angeltsekovi Glöer & Georgiev, 2009 | KU201090 | Falniowski et al. 2016 [47] |
Hauffenia tellinii (Pollonera, 1898) | KY087861 | Rysiewska et al. 2017 [48] |
Iglicopsis butoti Falniowski & Hofman, 2021 | MW879273 | Falniowski et al. 2021 [49] |
Islamia anatolica Radoman, 1973 | OP096253 | Delicado et al. 2024 [14] |
Islamia bunarbasa (Schütt, 1964) | OP096255 | Delicado et al. 2024 [14] |
Islamia pseudorientalica Radoman, 1973 | OP096261 | Delicado et al. 2024 [14] |
Islamia zermanica Radoman, 1973 | KU662362 | Beran et al. 2016 [50] |
Kozanium torosum Odabaşı & Falniowski, 2025 | PV494927-PV494928 | Odabaşı et al. 2025 [13] |
Pseudorientalia sp., Samos Island | KJ920477 | Szarowska et al. 2014 [51] |
Radomaniola curta (Küster, 1853) | KC011814 | Falniowski et al. 2012 [52] |
Sadleriana fluminensis (Küster, 1853) | KF193067 | Szarowska & Falniowski 2013 [53] |
Sheitanok sp. | OP096317 | Delicado et al. 2024 [14] |
Tefennia tefennica Schütt & Yıldırım, 2003 | OP096320 | Delicado et al. 2024 [14] |
A | B | C | D | E | F | G | H | I | |
---|---|---|---|---|---|---|---|---|---|
A | 0.001 | ||||||||
B | 0.097 | - | |||||||
C | 0.089 | 0.028 | - | ||||||
D | 0.096 | 0.040 | 0.025 | 0.002 | |||||
E | 0.123 | 0.114 | 0.121 | 0.122 | 0.014 | ||||
F | 0.133 | 0.125 | 0.129 | 0.132 | 0.071 | - | |||
G | 0.127 | 0.101 | 0.099 | 0.098 | 0.111 | 0.110 | - | ||
H | 0.112 | 0.108 | 0.108 | 0.111 | 0.109 | 0.116 | 0.058 | - | |
I | 0.105 | 0.101 | 0.103 | 0.115 | 0.100 | 0.114 | 0.110 | 0.082 | 0.000 |
a | b | c | d | e | α | β | |
---|---|---|---|---|---|---|---|
Dicle bilgini n. sp. | |||||||
holotype | 1.83 | 1.11 | 0.89 | 0.56 | 0.73 | 73 | 15 |
3L24 | 1.78 | 1.08 | 0.86 | 0.51 | 0.71 | 77 | 13 |
3L25 | 1.67 | 1.08 | 0.82 | 0.42 | 0.71 | 77 | 11 |
3L30 | 1.73 | 1.06 | 0.84 | 0.48 | 0.78 | 76 | 13 |
1 | 1.82 | 1.15 | 0.85 | 0.54 | 0.78 | 73 | 14 |
2 | 1.87 | 1.22 | 0.95 | 0.41 | 0.86 | 79 | 11 |
3 | 1.74 | 1.18 | 0.88 | 0.38 | 0.81 | 83 | 11 |
4 | 1.77 | 1.12 | 0.85 | 0.45 | 0.74 | 75 | 13 |
M | 1.78 | 1.13 | 0.87 | 0.47 | 0.77 | 76.63 | 12.63 |
SD | 0.06 | 0.06 | 0.04 | 0.06 | 0.05 | 3.29 | 1.51 |
Min | 1.67 | 1.06 | 0.82 | 0.38 | 0.71 | 73 | 11 |
Max | 1.87 | 1.22 | 0.95 | 0.56 | 0.86 | 83 | 15 |
Adaniya tufanbeyi n. sp. | |||||||
holotype | 2.48 | 1.43 | 1.25 | 0.85 | 1.00 | 78 | 14 |
3K47 | 2.56 | 1.47 | 1.18 | 0.88 | 1.01 | 80 | 14 |
1 | 2.50 | 1.43 | 1.09 | 0.86 | 0.92 | 74 | 12 |
2 | 3.12 | 1.70 | 1.49 | 1.05 | 1.16 | 74 | 15 |
3 | 2.53 | 1.52 | 1.31 | 0.77 | 1.05 | 82 | 14 |
4 | 2.45 | 1.47 | 1.23 | 0.78 | 1.01 | 81 | 12 |
