Study on the Morphological Development Timeline and Growth Model of Embryos and Larvae of European Catfish (Silurus glanis)
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Source of Broodstock and Artificial Propagation
2.2. Observations on Embryonic Development and Larval–Juvenile Growth and Development
2.3. Data Processing and Analysis
2.3.1. Accumulated Temperature Formula for Embryonic Development
2.3.2. Yolk Sac Volume Formula
2.3.3. Assumptions and Rationale for Growth Model Selection
3. Result
3.1. Embryonic Development Sequence and Main Characteristics of Fertilized Eggs
3.1.1. Zygote Stage (56 min–1 h 0 min)
3.1.2. Cleavage Stage (2 h 09 min–2 h 15 min)
3.1.3. Blastula Stage (2 h 58 min–3 h 2 min)
3.1.4. Gastrula Stage (7 h 24 min–7 h 26 min)
3.1.5. Neurula Stage (2 h 22 min–2 h 26 min)
3.1.6. Organogenesis Stage (27 h 47 min–27 h 51 min)
3.1.7. Hatching Stage (3 h 49 min–3 h 55 min)
3.2. Main Characteristics of the Growth and Development of S. glanis Larvae, Juveniles, and Young Fish
3.2.1. Measurable Traits of Larvae, Juveniles, and Young Fish
3.2.2. Main Describable Traits of Larvae, Juveniles, and Young Fish
- ①
- Pre-yolk sac Larval Stage
- ②
- Post-larval Stage
- ③
- Juvenile Stage
- ④
- Young Fish Stage
3.2.3. Changes in the Volume of the Yolk Sac of Larvae
3.2.4. Growth Characteristics of Larvae, Juveniles, and Young Fish
4. Discussion
4.1. Biological Adaptability of Embryonic Development Timing in S. glanis
4.2. Morphogenesis and Functional Differentiation During Larval and Juvenile Development
4.3. Ecological Significance of Growth Models and Enlightenment for Aquaculture Practices
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mahalder, B.; Haque, M.M.; Siddique, M.A.B.; Hasan, N.A.; Alam, M.M.; Talukdar, M.M.N.; Shohan, M.H.; Ahasan, N.; Hasan, M.M.; Ahammad, A.K.S. Embryonic and Larval Development of Stinging Catfish, Heteropneustes fossilis, in Relation to Climatic and Water Quality Parameters. Life 2023, 13, 583. [Google Scholar] [CrossRef] [PubMed]
- Jonsson, B.; Jonsson, N. Early environment influences later performance in fishes. J. Fish Biol. 2014, 85, 151–188. [Google Scholar] [CrossRef] [PubMed]
- Mousavi, S.E.; Patil, J.G. Stages of embryonic development in the live-bearing fish, Gambusia holbrooki. Dev. Dyn. 2022, 251, 287–320. [Google Scholar] [CrossRef] [PubMed]
- Schnurr, M.E.; Yin, Y.; Scott, G.R. Temperature during embryonic development has persistent effects on metabolic enzymes in the muscle of zebrafish. J. Exp. Biol. 2014, 217 Pt 8, 1370–1380. [Google Scholar] [CrossRef]
- Zhu, S. Synopsis of Freshwater Fishes of China; Jiangsu Science and Technology Press: Nanjing, China, 1995. [Google Scholar]
- Guo, Y. Xinjiang Fisheries Records; Xinjiang Science and Technology Press: Urimqi, China, 2012. [Google Scholar]
- Keerjiang, A.; Zhang, R.; Yusufu, Y.; Yan, G. Experimental Study of Capruring and Short Distance Transportation with in Situ Temporary Rising of Silurus glanis Linnaeus In Yili Rever. Xinjiang Agric. Sci. 2015, 52, 961–968. [Google Scholar]
