Computer Vision in Dairy Farm Management: A Literature Review of Current Applications and Future Perspectives
Simple Summary
Abstract
1. Introduction
1.1. Common Stages in Computer Vision Methodologies
- (a)
- Data collection
- (b)
- Data pre-processing and processing
- (c)
- Data analysis
- (d)
- Results assessment
1.2. Aim and Scope of This Review
2. Review Methodology
2.1. Criteria for the Source Selection
2.2. Review of the Reviews: Progresses, Overlaps, and Research Trends
3. Identification and Tracking
4. Feeding and Rumination Behavior
5. Body Condition Score Assessment
6. Respiration Rate and Heat Stress
7. Lameness and Lying Behavior
8. Mastitis and Milk Yield
9. Social Behavior and Oestrus Detection
10. Conclusions and Future Research Directions
- Compared to traditional wearable devices, computer vision provides a stress-free, cost-effective, and scalable method for monitoring dairy cattle. By eliminating the risk of equipment loss or damage and avoiding direct contact with animals, it ensures continuous data collection while safeguarding animal welfare and reducing economic losses for farmers.
- The integration of advanced models such as CNNs and YOLO-based architectures has transformed what is possible in livestock monitoring. These methods enable precise, real-time detection of subtle physiological and behavioural changes, allowing earlier identification of health and welfare problems. In turn, this supports more accurate decision-making, targeted interventions, and improved productivity in increasingly large-scale dairy operations.
- Despite remarkable advances, challenges remain in ensuring that algorithms are robust across diverse farm environments, lighting conditions, and growth stages. To unlock the full potential of computer vision, future research must focus on building larger and more heterogeneous datasets, integrating multimodal data sources, and validating systems under real-world conditions. These steps are crucial to make computer vision a cornerstone of sustainable, welfare-oriented dairy farming.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ruviaro, C.F.; de Leis, C.M.; Florindo, T.J.; de Medeiros Florindo, G.I.B.; da Costa, J.S.; Tang, W.Z.; Pinto, A.T.; Soares, S.R. Life Cycle Cost Analysis of Dairy Production Systems in Southern Brazil. Sci. Total Environ. 2020, 741, 140273. [Google Scholar] [CrossRef]
- Jiang, B.; Tang, W.; Cui, L.; Deng, X. Precision Livestock Farming Research: A Global Scientometric Review. Animals 2023, 13, 2096. [Google Scholar] [CrossRef]
- Rancato, G. Precision Livestock Farming (PLF) Applications to the Dairy Sector; Università degli Studi di Padova: Padova, Italy, 2024. [Google Scholar]
- Edwards, D.S.; Johnston, A.M.; Pfeiffer, D.U. A Comparison of Commonly Used Ear Tags on the Ear Damage of Sheep. Anim. Welf. 2001, 10, 141–151. [Google Scholar] [CrossRef]
- Bhole, A.; Falzon, O.; Biehl, M.; Azzopardi, G. A Computer Vision Pipeline That Uses Thermal and RGB Images for the Recognition of Holstein Cattle. In Proceedings of the Lecture Notes in Computer Science, Salerno, Italy, 3–5 September 2019; including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics. Springer: Berlin/Heidelberg, Germany, 2019; Volume 11679 LNCS, pp. 108–119. [Google Scholar]
- Lamanna, M.; Bovo, M.; Cavallini, D. Wearable Collar Technologies for Dairy Cows: A Systematized Review of the Current Applications and Future Innovations in Precision Livestock Farming. Animals 2025, 15, 458. [Google Scholar] [CrossRef]
- Dac, H.H.; Gonzalez Viejo, C.; Lipovetzky, N.; Tongson, E.; Dunshea, F.R.; Fuentes, S. Livestock Identification Using Deep Learning for Traceability. Sensors 2022, 22, 8256. [Google Scholar] [CrossRef]
