Effects of Forage-to-Concentrate Ratio During Cold-Season Supplementation on Growth Performance, Serum Biochemistry, Hormones, and Antioxidant Capacity in Yak Calves on the Qinghai–Tibet Plateau
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Experimental Design
2.2. Growth Performance
2.3. Sample Collection
2.4. Biochemical Analysis
2.5. Economic Benefit
2.6. Statistical Analysis
3. Results
3.1. Effects of Forage-to-Concentrate Ratio on Growth Performance and Economic Return in Growing Yaks
3.2. Effects of Forage-to-Concentrate Ratio on Serum Biochemical Parameters in Growing Yaks
3.3. Effects of Forage-to-Concentrate Ratio on Serum Hormones in Growing Yaks
3.4. Effects of Forage-to-Concentrate Ratio on Serum Antioxidant Capacity in Growing Yaks
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Das, P.P.; Krishnan, G.; Doley, J.; Bhattacharya, D.; Deb, S.M.; Chakravarty, P.; Das, P.J. Establishing gene Amelogenin as sex-specific marker in yak by genomic approach. J. Genet. 2019, 98, 7. [Google Scholar] [CrossRef]
- Zhang, Q.; EGX, P.C. Research Progress on Exploitation and Utilization of Yak Resources in China. Chin. J. Anim. Nutr. 2023, 35, 7492–7518. [Google Scholar]
- Xue, B.C.; Zhang, J.X.; Wang, Z.S.; Wang, L.Z.; Peng, Q.H.; Da, L.C.; Bao, S.K.; Kong, X.Y.; Xue, B. Metabolism response of grazing yak to dietary concentrate supplementation in warm season. Animal 2021, 15, 100175. [Google Scholar] [CrossRef]
- Liu, Y.X.; Ma, X.M.; Xiong, L.; Wu, X.Y.; Liang, C.N.; Bao, P.J.; Yu, Q.L.; Yan, P. Effects of intensive fattening with total mixed rations on carcass characteristics, meat quality, and meat chemical composition of yak and mechanism based on serum and transcriptomic profiles. Front. Vet. Sci. 2021, 7, 599418. [Google Scholar] [CrossRef]
- Xue, B.; Zhao, X.Q.; Zhang, Y.S. Seasonal changes in weight and body composition of yak grazing on alpine-meadow grassland in the Qinghai-Tibetan plateau of China. J. Anim. Sci. 2005, 83, 1908–1913. [Google Scholar] [CrossRef]
- Zhao, S.; Zhou, J.; Guan, S.; Wang, X.; Wen, X.; Zhao, K.; Yang, H.; Lu, L.; Zhang, B.; Chen, Y.; et al. Dietary energy and protein gradients drive metabolic adaptation in growing-finishing yaks on the Qinghai-Tibet plateau. Anim. Nutr. 2025, 21, 351–364. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Yang, D.; Sun, Z.; Niu, J.; Bao, Y.; Liu, S.; Tan, Z.; Hao, L.; Cheng, Y.; Liu, S. Changes in Blood Metabolic Profiles Reveal the Dietary Deficiencies of Specific Nutrients and Physiological Status of Grazing Yaks during the Cold Season in Qinghai Province of China. Metabolites 2022, 12, 738. [Google Scholar] [CrossRef] [PubMed]
- Peng, H.; Fei, G.; Muyou, C. Effect of Supplementary Feed on Growth Performance, Serum Biochemical Indices and Economic Benefit of Grazing Yaks in Cold Season. Chin. Agric. Sci. Bull. 2022, 38, 105–111. [Google Scholar]
