Long-Term Changes of Physiological Reactions in Young Lipizzan Stallions During Exercise Testing
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Test Protocol and Physical Activity
2.3. Equipment, Measurements, and Sampling
2.4. Laboratory Analyses
2.5. Data Analyses
3. Results
3.1. Gait Speeds During Exercise
3.2. Heart Rate (HR)
3.3. Rectal Temperature and Respiratory Rate
3.4. Body Surface Temperatures
3.5. Biochemistry
4. Discussion
4.1. Gait Speeds
4.2. Heart Rate (HR), Respiratory Rate (RR), and Rectal Temperature (RT)
4.3. Body Surface Temperature (BST)
4.4. Cortisol and Lactate Concentrations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
IRT | infrared thermography |
ExT | exercise test |
BEx | before the exercise |
AEx | after the exercise |
BST | body surface temperature |
RT | rectal temperature |
RR | respiratory rate |
HR | heart rate |
VP | blood sampling |
CORT | cortisol |
LAC | lactate |
References
- Munsters, C.C.; van Iwaarden, A.; van Weeren, R.; van Oldruitenborgh-Oosterbaan, M.M.S. Exercise testing in Warmblood sport horses under field conditions. Vet. J. 2014, 202, 11–19. [Google Scholar] [CrossRef]
- De Mare, L.; Boshuizen, B.; Plancke, L.; de Meeus, C.; de Bruijn, M.; Delesalle, C. Standardized exercise tests in horses: Current situation and future perspectives. Vlaams Diergeneeskd. Tijdschr. 2017, 86, 63–72. [Google Scholar]
- Munsters, C.C.; Van De Broek, J.; Van Weeren, R.; Van Oldruitenborgh-Oosterbaan, M.M.S. A prospective study on fitness, workload and reasons for premature training ends and temporary training breaks in two groups of riding horses. Prev. Vet. Med. 2013, 108, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Navas de Solis, C. Cardiovascular response to exercise and training, exercise testing in horses. Vet. Clin. Equine Pract. 2019, 35, 159–173. [Google Scholar] [CrossRef]
- Harris, P.; Marlin, D.J.; Davidson, H.; Rodgerson, J.; Gregory, A.; Harrison, D. Practical assessment of heart rate response to exercise under field conditions. Equine Comp. Exerc. Physiol. 2007, 1, 15–21. [Google Scholar] [CrossRef]
- Coelho, C.S.; Sodre, T.D.R.P.; Sousa, L.N.; Siqueira, R.F.; Manso Filho, H.C.; Aragona, F.; Fazio, F. How much energy Vaquejada horses spend in a field simulation test? Animals 2021, 11, 3421. [Google Scholar] [CrossRef]
- Fazio, F.; Aragona, F.; Piccione, G.; Pino, C.; Giannetto, C. Cardiac Biomarker responses to acute exercise in show jumping horses. J. Equine Vet. Sci. 2023, 128, 104882. [Google Scholar] [CrossRef]
- Hargreaves, B.J.; Kronfeld, D.S.; Naylor, J.R.J. Ambient temperature and relative humidity influenced packed cell volume, total plasma protein and other variables in horses during an incremental submaximal field exercise test. Equine Vet. J. 1999, 4, 314–318. [Google Scholar] [CrossRef]
- McKeever, K.H.; Eaton, T.L.; Geiser, S.; Kearns, C.F.; Lehnhard, R.A. Age related decreases in thermoregulation and cardiovascular function in horses. Equine Vet. J. 2010, 42, 220–227. [Google Scholar] [CrossRef] [PubMed]
- Marlin, D.J.; Scott, C.M.; Schroter, R.C.; Mills, P.C.; Harris, R.C.; Harris, P.A.; Orme, C.E.; Roberts, C.A.; Marr, C.M.; Dyson, S.J.; et al. Physiological responses in nonheat acclimated horses performing treadmill exercise in cool (20 °C/40%RH), hot dry (30 °C/40%RH) and hot humid (30 °C/80%RH) conditions. Equine Vet. J. 1996, 22, 70–84. [Google Scholar] [CrossRef]