- Ren, M.; Guo, Y.; Zhang, Q.; Zhang, R.; Li, H.; Keerjiang, A.; Cai, L.; Yong, W.; Ren, B.; Gao, H. Fisheries Resources and Fishery of River Yili; Heilongjiang Science and Technology Press: Harbin, China, 1998. [Google Scholar]
- Robert, D.; Shoji, J.; Sirois, P.; Takasuka, A.; Catalán, I.A.; Folkvord, A.; Ludsin, S.A.; Peck, M.A.; Sponaugle, S.; Ayón, P.M.; et al. Life in the fast lane: Revisiting the fast growth—High survival paradigm during the early life stages of fishes. Fish Fish. 2023, 24, 863–888. [Google Scholar] [CrossRef]
- Arambam, K.; Singh, S.K.; Biswas, P.; Patel, A.B.; Jena, A.K.; Pandey, P.K. Influence of light intensity and photoperiod on embryonic development, survival and growth of threatened catfish Ompok bimaculatus early larvae. J. Fish Biol. 2020, 97, 740–752. [Google Scholar] [CrossRef]
- Harada, A.E.; Lindgren, E.A.; Hermsmeier, M.C.; Rogowski, P.A.; Terrill, E.; Burton, R.S. Monitoring Spawning Activity in a Southern California Marine Protected Area Using Molecular Identification of Fish Eggs. PLoS ONE 2015, 10, e0134647. [Google Scholar] [CrossRef]
- Duke, E.M.; Burton, R.S. Efficacy of metabarcoding for identification of fish eggs evaluated with mock communities. Ecol. Evol. 2020, 10, 3463–3476. [Google Scholar] [CrossRef]
- Ma, B.; Zhang, L.; Zhang, Z.; Liu, Y. Observation of embryonic and larval development of sea bass Dicentrarchus labrax. J. Dalian Ocean. Univ. 2019, 34, 303–309. [Google Scholar]
- Kenan, G.; Güner, Y.; Tenekecioglu, E.; Eminçe Saygi, H. Artificial Spawning and Feeding of European Catfish, Siluris glanis L., in Turkey. J. Anim. Vet. Adv. 2008, 7, 1285–1291. [Google Scholar]
- Havas, M.; Kumar, S.; Nagy, Z.; Beliczky, G.; Nagy, S.; Bercsény, M.; Gál, D. Effects of feeding regime on growth feed conversion and size variation of Silurus glanis. Croat. J. Fish. 2015, 73, 142–147. [Google Scholar] [CrossRef]
- Szabo, T.; Radics, F.; Borsos, A.; Urbányi, B. Comparison of the results from induced breeding of European catfish (Silurus glanis L.) broodstock reared in an intensive system or in pond conditions. Turk. J. Fish. Aquat. Sci. 2015, 15, 385–390. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wu, L.; Gu, L.; Ma, D.; Gao, X. Danube Six Silurus glanis Linnaeus Biology and its Culturing Observation. Freshw. Fish. 1993, 3, 25–29. [Google Scholar]
- Wei, Y.; Zhang, R.; Song, M.; Keerjiang, A. Studies on the Tolerance of Silurus glaris Linnaeus Fingerlings to Salinity and Alkalinity. Xinjiang Agric. Sci. 2019, 56, 1335–1343. [Google Scholar]
- Barbacariu, C.A.; Rimbu, C.M.; Burducea, M.; Dirvariu, L.; Miron, L.D.; Boiangiu, R.S.; Dumitru, G.; Todirascu-Ciornea, E. Comparative Study of Flesh Quality, Blood Profile, Antioxidant Status, and Intestinal Microbiota of European Catfish (Silurus glanis) Cultivated in a Recirculating Aquaculture System (RAS) and Earthen Pond System. Life 2023, 13, 1282. [Google Scholar] [CrossRef]