- Zhu, Y.; Sun, G.; Dunzhu, L.; Li, X.; Zhaxi, L.; Zhaxi, S.; Suolang; Ciyang; Yangji, C.; Wangdui, B.; et al. High energy level diet improves the growth performance and rumen fermentation of yaks in cold weather. Front. Veter-Sci. 2023, 10, 1212422. [Google Scholar] [CrossRef]
- Zhou, J.; Yue, S.; Peng, Q.; Wang, L.; Wang, Z.; Xue, B. Metabonomic Responses of Grazing Yak to Different Concentrate Supplementations in Cold Season. Animals 2020, 10, 1595. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Wang, L.; Ke, S.; Chen, X.; Kenéz, Á.; Xu, W.; Wang, D.; Zhang, F.; Li, Y.; Cui, Z.; et al. Yak rumen microbiome elevates fiber degradation ability and alters rumen fermentation pattern to increase feed efficiency. Anim. Nutr. 2022, 11, 201–214. [Google Scholar] [CrossRef]
- Jia, J.; Liang, C.; Wu, X.; Xiong, L.; Bao, P.; Chen, Q.; Yan, P. Effect of high proportion concentrate dietary on Ashdan Yak jejunal barrier and microbial function in cold season. Res. Veter-Sci. 2021, 140, 259–267. [Google Scholar] [CrossRef]
- Pang, K.; Yang, Y.; Chai, S.; Li, Y.; Wang, X.; Sun, L.; Cui, Z.; Wang, S.; Liu, S. Dynamics Changes of the Fecal Bacterial Community Fed Diets with Different Concentrate-to-Forage Ratios in Qinghai Yaks. Animals 2022, 12, 2334. [Google Scholar] [CrossRef]
- Pang, K.; Chai, S.; Yang, Y.; Wang, X.; Liu, S.; Wang, S. Dietary forage to concentrate ratios impact on yak ruminal microbiota and metabolites. Front. Microbiol. 2022, 13, 964564. [Google Scholar] [CrossRef]
- Papi, N.; Mostafa-Tehrani, A.; Amanlou, H.; Memarian, M. Effects of dietary forage-to-concentrate ratios on performance and carcass characteristics of growing fat-tailed lambs. Anim. Feed. Sci. Technol. 2011, 163, 93–98. [Google Scholar] [CrossRef]
- Chen, H.; Wang, C.; Huasai, S.; Chen, A. Effects of dietary forage to concentrate ratio on nutrient digestibility, ruminal fermentation and rumen bacterial composition in Angus cows. Sci. Rep. 2021, 11, 17023. [Google Scholar] [CrossRef]
- Meng, G.; La, Y.; Bao, Q.; Wu, X.; Ma, X.; Huang, C.; Chu, M.; Liang, C.; Yan, P. Early Growth and Development and Nonlinear Model Fitting Analysis of Ashidan Yak. Animals 2023, 13, 1545. [Google Scholar] [CrossRef]
- Jaakamo, M.J.; Luukkonen, T.J.; Kairenius, P.K.; Bayat, A.R.; Ahvenjärvi, S.A.; Tupasela, T.M.; Vilkki, J.H.; Shingfield, K.J.; Leskinen, H.M. The effect of dietary forage to concentrate ratio and forage type on milk fatty acid composition and milk fat globule size of lactating cows. J. Dairy Sci. 2019, 102, 8825–8838. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 18th ed.; AOAC: Washington, DC, USA, 2005. [Google Scholar]
- AOAC. Official Methods of Analysis, 15th ed.; AOAC: Washington, DC, USA, 1990. [Google Scholar]
- Van Soest, P.V.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- NY/T 815; Feeding Standard of Beef Cattle. China Agriculture Press: Beijing, China, 2004.