- Smink, M.; Liu, H.; Dopfer, D.; Lee, Y.J. Computer Vision on the Edge: Individual Cattle Identification in Real-Time with ReadMyCow System. In Proceedings of the Proceedings—2024 IEEE Winter Conference on Applications of Computer Vision, WACV 2024, Waikoloa, HI, USA, 3 January 2024; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA; pp. 7041–7050. [Google Scholar]
- Ferreira, R.E.P.; Angels de Luis Balaguer, M.; Bresolin, T.; Chandra, R.; Rosa, G.J.M.; White, H.M.; Dórea, J.R.R. Multi-Modal Machine Learning for the Early Detection of Metabolic Disorder in Dairy Cows Using a Cloud Computing Framework. Comput. Electron. Agric. 2024, 227, 109563. [Google Scholar] [CrossRef]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 9 December 2016; IEEE Computer Society: Piscataway, NJ, USA; Volume 2016, pp. 779–788. [Google Scholar]
- Fuentes, A.; Han, S.; Nasir, M.F.; Park, J.; Yoon, S.; Park, D.S. Multiview Monitoring of Individual Cattle Behavior Based on Action Recognition in Closed Barns Using Deep Learning. Animals 2023, 13, 2020. [Google Scholar] [CrossRef]
- Pretto, A.; Savio, G.; Gottardo, F.; Uccheddu, F.; Concheri, G. A Novel Low-Cost Visual Ear Tag Based Identification System for Precision Beef Cattle Livestock Farming. Inf. Process. Agric. 2024, 11, 117–126. [Google Scholar] [CrossRef]
- Chu, M.; Li, Q.; Wang, Y.; Zeng, X.; Si, Y.; Liu, G. Fusion of Udder Temperature and Size Features for the Automatic Detection of Dairy Cow Mastitis Using Deep Learning. Comput. Electron. Agric. 2023, 212, 108131. [Google Scholar] [CrossRef]
- Xu, Z.; Zhao, Y.; Yin, Z.; Yu, Q. Optimized BottleNet Transformer Model with Graph Sampling and Counterfactual Attention for Cow Individual Identification. Comput. Electron. Agric. 2024, 218, 108703. [Google Scholar] [CrossRef]
- Bergman, N.; Yitzhaky, Y.; Halachmi, I. Biometric Identification of Dairy Cows via Real-Time Facial Recognition. Animal 2024, 18, 101079. [Google Scholar] [CrossRef]
- Benicio, L.M.; Condotta, I.C.F.S.; Lopes, L.B.; Xavier, D.B.; Vendrusculo, L.G.; Lima, I.B.G. Individual Facial Identification of Beef and Dairy Cattle Based on Computer Vision; American Society of Agricultural and Biological Engineers (ASABE): St. Joseph, MI, USA, 2024. [Google Scholar]
- Negreiro, A.; Alves, A.; Ferreira, R.; Bresolin, T.; Menezes, G.; Casella, E.; Rosa, G.J.M.; Dórea, J.R.R. Siamese Networks for Identification of Holstein Cattle during Growth and across Different Physiological Stages; Berckmans, D., Tassinari, P., Torreggiani, D., Eds.; European Conference on Precision Livestock Farming: Bologna, Italy, 2024; pp. 467–474. [Google Scholar]
- Wu, D.; Wang, Y.; Han, M.; Song, L.; Shang, Y.; Zhang, X.; Song, H. Using a CNN-LSTM for Basic Behaviors Detection of a Single Dairy Cow in a Complex Environment. Comput. Electron. Agric. 2021, 182, 106016. [Google Scholar] [CrossRef]
- Wang, Y.; Kang, X.; He, Z.; Feng, Y.; Liu, G. Accurate Detection of Dairy Cow Mastitis with Deep Learning Technology: A New and Comprehensive Detection Method Based on Infrared Thermal Images. Animal 2022, 16, 100646. [Google Scholar] [CrossRef]
- Myint, B.B.; Onizuka, T.; Tin, P.; Aikawa, M.; Kobayashi, I.; Zin, T.T. Development of a Real-Time Cattle Lameness Detection System Using a Single Side-View Camera. Sci. Rep. 2024, 14, 13734. [Google Scholar] [CrossRef]
- Ferreira, R.E.P.; Bresolin, T.; Rosa, G.J.M.; Dórea, J.R.R. Using Dorsal Surface for Individual Identification of Dairy Calves through 3D Deep Learning Algorithms. Comput. Electron. Agric. 2022, 201, 107272. [Google Scholar] [CrossRef]
- Kroese, A.; Alam, M.; Hernlund, E.; Berthet, D.; Tamminen, L.M.; Fall, N.; Högberg, N. 3-Dimensional Pose Estimation to Detect Posture Transition in Freestall-Housed Dairy Cows. J. Dairy. Sci. 2024, 107, 6878–6887. [Google Scholar] [CrossRef]