- Simeanu, C.; Măgdici, E.; Păsărin, B.; Avarvarei, B.-V.; Simeanu, D. Quantitative and Qualitative Assessment of European Catfish (Silurus glanis) Flesh. Agriculture 2022, 12, 2144. [Google Scholar] [CrossRef]
- Zeng, L.; Lu, Z.; Yang, J.; Liang, J.; Lu, Z. Artificial Propagation and Seedling Rearing Technology of Silurus soidatovi. Fish. Sci. Technol. Inf. 2013, 40, 174–178. [Google Scholar]
- Qiao, Z.; Liu, S.; Shen, F. Ultrastructure of spermatozoon and effects of pH and temperature onspermatozoon motility in oriental sheatfish Silurus asotus. J. Dalian Ocean. Univ. 2016, 31, 602–606. [Google Scholar]
- Ni, W.; Chen, H.; Liu, X.; Yu, l.; Li, W.; Hong, X.; Liu, Y.; Zhu, X. Embryonic development and growth of larval and juvenile basa fish striped catfish (Pangasianodon hypophthalmus) and the determination of growth model. J. Dalian Ocean. Univ. 2023, 38, 584–592. [Google Scholar]
- Wang, L.; Chou, Q.; Zhou, S.; Liu, H.; Wu, F. Observation and Study on Embryos and Postembryonic Development of Pseudobagrus fulvidraco. Freshw. Fish. 1989, 5, 9–12. [Google Scholar]
- Xiao, Z.; Zheng, W.; Fang, K. A Study of the embryonic development of Silurus asotus Linnaeus and the effect of water temperature on it. J. South China Norm. Univ. (Nat. Sci.) 1998, 3, 9–15. [Google Scholar]
- Han, L.; Liu, M.; LI, C.; Xiang, X.; Li, J.; Xiao, Y.; Zhou, L.; Tian, L.; Xie, Z.; Liang, Z. Artificial reproduction and embryonic development of Onychostoma rara. J. Fish. Sci. China 2024, 31, 662–673. [Google Scholar]
- Zhang, L.; Wen, H.; Zheng, B.; Li, H.; Song, C.; Jin, W.; Ma, X.; Xu, P.; Hua, D.; Gu, R. Artificial spawning and embryonic development of freshwater drum, Aplodinotus grunniens. J. Fish. Sci. China 2021, 28, 569–578. [Google Scholar]
- Lin, G.; Lin, Q. Study on the early embryonic development of Claris lareza. J. Nanchang Univ. (Nat. Sci.) 1999, 23, 333–338. [Google Scholar]
- Moran, A.L.; McAlister, J.S. Egg size as a life history character of marine invertebrates: Is it all it’s cracked up to be? Biol. Bull. 2009, 216, 226–242. [Google Scholar] [CrossRef]
- Harvey, B.C. Interactions among stream fishes: Predator-induced habitat shifts and larval survival. Oecologia 1991, 87, 29–36. [Google Scholar] [CrossRef]
- Tidbury, H.J.; Ryder, D.; Thrush, M.A.; Pearce, F.; Peeler, E.J.; Taylor, N.G.H. Comparative assessment of live cyprinid and salmonid movement networks in England and Wales. Prev. Vet. Med. 2020, 185, 105200. [Google Scholar] [CrossRef]
- Mead, A.F.; Kennedy, G.G.; Palmer, B.M.; Ebert, A.M.; Warshaw, D.M. Mechanical Characteristics of Ultrafast Zebrafish Larval Swimming Muscles. Biophys. J. 2020, 119, 806–820. [Google Scholar] [CrossRef]
- Vea, I.M.; Shingleton, A.W. Network-regulated organ allometry: The developmental regulation of morphological scaling. Wiley Interdiscip. Rev. Dev. Biol. 2021, 10, e391. [Google Scholar] [CrossRef]