- Hall, M.B. Calculation of non-structural carbohydrate content of feeds that contain non-protein nitrogen. In Bulletin 339:A-25; University of Florida: Gainesville, FL, USA, 2000. [Google Scholar]
- Xu, T.; Xu, S.; Hu, L.; Zhao, N.; Liu, Z.; Ma, L.; Liu, H.; Zhao, X. Effect of Dietary Types on Feed Intakes, Growth Performance and Economic Benefit in Tibetan sheep and Yaks on the Qinghai-Tibet Plateau during Cold Season. PLoS ONE 2017, 12, e0169187. [Google Scholar] [CrossRef]
- Fatima, B.; Ahmad, S.; Ali, A.; Ahmad, S.; Hussain, I.; Rashid, S.; Bhat, R. Establishment of Haemato-biochemical Reference Values in Yak (Bos grunniens) in Cold Arid Himalayan Region of Ladakh India. Agric. Sci. Dig. A Res. J. 2025, D-6332. Available online: https://arccjournals.com/journal/agricultural-science-digest/D-6332 (accessed on 29 June 2025). [CrossRef]
- Zhao, X.; Li, S.; Xiao, M.; An, T.; Li, H.; Li, X. Determination of Serum Biochemical Parameters and Mineral Elements in Mawa Yak. J. Grassl. Forage Sci. 2018, 6, 72–74, 79. [Google Scholar]
- He, Z.; Hwang, M.; Lei, B. Research progress on ecological behavior of Chinese yaks. Acta Ecol. Anim. Domastici 2019, 40, 1–9. [Google Scholar]
- Yi, S.; Wu, H.; Liu, Y.; Dai, D.; Meng, Q.; Chai, S.; Liu, S.; Zhou, Z. Concentrate supplementation improves cold-season environmental fitness of grazing yaks: Responsive changes in the rumen microbiota and metabolome. Front. Microbiol. 2023, 14, 1247251. [Google Scholar] [CrossRef]
- Zhu, Y.; Sun, G.; Dunzhu, L.; Li, X.; Zhaxi, L.; Zhaxi, S.; Suolang; Ciyang; Yangji, C.; Wangdui, B.; et al. Effects of different dietary protein level on growth performance, rumen fermentation characteristics and plasma metabolomics profile of growing yak in the cold season. Animals 2023, 13, 367. [Google Scholar] [CrossRef]
- Jobgen, W.S.; Fried, S.K.; Fu, W.J.; Meininger, C.J.; Wu, G. Regulatory role for the arginine–nitric oxide pathway in metabolism of energy substrates. J. Nutr. Biochem. 2006, 17, 571–588. [Google Scholar] [CrossRef]
- Bai, J.; Tang, L.; Bi, Y.; Li, M. Multi-omics insights into the energy compensation of rumen microbiota of grazing yaks in cold season. Front. Microbiol. 2024, 15, 1467841. [Google Scholar] [CrossRef]
- Couch, C.E.; Movius, M.A.; Jolles, A.E.; Gorman, M.E.; Rigas, J.D.; Beechler, B.R.; Ferron, E.S. Serum biochemistry panels in African buffalo: Defining reference intervals and assessing variability across season, age and sex. PLoS ONE 2017, 12, e0176830. [Google Scholar] [CrossRef]
- Bach, A.; Calsamiglia, S.; Stern, M.D. Nitrogen metabolism in the rumen. J. Dairy Sci. 2005, 88, E9–E21. [Google Scholar] [CrossRef]
- Law, R.A.; Young, F.J.; Patterson, D.C.; Kilpatrick, D.J.; Wylie, A.R.G.; Mayne, C.S. Effect of dietary protein content on animal production and blood metabolites of dairy cows during lactation. J. Dairy Sci. 2009, 92, 1001–1012. [Google Scholar] [CrossRef]