- Shu, H.; Bindelle, J.; Gu, X. Non-Contact Respiration Rate Measurement of Multiple Cows in a Free-Stall Barn Using Computer Vision Methods. Comput. Electron. Agric. 2024, 218, 108678. [Google Scholar] [CrossRef]
- Xiao, J.; Si, Y.; Xie, M.; Liu, G.; Yan, Z.; Wang, K. A Novel and Convenient Lying Cow Identification Method Based on YOLOX and CowbodyNet: A Study with Applications in a Barn. Comput. Electron. Agric. 2024, 225, 109287. [Google Scholar] [CrossRef]
- Mantovani, R.R.; Menezes, G.L.; R Dórea, J.R. Predicting Respiration Rate in Unrestrained Dairy Cows Using Image Analysis and Fast Fourier Transform. JDS Commun. 2024, 5, 310–316. [Google Scholar] [CrossRef]
- Tassinari, P.; Bovo, M.; Benni, S.; Franzoni, S.; Poggi, M.; Mammi, L.M.E.; Mattoccia, S.; Di Stefano, L.; Bonora, F.; Barbaresi, A.; et al. A Computer Vision Approach Based on Deep Learning for the Detection of Dairy Cows in Free Stall Barn. Comput. Electron. Agric. 2021, 182, 106030. [Google Scholar] [CrossRef]
- Ayadi, S.; Said, A.B.; Jabbar, R.; Aloulou, C.; Chabbouh, A.; Achballah, A.B. Dairy Cow Rumination Detection: A Deep Learning Approach; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar] [CrossRef]
- Hmidani, O.; Ismaili Alaoui, E.M. A Comprehensive Survey of the R-CNN Family for Object Detection. In Proceedings of the Proceedings—2022 5th International Conference on Advanced Communication Technologies and Networking, CommNet 2022, Marrakech, Morocco, 12–14 December 2022; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2022. [Google Scholar]
- Rezatofighi, H.; Tsoi, N.; Gwak, J.; Sadeghian, A.; Reid, I.; Savarese, S. Generalized Intersection over Union: A Metric and A Loss for Bounding Box Regression. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019. [Google Scholar]
- Mate, S.; Somani, V.; Dahiwale, P. Applications of Machine Learning to Address Complex Problems in Livestock. In Proceedings of the 2024 3rd International Conference for Innovation in Technology, INOCON 2024, Bangalore, India, 1–3 March 2024; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2024. [Google Scholar]
- Rohan, A.; Rafaq, M.S.; Hasan, M.J.; Asghar, F.; Bashir, A.K.; Dottorini, T. Application of Deep Learning for Livestock Behaviour Recognition: A Systematic Literature Review. Comput. Electron. Agric. 2024, 224, 109115. [Google Scholar] [CrossRef]
- Liu, N.; Qi, J.; An, X.; Wang, Y. A Review on Information Technologies Applicable to Precision Dairy Farming: Focus on Behavior, Health Monitoring, and the Precise Feeding of Dairy Cows. Agriculture 2023, 13, 1858. [Google Scholar] [CrossRef]
- Hossain, M.E.; Kabir, M.A.; Zheng, L.; Swain, D.L.; McGrath, S.; Medway, J. A Systematic Review of Machine Learning Techniques for Cattle Identification: Datasets, Methods and Future Directions. Artif. Intell. Agric. 2022, 6, 138–155. [Google Scholar] [CrossRef]
- Borges Oliveira, D.A.; Ribeiro Pereira, L.G.; Bresolin, T.; Pontes Ferreira, R.E.; Reboucas Dorea, J.R. A Review of Deep Learning Algorithms for Computer Vision Systems in Livestock. Livest. Sci. 2021, 253, 104700. [Google Scholar] [CrossRef]
- de Ufitikirezi, J.D.M.; Bumbálek, R.; Zoubek, T.; Bartoš, P.; Havelka, Z.; Kresan, J.; Stehlík, R.; Kuneš, R.; Olšan, P.; Strob, M.; et al. Enhancing Cattle Production and Management through Convolutional Neural Networks. A Review. Czech J. Anim. Sci. 2024, 69, 75–88. [Google Scholar] [CrossRef]
- Wurtz, K.; Camerlink, I.; D’Eath, R.B.; Fernández, A.P.; Norton, T.; Steibel, J.; Siegford, J. Recording Behaviour of Indoor-Housed Farm Animals Automatically Using Machine Vision Technology: A Systematic Review. PLoS ONE 2019, 14, e0226669. [Google Scholar] [CrossRef]