- Benini, E.; Engrola, S.; Politis, S.; Sørensen, S.; Nielsen, A.; Conceição, L.; Santos, A.; Tomkiewicz, J. Transition from endogenous to exogenous feeding in hatchery-cultured European eel larvae. Aquac. Rep. 2022, 24, 101159. [Google Scholar] [CrossRef]
- Hu, J.; Zhou, S.; Yang, X.; Chen, X.; Yang, Q.; Ma, Z. Ontogenetic allometry in larval and Juvenile clown anemonefIsh Amphiprion ocellaris. Acta Hydrobiol. Sin. 2020, 44, 844–852. [Google Scholar]
- Li, J.; Han, Y.; Xu, L.; Ma, Q.; Song, T.; Dong, Y.; Liu, X.; Feng, Y.; Li, Q. Embryological Stages and Allometric Growth During Yolk-Sac Larvae of Lampetra japonica (Martens). Acta Hydrobiol. Sin. 2017, 41, 1207–1217. [Google Scholar]
- Roth, A. Development of catfish lateral line organs: Electroreceptors require innervation, although mechanoreceptors do not. Naturwissenschaften 2003, 90, 251–255. [Google Scholar] [CrossRef]
- Northcutt, R.G.; Holmes, P.H.; Albert, J.S. Distribution and innervation of lateral line organs in the channel catfish. J. Comp. Neurol. 2000, 421, 570–592. [Google Scholar] [CrossRef]
- Mukai, Y.; Tuzan, A.; Lim, L.-S.; Wahid, N.; Muhamad Shaleh, S.R.; Senoo, S. Development of sensory organ in larvae of African catfish Clarias gariepinus. J. Fish Biol. 2008, 73, 1648–1661. [Google Scholar] [CrossRef]
- Musa, B.; Hernandez, A.; Adeogun, O.; Oresegun, A. Determination of a predictive growth model for cultivated African catfish Clarias gariepinus (Burchell, 1882). Aquac. Res. 2021, 52, 4434–4444. [Google Scholar] [CrossRef]
- Clay, D. Production of the African catfish (Clarias gariepinus) I. Growth, mortality and yield south of the Zambezi. J. Limnol. Soc. S. Afr. 1984, 10, 16–24. [Google Scholar] [CrossRef]
- Hilge, V. The influence of temperature on the growth of the European catfish (Silurus glanis L.). J. Appl. Ichthyol. 2007, 1, 27–31. [Google Scholar] [CrossRef]
- Pérez-Fuentetaja, A.; Goodberry, F. Daphnia’s challenge: Survival and reproduction when calcium and food are limiting. J. Plankton Res. 2016, 38, 1379–1388. [Google Scholar] [CrossRef]
- Kozarić, Z.; Kuzir, S.; Petrinec, Z.; Gjurcević, E.; Bozić, M. The development of the digestive tract in larval European catfish (Silurus glanis L.). Anat. Histol. Embryol. 2008, 37, 141–146. [Google Scholar] [CrossRef]
- Frolova, T.V.; Izvekov, E.I.; Izvekova, G.I. First insights into the activity of major digestive enzymes in the intestine of the European catfish Silurus glanis and protective anti-enzymatic potential of its gut parasite Silurotaenia siluri. J. Fish Biol. 2023, 103, 985–993. [Google Scholar] [CrossRef]
- Pawlak, C.; Hanumara, R.C. A comparison of non-linear growth models for fisheries. Fish. Res. 1991, 11, 143–154. [Google Scholar] [CrossRef]
- Alp, A.; Kara, C.; Üçkardeş, F.; Carol, J.; García-Berthou, E. Age and growth of the European catfish (Silurus glanis) in a Turkish Reservoir and comparison with introduced populations. Rev. Fish Biol. Fish. 2011, 21, 283–294. [Google Scholar] [CrossRef]