- Mao, S.Y.; Zhang, R.Y.; Wang, D.S.; Zhu, W.Y. Impact of subacute ruminal acidosis (SARA) adaptation on rumen microbiota in dairy cattle using pyrosequencing. Anaerobe 2013, 24, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Meng, J.; Tian, M.; Song, X.; Xiao, H.; Liang, S.; Xie, X.; Tang, Y.; Liu, Y.; Xiao, D.; Wang, S. Replace part of regenerative rice silage feed with whole cottonseed enhances growth performance and nutrient digestibility via regulating gH/IGF axis in beef cattle. Ital. J. Anim. Sci. 2025, 24, 1–12. [Google Scholar] [CrossRef]
- Zhao, S.; Shan, C.; Wu, Z.; Feng, M.; Song, L.; Wang, Y.; Gao, Y.; Guo, J.; Sun, X. Fermented Chinese herbal preparation: Impacts on milk production, nutrient digestibility, blood bio-chemistry, and antioxidant capacity of late-lactation cows under heat stress. Anim. Feed. Sci. Technol. 2022, 292, 115448. [Google Scholar] [CrossRef]
Ingredients | High Forage | Low Forage |
---|---|---|
Corn | 21.19 | 52.21 |
Soybean meal | 6.56 | 15.54 |
Limestone powder | 0.50 | 0.50 |
Dicalcium phosphate | 0.25 | 0.25 |
Sodium chloride | 0.50 | 0.50 |
Vitamin premix 1 | 0.50 | 0.50 |
Mineral premix 2 | 0.50 | 0.50 |
Oat hay | 70.00 | 30.00 |
Total | 100.00 | 100.00 |
Nutrient levels 3 | ||
NEmf, MJ/kg | 4.39 | 6.30 |
CP, % | 10.50 | 13.68 |
EE, % | 2.34 | 3.15 |
NDF, % | 47.17 | 28.24 |
ADF, % | 30.90 | 17.33 |
Ca, % | 0.43 | 0.39 |
P, % | 0.38 | 0.31 |
NFC, % | 37.79 | 52.83 |
NFC/ADF | 0.80 | 1.88 |
Items | High Forage | Low Forage | SEM | p-Value |
---|---|---|---|---|
Body weight, kg | ||||
Initial | 109.61 | 110.40 | 2.08 | 0.857 |
Day 30 | 113.56 | 118.25 | 2.17 | 0.295 |
Day 60 | 115.86 | 125.04 | 2.56 | 0.072 |
ADG, g | ||||
Day 0–30 | 131.67 a | 261.55 b | 33.20 | 0.047 |
Day 30–60 | 76.56 a | 226.37 b | 30.88 | 0.010 |
Day 0–60 | 104.11 b | 243.96 a | 28.74 | 0.010 |
Economic benefit | ||||
Feed price (CNY/kg DM) | 4.125 | 5.225 | ||
Feed consumed (kg DM) | 60 | 60 | ||
Feed cost (CNY/yak) | 247.5 | 313.5 | ||
Benefit of LW gain (CNY/yak) | 156 | 366 | ||
Breeding profit (CNY/yak) | −91.5 | 52.5 | ||
NEB | −0.37 | 0.17 |
Items | High Forage | Low Forage | SEM | p-Value | Reference Intervals |
---|---|---|---|---|---|
Early experimental stage | |||||
TP, g/L | 56.79 a | 60.85 b | 1.57 | 0.021 | 55–76, g/L [25] |
ALB, g/L | 31.42 | 32.37 | 0.71 | 0.200 | 27–39, g/L [25] |
GLO, g/L | 25.37 a | 28.48 b | 1.36 | 0.039 | 28–37, g/L [25] |
GLU, mmol/L | 4.86 | 5.10 | 0.19 | 0.224 | 4.32–5.81, mmol/L [26] |
BUN, mmol/L | 3.91 | 4.35 | 0.63 | 0.488 | 1.8–7.1, mmol/L [26] |
TC, mmol/L | 2.94 | 2.91 | 0.12 | 0.820 | 2.1–8.3, mmol/L [26] |
TG, mmol/L | 0.51 | 0.51 | 0.00 | 0.758 | 0.1–0.9, mmol/L [26] |
FFA, μmol/L | 87.50 | 86.88 | 3.18 | 0.847 | - |
LDL-C, mmol/L | 1.37 | 1.32 | 0.10 | 0.617 | - |
HDL-C, mmol/L | 1.32 | 1.37 | 0.07 | 0.505 | - |
Late experimental stage | |||||
TP, g/L | 59.04 a | 61.86 b | 0.92 | 0.008 | 55–76, g/L [25] |
ALB, g/L | 32.24 | 32.45 | 0.55 | 0.699 | 27–39, g/L [25] |
GLO, g/L | 26.80 a | 29.41 b | 0.81 | 0.006 | 28–37, g/L [25] |