- Halachmi, I.; Guarino, M.; Bewley, J.; Pastell, M. Smart Animal Agriculture: Application of Real-Time Sensors to Improve Animal Well-Being and Production. Annu. Rev. Anim. Biosci. 2019, 7, 403–425. [Google Scholar] [CrossRef]
- McVey, C.; Egger, D.; Pinedo, P. Improving the Reliability of Scale-Free Image Morphometrics in Applications with Minimally Restrained Livestock Using Projective Geometry and Unsupervised Machine Learning. Sensors 2022, 22, 8347. [Google Scholar] [CrossRef]
- Giannone, C.; Bovo, M.; Ceccarelli, M.; Benni, S.; Tassinari, P.; Torreggiani, D. Real Time Identification of Individual Dairy Cows through Computer Vision; European Conference on Precision Livestock Farming: Bologna, Italy, 2024; pp. 452–458. [Google Scholar]
- Ahmed, S.U.; Frnda, J.; Waqas, M.; Khan, M.H. Dataset of Cattle Biometrics through Muzzle Images. Data Brief. 2024, 53, 110125. [Google Scholar] [CrossRef]
- Okura, F.; Ikuma, S.; Makihara, Y.; Muramatsu, D.; Nakada, K.; Yagi, Y. RGB-D Video-Based Individual Identification of Dairy Cows Using Gait and Texture Analyses. Comput. Electron. Agric. 2019, 165, 104944. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, H.; Chen, Y.; Wang, Y.; Zhang, J.; Hu, L.; Shu, L.; Yang, L. Dairy Cow Individual Identification System Based on Deep Learning. In Proceedings of the Communications in Computer and Information Science, Fuzhou, China, 17–18 December 2022; Springer Science and Business Media Deutschland GmbH: Berlin/Heidelberg, Germany, 2023; Volume 1787 CCIS, pp. 209–221. [Google Scholar]
- King, K.; Thornton, C.; Roopaei, M. Smart Feeding: Integrating Deep Learning into Dairy Farm Practices. In Proceedings of the 2024 IEEE 5th World AI IoT Congress, AIIoT 2024, Seattle, WA, USA, 29–31 May 2024; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2024; pp. 151–156. [Google Scholar]
- Giannone, C.; Bovo, M.; Ceccarelli, M.; Torreggiani, D.; Tassinari, P. Review of the Heat Stress-Induced Responses in Dairy Cattle. Animals 2023, 13, 3451. [Google Scholar] [CrossRef]
- Porto, S.M.C.; Arcidiacono, C.; Anguzza, U.; Cascone, G. The Automatic Detection of Dairy Cow Feeding and Standing Behaviours in Free-Stall Barns by a Computer Vision-Based System. Biosyst. Eng. 2015, 133, 46–55. [Google Scholar] [CrossRef]
- Bresolin, T.; Ferreira, R.; Reyes, F.; Van Os, J.; Dórea, J.R.R. Assessing Optimal Frequency for Image Acquisition in Computer Vision Systems Developed to Monitor Feeding Behavior of Group-Housed Holstein Heifers. J. Dairy. Sci. 2023, 106, 664–675. [Google Scholar] [CrossRef]
- Bezen, R.; Edan, Y.; Halachmi, I. Computer Vision System for Measuring Individual Cow Feed Intake Using RGB-D Camera and Deep Learning Algorithms. Comput. Electron. Agric. 2020, 172, 105345. [Google Scholar] [CrossRef]
- Chelotti, J.O.; Vanrell, S.R.; Milone, D.H.; Utsumi, S.A.; Galli, J.R.; Rufiner, H.L.; Giovanini, L.L. A Real-Time Algorithm for Acoustic Monitoring of Ingestive Behavior of Grazing Cattle. Comput. Electron. Agric. 2016, 127, 64–75. [Google Scholar] [CrossRef]
- Antanaitis, R.; Džermeikaitė, K.; Krištolaitytė, J.; Arlauskaitė, S.; Girdauskaitė, A.; Tolkačiovaitė, K.; Juodžentytė, R.; Palubinskas, G.; Labokojytė, A.; Šertvytytė, G.; et al. Utilizing Noseband Sensor Technology to Evaluate Rumination Time as a Predictor of Feeding and Locomotion Behaviors in Dairy Cows. Agriculture 2025, 15, 296. [Google Scholar] [CrossRef]
- Guyard, R.; Delagarde, R. Grazing Time of Dairy Cows Recorded Using Two Devices Based on Accelerometers. Appl. Anim. Behav. Sci. 2025, 283, 106515. [Google Scholar] [CrossRef]
- Cavallini, D.; Mammi, L.M.E.; Buonaiuto, G.; Palmonari, A.; Valle, E.; Formigoni, A. Immune-Metabolic-Inflammatory Markers in Holstein Cows Exposed to a Nutritional and Environmental Stressing Challenge. J. Anim. Physiol. Anim. Nutr. 2021, 105, 42–55. [Google Scholar] [CrossRef]