5 | 2.64 | 1.47 | 1.17 | 0.92 | 1.02 | 78 | 18 |
6 | 2.51 | 1.55 | 1.24 | 0.73 | 1.10 | 83 | 11 |
M | 2.60 | 1.51 | 1.25 | 0.86 | 1.03 | 78.75 | 13.75 |
SD | 0.22 | 0.09 | 0.12 | 0.10 | 0.07 | 3.41 | 2.19 |
Min | 2.45 | 1.43 | 1.09 | 0.73 | 0.92 | 74 | 11 |
Max | 3.12 | 1.70 | 1.49 | 1.05 | 1.16 | 83 | 18 |
Adaniya ozbeki n. sp. | |||||||
holotype | 2.32 | 1.53 | 1.28 | 0.56 | 1.11 | 84 | 13 |
3K46 | 2.28 | 1.51 | 1.22 | 0.55 | 1.10 | 88 | 15 |
1 | 2.16 | 1.43 | 1.15 | 0.53 | 1.03 | 91 | 9 |
2 | 2.42 | 1.63 | 1.21 | 0.51 | 1.16 | 83 | 9 |
3 | 2.44 | 1.53 | 1.29 | 0.62 | 1.13 | 85 | 11 |
4 | 2.28 | 1.53 | 1.33 | 0.47 | 1.11 | 89 | 9 |
5 | 2.27 | 1.56 | 1.25 | 0.52 | 1.16 | 88 | 9 |
M | 2.31 | 1.53 | 1.25 | 0.54 | 1.11 | 86.86 | 10.71 |
SD | 0.10 | 0.06 | 0.06 | 0.05 | 0.04 | 2.91 | 2.43 |
Min | 2.16 | 1.43 | 1.15 | 0.47 | 1.03 | 83 | 9 |
Max | 2.44 | 1.63 | 1.33 | 0.62 | 1.16 | 91 | 15 |
Adaniya cuneytsolaki n.sp. | |||||||
holotype | 1.53 | 0.87 | 0.65 | 0.45 | 0.62 | 83 | 13 |
3K42 | 1.83 | 1.03 | 0.83 | 0.36 | 0.72 | 80 | 10 |
3K43 | 1.80 | 0.98 | 0.84 | 0.52 | 0.66 | 80 | 15 |
1 | 1.67 | 0.94 | 0.72 | 0.44 | 0.62 | 85 | 10 |
2 | 1.47 | 0.92 | 0.74 | 0.34 | 0.62 | 89 | 12 |
3 | 1.57 | 0.92 | 0.72 | 0.39 | 0.66 | 86 | 14 |
4 | 1.54 | 0.93 | 0.72 | 0.37 | 0.64 | 86 | 15 |
5 | 1.73 | 0.98 | 0.81 | 0.38 | 0.71 | 83 | 11 |
M | 1.64 | 0.95 | 0.75 | 0.41 | 0.66 | 84.00 | 12.50 |
SD | 0.13 | 0.05 | 0.07 | 0.06 | 0.04 | 3.12 | 2.07 |
Min | 1.47 | 0.87 | 0.65 | 0.34 | 0.62 | 80 | 10 |
Max | 1.83 | 1.03 | 0.84 | 0.52 | 0.72 | 89 | 15 |
Sheitanok esmaae n.sp. | |||||||
holotype | 1.00 | 0.88 | 0.70 | 0.12 | 0.59 | 120 | 9 |
3L22 | 1.05 | 0.93 | 0.73 | 0.13 | 0.67 | 113 | 9 |
3L28 | 0.82 | 0.70 | 0.60 | 0.09 | 0.50 | 112 | 7 |
3L29 | 0.86 | 0.76 | 0.64 | 0.07 | 0.58 | 117 | 6 |
1 | 1.27 | 1.05 | 0.78 | 0.15 | 0.65 | 111 | 8 |
2 | 1.14 | 0.99 | 0.78 | 0.16 | 0.66 | 111 | 12 |
3 | 0.95 | 0.81 | 0.67 | 0.15 | 0.58 | 105 | 8 |
4 | 1.06 | 0.89 | 0.75 | 0.17 | 0.62 | 103 | 11 |
M | 1.02 | 0.88 | 0.71 | 0.13 | 0.61 | 111.50 | 8.75 |
SD | 0.15 | 0.12 | 0.07 | 0.04 | 0.06 | 5.61 | 1.98 |
Min | 0.82 | 0.70 | 0.60 | 0.07 | 0.50 | 103 | 6 |
Max | 1.27 | 1.05 | 0.78 | 0.17 | 0.67 | 120 | 12 |
Anadoludamnicola ayhani n.sp. | |||||||
holotype | 1.40 | 0.90 | 0.84 | 0.25 | 0.66 | 91 | 7 |
3K44 | 1.66 | 1.05 | 0.94 | 0.35 | 0.80 | 88 | 9 |
1 | 1.41 | 0.88 | 0.75 | 0.33 | 0.69 | 92 | 9 |
2 | 1.46 | 0.90 | 0.78 | 0.26 | 0.72 | 95 | 7 |
3 | 1.42 | 0.93 | 0.83 | 0.28 | 0.74 | 94 | 7 |
4 | 1.49 | 0.96 | 0.86 | 0.30 | 0.72 | 95 | 8 |