GLU, mmol/L | 4.75 | 4.44 | 0.19 | 0.126 | 4.32–5.81, mmol/L [26] |
BUN, mmol/L | 3.91 | 3.84 | 0.57 | 0.893 | 1.8–7.1, mmol/L [26] |
TC, mmol/L | 3.26 | 3.11 | 0.22 | 0.491 | 2.1–8.3, mmol/L [26] |
TG, mmol/L | 0.51 | 0.51 | 0.00 | 0.554 | 0.1–0.9, mmol/L [26] |
FFA, μmol/L | 91.38 | 91.38 | 2.84 | 1.000 | - |
LDL-C, mmol/L | 1.54 | 1.42 | 0.14 | 0.412 | - |
HDL-C, mmol/L | 1.43 | 1.38 | 0.06 | 0.481 | - |
Items | High Forage | Low Forage | SEM | p-Value |
---|---|---|---|---|
Early experimental stage | ||||
T4, pmol/L | 1338.58 | 1338.61 | 54.04 | 1.00 |
T3, pmol/L | 94.09 | 96.45 | 4.20 | 0.58 |
GH, μg/L | 42.75 a | 47.23 b | 1.44 | 0.01 |
LEP, μg/L | 3.96 | 4.23 | 0.15 | 0.10 |
INS, mIU/L | 45.72 | 46.34 | 1.28 | 0.64 |
IGF-1, μg/L | 32.91 | 33.60 | 1.07 | 0.53 |
Late experimental stage | ||||
T4, pmol/L | 1355.75 | 1310.07 | 63.97 | 0.49 |
T3, pmol/L | 95.46 | 96.36 | 3.41 | 0.80 |
GH, μg/L | 41.95 a | 46.23 b | 1.38 | 0.01 |
LEP, μg/L | 3.90 | 4.12 | 0.14 | 0.16 |
INS, mIU/L | 46.97 | 43.96 | 1.82 | 0.12 |
IGF-1, μg/L | 34.45 | 34.18 | 1.19 | 0.82 |
Items | High Forage | Low Forage | SEM | p-Value |
---|---|---|---|---|
Early experimental stage | ||||
SOD, U/mL | 5.54 | 6.17 | 0.68 | 0.367 |
MDA, nmol/mL | 0.26 | 0.19 | 0.04 | 0.056 |
CAT, U/mL | 10.48 | 15.25 | 3.26 | 0.163 |
T-AOC, μmol/mL | 0.55 | 0.53 | 0.05 | 0.643 |
GSH-Px, U/mL | 0.34 | 0.35 | 0.01 | 0.655 |
Late experimental stage | ||||
SOD, U/mL | 5.52 | 5.29 | 0.80 | 0.779 |
MDA, nmol/mL | 0.22 | 0.21 | 0.01 | 0.324 |
CAT, U/mL | 9.20 | 10.59 | 3.40 | 0.688 |
T-AOC, μmol/mL | 0.58 b | 0.47 a | 0.05 | 0.040 |
GSH-Px, U/mL | 0.37 | 0.38 | 0.02 | 0.637 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bao, Y.; Zhou, J.; Yang, X.; Shi, R.; Liao, Y. Effects of Forage-to-Concentrate Ratio During Cold-Season Supplementation on Growth Performance, Serum Biochemistry, Hormones, and Antioxidant Capacity in Yak Calves on the Qinghai–Tibet Plateau. Animals 2025, 15, 2490. https://doi.org/10.3390/ani15172490
Bao Y, Zhou J, Yang X, Shi R, Liao Y. Effects of Forage-to-Concentrate Ratio During Cold-Season Supplementation on Growth Performance, Serum Biochemistry, Hormones, and Antioxidant Capacity in Yak Calves on the Qinghai–Tibet Plateau. Animals. 2025; 15(17):2490. https://doi.org/10.3390/ani15172490
Chicago/Turabian StyleBao, Yuhong, Jia Zhou, Xuetao Yang, Ruizhi Shi, and Yangci Liao. 2025. "Effects of Forage-to-Concentrate Ratio During Cold-Season Supplementation on Growth Performance, Serum Biochemistry, Hormones, and Antioxidant Capacity in Yak Calves on the Qinghai–Tibet Plateau" Animals 15, no. 17: 2490. https://doi.org/10.3390/ani15172490
APA StyleBao, Y., Zhou, J., Yang, X., Shi, R., & Liao, Y. (2025). Effects of Forage-to-Concentrate Ratio During Cold-Season Supplementation on Growth Performance, Serum Biochemistry, Hormones, and Antioxidant Capacity in Yak Calves on the Qinghai–Tibet Plateau. Animals, 15(17), 2490. https://doi.org/10.3390/ani15172490