- Schirmann, K.; Chapinal, N.; Weary, D.M.; Heuwieser, W.; von Keyserlingk, M.A.G. Rumination and Its Relationship to Feeding and Lying Behavior in Holstein Dairy Cows. J. Dairy. Sci. 2012, 95, 3212–3217. [Google Scholar] [CrossRef]
- Li, J.; Liu, Y.; Zheng, W.; Chen, X.; Ma, Y.; Guo, L. Monitoring Cattle Ruminating Behavior Based on an Improved Keypoint Detection Model. Animals 2024, 14, 1791. [Google Scholar] [CrossRef]
- Bewley, J.M.; Peacock, A.M.; Lewis, O.; Boyce, R.E.; Roberts, D.J.; Coffey, M.P.; Kenyon, S.J.; Schutz, M.M. Potential for Estimation of Body Condition Scores in Dairy Cattle from Digital Images. J. Dairy. Sci. 2008, 91, 3439–3453. [Google Scholar] [CrossRef]
- Spoliansky, R.; Edan, Y.; Parmet, Y.; Halachmi, I. Development of Automatic Body Condition Scoring Using a Low-Cost 3-Dimensional Kinect Camera. J. Dairy. Sci. 2016, 99, 7714–7725. [Google Scholar] [CrossRef]
- Bi, Y.; Campos, L.M.; Wang, J.; Yu, H.; Hanigan, M.D.; Morota, G. Depth Video Data-Enabled Predictions of Longitudinal Dairy Cow Body Weight Using Thresholding and Mask R-CNN Algorithms. Smart Agric. Technol. 2023, 6, 100352. [Google Scholar] [CrossRef]
- Li, W.-Y.; Shen, Y.; Wang, D.-J.; Yang, Z.-K.; Yang, X.-T. Automatic Dairy Cow Body Condition Scoring Using Depth Images and 3D Surface Fitting; IEEE: Piscataway, NJ, USA, 2019. [Google Scholar]
- Baltrusaitis, T.; Ahuja, C.; Morency, L.P. Multimodal Machine Learning: A Survey and Taxonomy. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 41, 423–443. [Google Scholar] [CrossRef]
- Atrey, P.K.; Hossain, M.A.; El Saddik, A.; Kankanhalli, M.S. Multimodal Fusion for Multimedia Analysis: A Survey. Multimed. Syst. 2010, 16, 345–379. [Google Scholar] [CrossRef]
- Handa, D.; Peschel, J.M. A Review of Monitoring Techniques for Livestock Respiration and Sounds. Front. Anim. Sci. 2022, 3, 904834. [Google Scholar] [CrossRef]
- Wang, M.; Li, S.; Peng, R.; Räisänen, S.E.; Serviento, A.M.; Sun, X.; Wang, K.; Yu, F.; Niu, M. Learning End-to-End Respiratory Rate Prediction of Dairy Cows from RGB Videos. J. Dairy. Sci. 2024, 107, 9862–9874. [Google Scholar] [CrossRef]
- de Carvalho, G.A.; Salman, A.K.D.; da Cruz, P.G.; de Souza, E.C.; da Silva, F.R.F.; Schmitt, E. Technical Note: An Acoustic Method for Assessing the Respiration Rate of Free-Grazing Dairy Cattle. Livest. Sci. 2020, 241, 104270. [Google Scholar] [CrossRef]
- Strutzke, S.; Fiske, D.; Hoffmann, G.; Ammon, C.; Heuwieser, W.; Amon, T. Technical Note: Development of a Noninvasive Respiration Rate Sensor for Cattle. J. Dairy. Sci. 2019, 102, 690–695. [Google Scholar] [CrossRef]
- Milan, H.F.M.; Maia, A.S.C.; Gebremedhin, K.G. Technical Note: Device for Measuring Respiration Rate of Cattle under Field Conditions. J. Anim. Sci. 2016, 94, 5434–5438. [Google Scholar] [CrossRef]
- Gade, R.; Moeslund, T.B. Thermal Cameras and Applications: A Survey. Mach. Vis. Appl. 2014, 25, 245–262. [Google Scholar] [CrossRef]
- Wiede, C.; Richter, J.; Manuel, M.; Hirtz, G. Remote Respiration Rate Determination in Video Data Vital Parameter Extraction Based on Optical Flow and Principal Component Analysis. In Proceedings of the VISIGRAPP 2017—Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, Porto, Portugal, 27 February–1 March 2017; SciTePress: Setúbal, Portugal, 2017; Volume 4, pp. 326–333. [Google Scholar]
- Wu, D.; Han, M.; Song, H.; Song, L.; Duan, Y. Monitoring the Respiratory Behavior of Multiple Cows Based on Computer Vision and Deep Learning. J. Dairy. Sci. 2023, 106, 2963–2979. [Google Scholar] [CrossRef]