5 | 1.37 | 0.86 | 0.77 | 0.30 | 0.65 | 94 | 8 |
M | 1.46 | 0.93 | 0.82 | 0.30 | 0.71 | 92.71 | 7.86 |
SD | 0.10 | 0.06 | 0.07 | 0.04 | 0.05 | 2.56 | 0.90 |
Min | 1.37 | 0.86 | 0.75 | 0.25 | 0.65 | 88 | 7 |
Max | 1.66 | 1.05 | 0.94 | 0.35 | 0.80 | 95 | 9 |
Kozanium torosum | |||||||
holotype | 1.43 | 0.97 | 0.82 | 0.25 | 0.72 | 90 | 9 |
3i83 | 1.67 | 1.04 | 0.83 | 0.34 | 0.74 | 86 | 11 |
anatomy | 1.45 | 0.94 | 0.75 | 0.29 | 0.70 | 89 | 11 |
3J83 | 1.32 | 0.93 | 0.82 | 0.19 | 0.72 | 94 | 8 |
3J82 | 1.39 | 0.95 | 0.81 | 0.26 | 0.69 | 91 | 8 |
M | 1.45 | 0.97 | 0.81 | 0.27 | 0.71 | 90.00 | 9.40 |
SD | 0.13 | 0.04 | 0.03 | 0.06 | 0.02 | 2.92 | 1.52 |
Min | 1.32 | 0.93 | 0.75 | 0.19 | 0.69 | 86 | 8 |
Max | 1.67 | 1.04 | 0.83 | 0.34 | 0.74 | 94 | 11 |
Simple Term Effects: | Conditional Term Effects: | ||||||||
---|---|---|---|---|---|---|---|---|---|
Name | Explains% | Pseudo-F | P | P (adj) | Name | Explains% | Pseudo-F | P | P (adj) |
Adatuf | 31.7 | 22.7 | 0.001 | 0.003 | Adatuf | 31.7 | 22.7 | 0.001 | 0.0012 |
Sheesm | 30.2 | 21.2 | 0.001 | 0.003 | Sheesm | 21 | 21.4 | 0.001 | 0.0012 |
Adaozb | 12.6 | 7 | 0.004 | 0.008 | Adaozb | 14.5 | 20.7 | 0.001 | 0.0012 |
Anaayh | 10.5 | 5.7 | 0.01 | 0.015 | Anaayh | 9.5 | 18.9 | 0.001 | 0.0012 |
Dicbil | 4.9 | 2.5 | 0.111 | 0.111 | Koztor | 4.9 | 12.2 | 0.001 | 0.0012 |
Adacun | 4.7 | 2.4 | 0.108 | 0.111 | Dicbil | 1.3 | 3.5 | 0.047 | 0.047 |
Koztor | 3.1 | 1.6 | 0.204 | 0.204 |
Species | Shell, Shape, and Size | Radula (Central Tooth) | Female Reproductive Organs | Penis Morphology |
---|---|---|---|---|
Dicle bilgini n. sp. | Ovate-conic, broad; up to 1.87 mm; spire moderately high; ~4 whorls; aperture broadly ovoid; umbilicus moderately broad (Figure 9A–E; Table 4) | Formula (5)4–1–4(5); median cusp ~ 3× longer than adjacent; basal tongue narrowly V-shaped; basal cusps present (Figure 10H) | Cylindrical, bulky bursa copulatrix; one distal receptaculum seminis; | Simple, gradually tapering or broadly triangular; small left-side outgrowth; blunt tip with small papilla (Figure 11A–F) |
Adaniya tufanbeyi n. sp. | Ovate-conic, broad; up to 3.12 mm; spire moderately high; umbilicus slit-like (Figure 9F,G; Table 4) | Formula (10)9–1–9(10); two pairs basal cusps; massive cutting edge (Figure 10F) | Small bursa copulatrix, duct not sharply demarcated (Figure 12A); large distal receptaculum seminis; | Broadly triangular; simple; very small left-side outgrowth (Figure 11G–J) |