- Król, J.; Flisiak, W.; Urbanowicz, P.; Ulikowski, D. Growth, cannibalism, and survival relations in larvae of European catfish, Silurus glanis (Actinopterygii: Siluriformes: Siluridae)—Attempts to mitigate sibling cannibalism. Acta Ichthyol. Piscat. 2014, 44, 191–199. [Google Scholar] [CrossRef]
Development Stage | Elapsed Time | Water Temperature (°C) | Accumulative Temperature (°C·h) |
---|---|---|---|
Zygophase stage | 56 min–1 h 0 min | 26.0 ± 0.9 | 26.0 |
Cleavage stage | 2 h 09 min–2 h 15 min | 26.0 ± 0.9 | 58.50 |
Blastula stage | 2 h 58 min–3 h 2 min | 26.0 ± 0.9 | 78.78 |
Gastrula stage | 7 h 24 min–7 h 26 min | 26.0 ± 0.9 | 193.18 |
Neurula stage | 2 h 22 min–2 h 26 min | 26.0 ± 0.9 | 63.18 |
Organogenesis stage | 27 h 47 min–27 h 51 min | 26.0 ± 0.9 | 724.10 |
Hatching stage | 3 h 49 min–3 h 55 min | 26.0 ± 0.9 | 101.82 |
Total | 47 h 27 min–47 h 55 min | 26.0 ± 0.9 | 1245.56 |
Embryonic Development Stage | Time After Fertilization | Developmental Characteristics | Figure 1 |
---|---|---|---|
Fertilized egg | 0 | Fertilized eggs are spherical demersal eggs, yellow in color, with uniformly distributed egg cytoplasm. Upon water absorption and swelling, a double-layered egg membrane is formed, where the outer membrane exhibits slight adhesiveness. | A |
Blastodisc stage | 13 min | The non-yolk cytoplasm separates and flows toward the animal pole, leading to the formation of the blastodisc. | B |
2-cell stage | 1 h | A meridional cleavage furrow appears in the center of the blastodisc, dividing it into two blastomeres of equal size. | C |
4-cell stage | 1 h 27 min | A cleavage furrow perpendicular to the first one forms, giving rise to four equally sized cleavage cells arranged in a 2 × 2 pattern. | D |
8-cell stage | 1 h 47 min | Three cleavage furrows perpendicular to the second cleavage furrow appear, resulting in eight cleavage cells arranged in a 2 × 4 pattern. | E |
16-cell stage | 2 h 12 min | Two cleavage furrows parallel to the second cleavage furrow form on both sides of the second cleavage furrow, resulting in sixteen cleavage cells arranged in a 4 × 4 pattern. | F |
32-cell stage | 2 h 30 min | Thirty-two cleavage cells of similar size are arranged in a 4 × 8 pattern. | G |
64-cell stage | 2 h 58 min | Sixty-four blastomeres are formed, with individual cells becoming smaller, showing size differences, and uneven distribution. | H |
Multicellular stage | 3 h 15 min | The dividing cells increase in number and become more densely packed, appearing smaller in size and varying in dimension with blurred boundaries, thus forming an overlapping, elevated cell mass concentrated at the animal pole (upper end of the yolk mass). | I |
Early blastula stage | 4 h | The cells continue to divide, forming a highly elevated, hemispherical blastoderm that towers above the upper end of the yolk mass. | J |
Mid-blastula stage | 5 h 16 min | The blastoderm begins to spread downward from the upper part of the yolk mass, and the germ layer starts to lower and envelop the upper portion of the yolk sac. | K |