- Kanade, T.; Lucas, B.D. An Iterative Image Registration Technique with an Application to Stereo Vision (IJCAI) An Iterative Image Registration Technique with an Application to Stereo Vision. In Proceedings of the IJCAI’81: 7th International Joint Conference on Artificial Intelligence, Vancouver, BC, Canada, 24–28 August 1981. [Google Scholar]
- Mylostyvyi, R.; Sejian, V.; Souza-Junior, J.B.F.; Wrzecińska, M.; Za, T.; Chernenko, O.; Pryshedko, V.; Suslova, N.; Chabanenko, D.; Hoffmann, G. Digitalisation Opportunities for Livestock Welfare Monitoring with a Focus on Heat Stress. Multidiscip. Rev. 2024, 7, 2024300. [Google Scholar] [CrossRef]
- Urban-Chmiel, R.; Mudroň, P.; Abramowicz, B.; Kurek, Ł.; Stachura, R. Lameness in Cattle—Etiopathogenesis, Prevention and Treatment. Animals 2024, 14, 1836. [Google Scholar] [CrossRef]
- Van, T.; Antwerpen, H.P.; Viazzi, S. On Farm Implementation of a Fully Automatic Computer Vision System for Monitoring Gait Related Measures in Dairy Cows. In Proceedings of the 2014 ASABE and CSBE/SCGAB Annual International Meeting, Montreal, QC, Canada, 13–16 July 2014. [Google Scholar]
- Poursaberi, A.; Bahr, C.; Pluk, A.; Van Nuffel, A.; Berckmans, D. Real-Time Automatic Lameness Detection Based on Back Posture Extraction in Dairy Cattle: Shape Analysis of Cow with Image Processing Techniques. Comput. Electron. Agric. 2010, 74, 110–119. [Google Scholar] [CrossRef]
- Viazzi, S.; Bahr, C.; Schlageter-Tello, A.; Van Hertem, T.; Romanini, C.E.B.; Pluk, A.; Halachmi, I.; Lokhorst, C.; Berckmans, D. Analysis of Individual Classification of Lameness Using Automatic Measurement of Back Posture in Dairy Cattle. J. Dairy. Sci. 2013, 96, 257–266. [Google Scholar] [CrossRef]
- Zhao, K.; Bewley, J.M.; He, D.; Jin, X. Automatic Lameness Detection in Dairy Cattle Based on Leg Swing Analysis with an Image Processing Technique. Comput. Electron. Agric. 2018, 148, 226–236. [Google Scholar] [CrossRef]
- Alsaaod, M.; Fadul, M.; Steiner, A. Automatic Lameness Detection in Cattle. Vet. J. 2019, 246, 35–44. [Google Scholar] [CrossRef]
- Gleerup, K.B.; Andersen, P.H.; Munksgaard, L.; Forkman, B. Pain Evaluation in Dairy Cattle. Appl. Anim. Behav. Sci. 2015, 171, 25–32. [Google Scholar] [CrossRef]
- Barney, S.; Dlay, S.; Crowe, A.; Kyriazakis, I.; Leach, M. Deep Learning Pose Estimation for Multi-Cattle Lameness Detection. Sci. Rep. 2023, 13, 4499. [Google Scholar] [CrossRef]
- Kang, X.; Li, S.; Li, Q.; Liu, G. Dimension-Reduced Spatiotemporal Network for Lameness Detection in Dairy Cows. Comput. Electron. Agric. 2022, 197, 106922. [Google Scholar] [CrossRef]
- Van Hertem, T.; Schlageter Tello, A.; Viazzi, S.; Steensels, M.; Bahr, C.; Romanini, C.E.B.; Lokhorst, K.; Maltz, E.; Halachmi, I.; Berckmans, D. Implementation of an Automatic 3D Vision Monitor for Dairy Cow Locomotion in a Commercial Farm. Biosyst. Eng. 2018, 173, 166–175. [Google Scholar] [CrossRef]
- Tucker, C.B.; Jensen, M.B.; de Passillé, A.M.; Hänninen, L.; Rushen, J. Invited Review: Lying Time and the Welfare of Dairy Cows. J. Dairy. Sci. 2021, 104, 20–46. [Google Scholar] [CrossRef]
- Down, P.M.; Bradley, A.J.; Breen, J.E.; Green, M.J. Factors Affecting the Cost-Effectiveness of on-Farm Culture Prior to the Treatment of Clinical Mastitis in Dairy Cows. Prev. Vet. Med. 2017, 145, 91–99. [Google Scholar] [CrossRef]
- Miles, A.M.; McArt, J.A.A.; Leal Yepes, F.A.; Stambuk, C.R.; Virkler, P.D.; Huson, H.J. Udder and Teat Conformational Risk Factors for Elevated Somatic Cell Count and Clinical Mastitis in New York Holsteins. Prev. Vet. Med. 2019, 163, 7–13. [Google Scholar] [CrossRef]
- Wang, N.; Zhou, C.; Basang, W.; Zhu, Y.; Wang, X.; Li, C.; Chen, L.; Zhou, X. Mechanisms by Which Mastitis Affects Reproduction in Dairy Cow: A Review. Reprod. Domest. Anim. 2021, 56, 1165–1175. [Google Scholar] [CrossRef]