Adaniya ozbeki n. sp. | Trochiform, broad; up to 2.44 mm; spire low; umbilicus broad (Figure 9H,I; Table 4) | Formula (6)5–1–5(6); one pair basal cusps; massive cutting edge (Figure 10C,D) | Big oval bursa copulatrix with short, broad duct; spherical receptaculum seminis (Figure 12B) | Broadly or wide triangular nonglandular outgrowth on the medial left side (Figure 11K–N) |
Adaniya cuneytsolaki n. sp. | Small, ovate-conic, narrow; up to 1.83 mm; spire low–moderately high; umbilicus broad trough (Figure 9J–L; Table 4) | Formula (5)4–1–4(5) or 4–1–4; few, large sharp cusps; basal cusps present (Figure 10G) | Elongated sac-shaped bursa copulatrix with short, broad duct; sac-shaped receptaculum seminis (Figure 12C) | Broadly triangular; no outgrowth (Figure 13A,B) |
Sheitanok esmaae n. sp. | Valvatiform (depressed trochiform), broad; up to 1.27 mm; spire extremely low; umbilicus moderately broad, open (Figure 9M–R; Table 4) | Formula 5–1–5; basal cusps 1–1; cusps blunt (Figure 10E) | Narrow tubular bursa copulatrix; one small distal receptaculum seminis | Gradually tapering; simple; large terminal papilla with thin chitin layer (Figure 13C–I) |
Anadoludamnicola ayhani n. sp. | Ovate-conic, broad; up to 1.66 mm; spire rather low; umbilicus broad (Figure 9S,T; Table 4) | Formula (6)5–1–5(6); no basal cusps (Figure 10A,B) | Spherical bursa copulatrix with a distinct short duct; sac-shaped receptaculum seminis (Figure 12D) | Strap-like, narrow; pointed tip (Figure 13J,K) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jaszczyńska, A.; Hofman, S.; Odabaşı, D.A.; Ekin, İ.; Sîrbu, I.; Falniowski, A. Entirely Anatolian Hydrobiid (Caenogastropoda–Truncatelloidea–Hydrobiidae) Clade Revisited: Two More New Genera and Six New Species. Animals 2025, 15, 2512. https://doi.org/10.3390/ani15172512
Jaszczyńska A, Hofman S, Odabaşı DA, Ekin İ, Sîrbu I, Falniowski A. Entirely Anatolian Hydrobiid (Caenogastropoda–Truncatelloidea–Hydrobiidae) Clade Revisited: Two More New Genera and Six New Species. Animals. 2025; 15(17):2512. https://doi.org/10.3390/ani15172512
Chicago/Turabian StyleJaszczyńska, Aleksandra, Sebastian Hofman, Deniz Anıl Odabaşı, İhsan Ekin, Ioan Sîrbu, and Andrzej Falniowski. 2025. "Entirely Anatolian Hydrobiid (Caenogastropoda–Truncatelloidea–Hydrobiidae) Clade Revisited: Two More New Genera and Six New Species" Animals 15, no. 17: 2512. https://doi.org/10.3390/ani15172512
APA StyleJaszczyńska, A., Hofman, S., Odabaşı, D. A., Ekin, İ., Sîrbu, I., & Falniowski, A. (2025). Entirely Anatolian Hydrobiid (Caenogastropoda–Truncatelloidea–Hydrobiidae) Clade Revisited: Two More New Genera and Six New Species. Animals, 15(17), 2512. https://doi.org/10.3390/ani15172512