- Simon, E.L.; Gaughan, E.M.; Epp, T.; Spire, M. Influence of exercise on the thermographically determined surface temperatures of thoracic and pelvic limbs in horses. J. Am. Vet. Med. Assoc. 2006, 299, 1940–1944. [Google Scholar] [CrossRef] [PubMed]
- Jodkowska, E.; Dudek, K.; Przewozny, M. The maximum temperatures (Tmax) distribution on the body surface of sport horses. J. Life Sci. 2011, 5, 291–297. [Google Scholar]
- Redaelli, V.; Bergero, D.; Zucca, E.; Ferrucci, F.; Nanni Costa, L.; Crosta, L.; Luzi, F. Use of thermography techniques in equines: Principles and applications. J. Equine Vet. Sci. 2014, 34, 345–350. [Google Scholar] [CrossRef]
- Soroko, M.; Howell, K.; Dudek, K. The effect of ambient temperature on infrared thermographic images of joints in the distal forelimbs of healthy racehorses. J. Therm. Biol. 2017, 66, 63–67. [Google Scholar] [CrossRef] [PubMed]
- Witkowska-Piłaszewicz, O.; Masko, M.; Domino, M.; Winnicka, A. Infrared thermography correlates with lactate concentration in blood during race training in horses. Animals 2020, 10, 2072. [Google Scholar] [CrossRef]
- Čebulj-Kadunc, N.; Frangež, R.; Kruljc, P. Fluctuations of physiological variables during conditioning of Lipizzan fillies before starting under saddle. Animals 2022, 12, 836. [Google Scholar] [CrossRef]
- Soroko-Dubrovina, M.; Śniegucka, K.; Dudek, K.; Čebulj- Kadunc, N. Effects of high intensity laser therapy (HILT) on skin surface temperature and vein diameter in healthy racehorses with clipped and non-clipped coat. Animals 2023, 13, 216. [Google Scholar] [CrossRef]
- Soroko-Dubrovina, M.; Śniegucka, K.; Dobrowolski, M.; Dudek, K. Application of thermography in the assessment of physical effort on body surface temperature distribution in racehorses. Pol. J. Vet. Sci. 2024, 27, 221–227. [Google Scholar] [CrossRef]
- Eddy, A.L.; Van Hoogmoed, L.M.; Snyder, J.R. The role of thermography in the management of equine lameness. Vet. J. 2001, 162, 172–181. [Google Scholar] [CrossRef]
- Soroko, M.; Howell, K. Infrared thermography: Current applications in equine medicine. J. Equine Vet. Sci. 2018, 60, 90–96. [Google Scholar] [CrossRef]
- Purohit, R.C.; Pascoe, D.D.; Defranco, B.; Schumacher, J. Thermographic evaluation of the neurovascular system of the equine. Thermol. Int. 2004, 14, 89–92. [Google Scholar]
- Fonseca, B.P.A.; Alves, A.L.G.; Nicoletti, A.L.M.; Thomassian, A.; Hussini, C.A.; Mikaik, S. Thermography and ultrasonography in back pain diagnosis of equine athletes. J. Eq. Vet. Sci. 2006, 26, 507–516. [Google Scholar] [CrossRef]
- McGreevy, P.; Warren-Smith, A.; Guisard, Y. The effect of double bridles and jaw-clamping Crank nosebands on temperature of eyes and facial skin of horses. J. Vet. Behav. 2012, 7, 142–148. [Google Scholar] [CrossRef]
- Valera, M.; Bartolomé, E.; Sánchez, M.J.; Molina, A.; Cook, N.J.; Schaefer, A.L. Changes in eye temperature and stress assessment in horses during show jumping competition. J. Equine Vet. Sci. 2012, 32, 827–830. [Google Scholar] [CrossRef]
- Arruda, T.Z.; Brass, K.E.; De La Corte, F.D. Thermographic assessment of saddles used on jumping horses. J. Equine Vet. Sci. 2011, 31, 625–629. [Google Scholar] [CrossRef]