- Mota-Rojas, D.; Pereira, A.M.F.; Wang, D.; Martínez-Burnes, J.; Ghezzi, M.; Hernández-Avalos, I.; Lendez, P.; Mora-Medina, P.; Casas, A.; Olmos-Hernández, A.; et al. Clinical Applications and Factors Involved in Validating Thermal Windows Used in Infrared Thermography in Cattle and River Buffalo to Assess Health and Productivity. Animals 2021, 11, 2247. [Google Scholar] [CrossRef]
- Colak, A.; Polat, B.; Okumus, Z.; Kaya, M.; Yanmaz, L.E.; Hayirli, A. Short Communication: Early Detection of Mastitis Using Infrared Thermography in Dairy Cows. J. Dairy. Sci. 2008, 91, 4244–4248. [Google Scholar] [CrossRef]
- Van Der Zwan, M.; Telea, A. Robust and Fast Teat Detection and Tracking in Low-Resolution Videos for Automatic Milking Devices. In Proceedings of the VISAPP 2015—10th International Conference on Computer Vision Theory and Applications, Berlin, Germany, 11–14 March 2015; VISIGRAPP, Proceedings. SciTePress: Setúbal, Portugal, 2015; Volume 3, pp. 520–530. [Google Scholar]
- Miles, A.M.; Posbergh, C.J.; Huson, H.J. Direct Phenotyping and Principal Component Analysis of Type Traits Implicate Novel Qtl in Bovine Mastitis through Genome-Wide Association. Animals 2021, 11, 1147. [Google Scholar] [CrossRef]
- Gargiulo, J.I.; Eastwood, C.R.; Garcia, S.C.; Lyons, N.A. Dairy Farmers with Larger Herd Sizes Adopt More Precision Dairy Technologies. J. Dairy. Sci. 2018, 101, 5466–5473. [Google Scholar] [CrossRef]
- Shorten, P.R. Computer Vision and Weigh Scale-Based Prediction of Milk Yield and Udder Traits for Individual Cows. Comput. Electron. Agric. 2021, 188, 106364. [Google Scholar] [CrossRef]
- Boyland, N.K.; Mlynski, D.T.; James, R.; Brent, L.J.N.; Croft, D.P. The Social Network Structure of a Dynamic Group of Dairy Cows: From Individual to Group Level Patterns. Appl. Anim. Behav. Sci. 2016, 174, 1–10. [Google Scholar] [CrossRef]
- Von Keyserlingk, M.A.G.; Olenick, D.; Weary, D.M. Acute Behavioral Effects of Regrouping Dairy Cows. J. Dairy. Sci. 2008, 91, 1011–1016. [Google Scholar] [CrossRef]
- Shane, D.D.; White, B.J.; Larson, R.L.; Amrine, D.E.; Kramer, J.L. Probabilities of Cattle Participating in Eating and Drinking Behavior When Located at Feeding and Watering Locations by a Real Time Location System. Comput. Electron. Agric. 2016, 127, 460–466. [Google Scholar] [CrossRef]
- Geng, H.; Hou, Z.; Liang, J.; Li, X.; Zhou, X.; Xu, A. Motion Focus Global–Local Network: Combining Attention Mechanism with Micro Action Features for Cow Behavior Recognition. Comput. Electron. Agric. 2024, 226, 109399. [Google Scholar] [CrossRef]
- Guzhva, O.; Ardö, H.; Herlin, A.; Nilsson, M.; Aström, K.; Bergsten, C. Automatic Detection of Social Interactions in the Waiting Area of Automatic Milking Stations Using a Video Surveillance System. In Proceedings of the Precision Livestock Farming’15: 7th Conference on Precision Livestock Farming, Milan, Italy, 15–18 September 2015; Guarino, M., Berckmans, D., Eds.; pp. 681–688. [Google Scholar]
- Ozella, L.; Magliola, A.; Vernengo, S.; Ghigo, M.; Bartoli, F.; Grangetto, M.; Forte, C.; Montrucchio, G.; Giacobini, M. A Computer Vision Approach for the Automatic Detection of Social Interactions of Dairy Cows in Automatic Milking Systems. Acta IMEKO 2024, 13, 1–6. [Google Scholar] [CrossRef]
- Sadrzadeh, N.; Foris, B.; Krahn, J.; von Keyserlingk, M.A.G.; Weary, D.M. Automated Monitoring of Brush Use in Dairy Cattle. PLoS ONE 2024, 19, e0305671. [Google Scholar] [CrossRef]
- Fuentes, A.; Yoon, S.; Park, J.; Park, D.S. Deep Learning-Based Hierarchical Cattle Behavior Recognition with Spatio-Temporal Information. Comput. Electron. Agric. 2020, 177, 105627. [Google Scholar] [CrossRef]
- Mu, Y.; Hu, J.; Wang, H.; Li, S.; Zhu, H.; Luo, L.; Wei, J.; Ni, L.; Chao, H.; Hu, T.; et al. Research on the Behavior Recognition of Beef Cattle Based on the Improved Lightweight CBR-YOLO Model Based on YOLOv8 in Multi-Scene Weather. Animals 2024, 14, 2800. [Google Scholar] [CrossRef]