Late blastula stage | 6 h 17 min | The blastoderm expands toward the vegetal pole and 明显 thins, covering approximately one-quarter of the yolk mass. | L |
Early gastrula stage | 11 h | The germ layer envelops one-third of the yolk sac, and the lower edge of the enveloping layer thickens to form a circular, elevated germ ring. | M |
Mid-gastrula stage | 13 h 36 min | The germ layer continues to extend downward, enveloping half of the yolk mass, and the blastopore and embryonic shield are formed. | N |
Late gastrula stage | 13 h 43 min | The blastoderm continues to epibolize, covering four-fifths of the yolk sac, and the embryonic shield thickens. | O |
Neurula stage | 14 h 10 min | The germ layer envelops five-sixths of the yolk mass, with a neural plate forming on the embryonic back and a yolk plug developing at the vegetal pole. | P |
Closure of blastopore stage | 16 h 9 min | The germ layer completely covers the yolk, the blastopore closes, and the epibolic movement ends. | Q |
Appearance of somite | 17 h | The embryo elongates, encircling half of the yolk sac. The head and tail regions bulge prominently, and two pairs of somites appear in the trunk. | R |
Appearance of cerebral vesicle | 17 h 42 min | The embryonic trunk, including the head region, develops brain vesicles and 4 to 6 pairs of somites. | S |
Appearance of optic capsule | 24 h 39 min | The embryo encircles three-quarters of the yolk sac, with 14–16 pairs of somites. Optic vesicles emerge dorsolaterally on both sides of the head. | T |
Otocyst stage | 28 h 12 min | The embryo encircles four-fifths of the yolk sac, featuring 22–24 pairs of somites. Otic vesicles appear dorsolaterally behind the head. | U |
Appearance of candal fin | 30 h 48 min | The embryo encircles five-sixths of the yolk sac, with 26–30 pairs of somites. The free part of the tail lengthens, and the caudal fin fold appears. | V |
Muscle effect stage | 37 h 9 min | The embryo encircles five-sixths of the yolk sac, with 26–30 pairs of somites. The free portion of the tail elongates, and the caudal fin fold appears. | W |
Heart-beating stage | 44 h | A ventricular cavity (thoracic cavity) forms beneath the ventral side of the embryonic head, and a rhythmically beating heart appears within the cavity. | X |
Early hatching stage | 46 h 23 min | The embryonic membrane gradually becomes transparent, thin, and loses its viscosity. The number of somites reaches 42–44 pairs, and the embryo—especially the tail—twists vigorously. | Y |
Embryo hatching stage | 47 h 55 min | The embryo hatches out of the membrane. Ni | Z |
Developmental Period | Days After Hatch/d | Total Length/mm | Body Length/mm | Body Height/mm | Head Length/mm |
---|---|---|---|---|---|
Pre-yolk sac larval stage | 1 | 7.61 ± 0.47 | 7.61 ± 0.47 | 2.45 ± 0.10 | 1.12 ± 0.03 |
2 | 9.22 ± 0.54 | 9.22 ± 0.54 | 2.22 ± 0.10 | 1.46 ± 0.09 | |
3 | 10.71 ± 0.25 | 10.71 ± 0.25 | 2.08 ± 0.11 | 1.72 ± 0.01 | |
Larvae anaphase | 4 | 12.80 ± 0.27 | 12.80 ± 0.27 | 2.19 ± 0.06 | 2.72 ± 0.06 |