- Berghold, P.; Möstl, E.; Aurich, C. Effects of reproductive status and management on cortisol secretion and fertility of oestrous horse mares. Anim. Reprod. Sci. 2007, 102, 276–285. [Google Scholar] [CrossRef]
- Hinchcliff, K.W.; Raymond, R.G. Integrative physiology and exercise testing. In Equine Sports Physiology and Surgery, 1st ed.; Hinchcliff, K.W., Kaneps, A.J., Geor, R.J., Bayly, W., Eds.; Elsevier Saunders: Edinburgh, UK, 2004; pp. 3–45. [Google Scholar]
- Kȩdzierski, W.; Pluta, M.; Kędzierski, W. The welfare of young polish konik horses subjected to agricultural workload. J. Appl. Anim. Welf. Sci. 2003, 16, 35–46. [Google Scholar] [CrossRef]
- Erber, R.; Wulf, M.; Aurich, J.; Rose-Meierhöfer, S.; Hoffmann, G.; von Lewinski, M.; Möstl, E.; Aurich, C. Stress response of three-year-old horse mares to changes in husbandry system during initial equestrian training. J. Equine Vet. Sci. 2013, 33, 1088–1094. [Google Scholar] [CrossRef]
- Heleski, C.R.; Shelle, A.C.; Nielsen, B.D.; Zanella, A.J. Influence of housing on behavior in Weanling horses. In Proceedings of the 16th Equine Nutrition Physiology Symposium, Raleigh, NC, USA, 2–5 June 1999; pp. 249–250. [Google Scholar]
- Rivera, E.; Benjamin, S.; Nielsen, B.; Shelle, J.; Zanella, A.J. Behavioral and physiological responses of horses to initial training: The comparison between pastured versus stalled horses. Appl. Anim. Behav. Sci. 2002, 78, 235–252. [Google Scholar] [CrossRef]
- Warren-Smith, A.K.; McGreevy, P.D. Equestrian coaches’ understanding and application of learning theory in horse training. Anthrozöos 2008, 21, 153–162. [Google Scholar] [CrossRef]
- Schmidt, A.; Jörg, A.; Möstl, E.; Müller, J.; Aurich, C. Changes in cortisol release and heart rate and heart rate variability during the initial training of 3-year-old sport horses. Horm. Behav. 2010, 58, 628–636. [Google Scholar] [CrossRef] [PubMed]
- Piccione, G.; Arfuso, F.; Giudice, E.; Aragona, F.; Pugliatti, P.; Panzera, M.F.; Zumbo, A.; Monteverde, V.; Bartolo, V.; Barbera, A.; et al. Dynamic adaptation of hematological parameters, albumin, and non-esterified fatty acids in Saddlebred and Standardbred horses during exercise. Animals 2025, 15, 300. [Google Scholar] [CrossRef]
- De Bruijn, C.M.; Houterman, W.; Ploeg, M.; Ducro, B.; Boshuizen, B.; Goethals, K.; Verdegaal, E.-L.; Delesalle, C. Monitoring training response in young Friesian dressage horses using two different standardised exercise tests (SETs). BMC Vet. Res. 2017, 13, 49. [Google Scholar] [CrossRef]
- Čebulj-Kadunc, N.; Frangež, R.; Žgajnar, J.; Kruljc, P. Cardiac, respiratory and thermoregulation parameters following graded exercises in Lipizzaner horses. Vet. Arh. 2019, 89, 11–23. [Google Scholar] [CrossRef]
- Čebulj-Kadunc, N.; Turk, A.; Kruljc, P. Effects of graded exercise load on variations of certain physiological parameters in Lipizzan horses during riding–A pilot study. Comp. Exerc. Physiol. 2024, 20, 131–143. [Google Scholar] [CrossRef]
- Dovč, P.; Kavar, T.; Sölkner, H.; Achmann, R. Development of the Lipizzan horse breed. Reprod. Domest. Anim. 2006, 41, 280–285. [Google Scholar] [CrossRef]
- Lipica. Available online: https://www.lipica.org/en/breeding-programm (accessed on 20 August 2025).