- Ren, K.; Bernes, G.; Hetta, M.; Karlsson, J. Tracking and Analysing Social Interactions in Dairy Cattle with Real-Time Locating System and Machine Learning. J. Syst. Archit. 2021, 116, 102139. [Google Scholar] [CrossRef]
- Guzhva, O.; Ardö, H.; Herlin, A.; Nilsson, M.; Åström, K.; Bergsten, C. Feasibility Study for the Implementation of an Automatic System for the Detection of Social Interactions in the Waiting Area of Automatic Milking Stations by Using a Video Surveillance System. Comput. Electron. Agric. 2016, 127, 506–509. [Google Scholar] [CrossRef]
- Reith, S.; Hoy, S. Review: Behavioral Signs of Estrus and the Potential of Fully Automated Systems for Detection of Estrus in Dairy Cattle. Animal 2018, 12, 398–407. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Li, C.; Zhao, L.; Fang, J.; Luo, J.; Li, A. Cow Estrus Control System Based on Machine Vision. In Proceedings of the 35th Chinese Control and Decision Conference, CCDC 2023, Yichang, China, 20–22 May 2023; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2023; pp. 3759–3763. [Google Scholar]
- Valenza, A.; Giordano, J.O.; Lopes, G.; Vincenti, L.; Amundson, M.C.; Fricke, P.M. Assessment of an Accelerometer System for Detection of Estrus and Treatment with Gonadotropin-Releasing Hormone at the Time of Insemination in Lactating Dairy Cows. J. Dairy. Sci. 2012, 95, 7115–7127. [Google Scholar] [CrossRef] [PubMed]
- Reith, S.; Brandt, H.; Hoy, S. Simultaneous Analysis of Activity and Rumination Time, Based on Collar-Mounted Sensor Technology, of Dairy Cows over the Peri-Estrus Period. Livest. Sci. 2014, 170, 219–227. [Google Scholar] [CrossRef]
- Polsky, L.B.; Madureira, A.M.L.; Filho, E.L.D.; Soriano, S.; Sica, A.F.; Vasconcelos, J.L.M.; Cerri, R.L.A. Association between Ambient Temperature and Humidity, Vaginal Temperature, and Automatic Activity Monitoring on Induced Estrus in Lactating Cows. J. Dairy. Sci. 2017, 100, 8590–8601. [Google Scholar] [CrossRef]
- Tsai, D.M.; Huang, C.Y. A Motion and Image Analysis Method for Automatic Detection of Estrus and Mating Behavior in Cattle. Comput. Electron. Agric. 2014, 104, 25–31. [Google Scholar] [CrossRef]
Monitored Feature | Reference | Details on the Camera Adopted |
---|---|---|
BCS | [9] | Kinect V2 sensor (Microsoft; Redmond, WA, USA) Intel® RealSense™ Depth Camera D435 (Intel® Corporation, Santa Clara, CA, USA) |
[56] | Intel® RealSense™ Depth Camera D435 (Intel® Corporation, Santa Clara, CA, USA) | |
[57] | Microsoft Kinect (Microsoft; Redmond, WA, USA) | |
[58] | Microsoft Kinect (Microsoft; Redmond, WA, USA) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antognoli, V.; Presutti, L.; Bovo, M.; Torreggiani, D.; Tassinari, P. Computer Vision in Dairy Farm Management: A Literature Review of Current Applications and Future Perspectives. Animals 2025, 15, 2508. https://doi.org/10.3390/ani15172508
Antognoli V, Presutti L, Bovo M, Torreggiani D, Tassinari P. Computer Vision in Dairy Farm Management: A Literature Review of Current Applications and Future Perspectives. Animals. 2025; 15(17):2508. https://doi.org/10.3390/ani15172508
Chicago/Turabian StyleAntognoli, Veronica, Livia Presutti, Marco Bovo, Daniele Torreggiani, and Patrizia Tassinari. 2025. "Computer Vision in Dairy Farm Management: A Literature Review of Current Applications and Future Perspectives" Animals 15, no. 17: 2508. https://doi.org/10.3390/ani15172508
APA StyleAntognoli, V., Presutti, L., Bovo, M., Torreggiani, D., & Tassinari, P. (2025). Computer Vision in Dairy Farm Management: A Literature Review of Current Applications and Future Perspectives. Animals, 15(17), 2508. https://doi.org/10.3390/ani15172508