5 | 14.36 ± 0.45 | 14.36 ± 0.45 | 2.51 ± 0.11 | 2.78 ± 0.11 | |
6 | 14.75 ± 0.43 | 13.52 ± 0.48 | 2.37 ± 0.15 | 3.16 ± 0.07 | |
7 | 14.72 ± 0.33 | 13.54 ± 0.32 | 2.27 ± 0.06 | 3.26 ± 0.07 | |
8 | 15.09 ± 0.66 | 13.64 ± 0.63 | 2.08 ± 0.14 | 3.25 ± 0.17 | |
9 | 15.21 ± 0.96 | 13.66 ± 0.81 | 3.01 ± 0.14 | 3.27 ± 0.14 | |
10 | 17.39 ± 1.24 | 15.32 ± 0.99 | 3.11 ± 0.12 | 3.40 ± 0.10 | |
11 | 17.75 ± 0.70 | 15.73 ± 0.62 | 3.47 ± 0.16 | 3.50 ± 0.15 | |
12 | 20.14 ± 0.92 | 17.79 ± 0.76 | 3.78 ± 0.12 | 4.10 ± 0.18 | |
13 | 22.40 ± 0.63 | 19.54 ± 0.60 | 3.88 ± 0.12 | 4.48 ± 0.16 | |
14 | 23.77 ± 1.09 | 20.56 ± 1.00 | 3.99 ± 0.11 | 4.84 ± 0.14 | |
15 | 24.21 ± 0.88 | 20.75 ± 0.79 | 4.09 ± 0.18 | 4.91 ± 0.11 | |
Advanced fry stage | 16 | 23.58 ± 0.92 | 20.44 ± 0.77 | 4.49 ± 0.41 | 4.76 ± 0.44 |
17 | 25.79 ± 1.54 | 22.63 ± 1.36 | 4.90 ± 0.29 | 5.14 ± 0.27 | |
18 | 27.93 ± 1.30 | 24.30 ± 1.05 | 4.97 ± 0.32 | 5.45 ± 0.30 | |
19 | 29.19 ± 0.77 | 25.29 ± 0.67 | 5.09 ± 0.23 | 5.94 ± 0.14 | |
20 | 30.96 ± 1.70 | 26.97 ± 1.55 | 5.08 ± 0.24 | 6.40 ± 0.53 | |
25 | 33.24 ± 1.85 | 29.04 ± 1.70 | 4.62 ± 0.30 | 6.51 ± 0.20 | |
30 | 46.43 ± 4.09 | 40.65 ± 3.90 | 6.63 ± 0.23 | 7.49 ± 0.12 | |
Juvenile stage | 35 | 54.70 ± 1.31 | 49.42 ± 1.23 | 8.55 ± 0.31 | 8.71 ± 0.38 |
40 | 63.01 ± 0.71 | 56.52 ± 0.74 | 9.31 ± 0.24 | 10.86 ± 0.55 | |
ANOVA (f/p) | 1209.23/p < 0.01 | 1087.71/p < 0.01 | 912.28/p < 0.01 | 934.82/p < 0.01 |
Fish Species | Egg Diameter After Water Absorption (mm) | Body Length at Hatching (mm) | References |
---|---|---|---|
S. glaris | 2.88 ± 0.13 | 7.61 ± 0.47 | This study |
Onychostoma rara | 2.88 ± 0.07 | 6.67 ± 0.53 | [26] |
Aplodinotus grunniens | 1.41 ± 0.03 | 2.73–3.10 | [27] |
Silurus asotus | 1.53 | 4.8 | [25] |
Pangasianodon hypophthalmus | 1. 60 ± 0. 23 | 4.38 ± 0.23 | [23] |
Clarias gariepinus | 1.7–1.9 | 2.30 | [28] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adakebaike, Z.; Wang, Z.; Anasi, H.; He, J.; Zhai, X.; Shi, C.; Nie, Z. Study on the Morphological Development Timeline and Growth Model of Embryos and Larvae of European Catfish (Silurus glanis). Animals 2025, 15, 2478. https://doi.org/10.3390/ani15172478
Adakebaike Z, Wang Z, Anasi H, He J, Zhai X, Shi C, Nie Z. Study on the Morphological Development Timeline and Growth Model of Embryos and Larvae of European Catfish (Silurus glanis). Animals. 2025; 15(17):2478. https://doi.org/10.3390/ani15172478
Chicago/Turabian StyleAdakebaike, Zhuoleaersi, Zhengwei Wang, Hudelati Anasi, Jiangtao He, Xuejie Zhai, Chunming Shi, and Zhulan Nie. 2025. "Study on the Morphological Development Timeline and Growth Model of Embryos and Larvae of European Catfish (Silurus glanis)" Animals 15, no. 17: 2478. https://doi.org/10.3390/ani15172478
APA StyleAdakebaike, Z., Wang, Z., Anasi, H., He, J., Zhai, X., Shi, C., & Nie, Z. (2025). Study on the Morphological Development Timeline and Growth Model of Embryos and Larvae of European Catfish (Silurus glanis). Animals, 15(17), 2478. https://doi.org/10.3390/ani15172478