- Mukai, K.; Takahashi, T.; Eto, D.; Ohmura, H.; Tsubone, H.; Hiraga, A. Heart rates and blood lactate response in Thoroughbred horses during a race. J. Equine Sci. 2007, 18, 153–160. [Google Scholar] [CrossRef]
- Hodgson, D.R.; McKeever, K.H.; McGowan, C.M. The Athletic Horse: Principles and Practice of Equine Sports Medicine, 2nd ed.; Saunders Elsevier: St. Louis, MO, USA, 2014; pp. 1–204. [Google Scholar]
- Ratzlaff, M.H.; Grant, B.D.; Rathgeber-Lawrence, R.; Kunka, K.L. Stride rates of horses trotting and cantering on a treadmill. J. Equine Vet. Sci. 1995, 15, 279–283. [Google Scholar] [CrossRef]
- Mota-Rojas, D.; Titto, C.G.; Orihuela, A.; Martínez-Burnes, J.; Gómez-Prado, J.; Torres-Bernal, F.; Flores-Padilla, K.; Carvajal-de la Fuente, V.; Wang, D. Physiological and behavioral mechanisms of thermoregulation in mammals. Animals 2021, 11, 1733. [Google Scholar] [CrossRef]
- Allen, K.J.; Young, L.E.; Franklin, S.H. Evaluation of heart rate and rhythm during exercise. Equine Vet. Educ. 2016, 28, 99–112. [Google Scholar] [CrossRef]
- Serrano, M.G.; Evans, D.L.; Hodgson, J.L. Heart rate and blood lactate responses during exercise in preparation for eventing competition. Equine Vet. J. 2002, 34, 135–139. [Google Scholar] [CrossRef]
- Padalino, B.; Zaccagnino, P.; Celi, P. The effect of different types of physical exercise on the behavioural and physiological parameters of standardbred horses housed in single stalls. Vet. Med. Int. 2014, 2014, 875051. [Google Scholar] [CrossRef] [PubMed]
- Wallsten, H.; Olsson, K.; Dahlborn, K. Temperature regulation in horses during exercise and recovery in a cool environment. Acta Vet. Scand. 2012, 54, 42. [Google Scholar] [CrossRef] [PubMed]
- Noordhuizen, J.; Noordhuizen, T. Heat stress in (sport) horses: (I) occurrence, signs & diagnosis, (II) Practical Management and Preventive Measures. J. Dairy Vet. Sci. 2017, 5, 1–5. [Google Scholar] [CrossRef]
- Kang, H.; Zsoldos, R.R.; Sole-Guitart, A.; Narayan, E.; Cawdell-Smith, J.; Gaughan, J. Heat stress in horses: A literature review. Int. J. Biometeorol. 2023, 67, 957–973. [Google Scholar] [CrossRef]
- Morgan, K. Thermoneutral zone and critical temperatures of horses. J. Therm. Biol. 1998, 23, 59–61. [Google Scholar] [CrossRef]
- Klous, L.; Siegers, E.; van den Broek, J.; Folkerts, M.; Gerrett, N.; van Oldruitenborgh-Oosterbaan, M.S.; Munsters, C. Effects of pre-cooling on thermophysiological responses in elite eventing horses. Animals 2020, 10, 1664. [Google Scholar] [CrossRef]
- Soroko, M.; Śpitalniak-Bajerska, K.; Zaborski, D.; Poźniak, B.; Dudek, K.; Janczarek, I. Exercise-induced changes in skin temperature and blood parameters in horses. Arch. Anim. Breed. 2019, 62, 205–213. [Google Scholar] [CrossRef]
- Jodkowska, E.; Dudek, K. Study on symmetry of body surface temperature of race horses. Przegl. Nauk. Literat. Zootech. 2000, 50, 307–319. [Google Scholar]
- Jodkowska, E. Body surface temperature as a criterion of the horse predisposition to effort. Zesz. Nauk Akad. Rolniczej Wrocl. 2005, 511, 7–114. [Google Scholar]
- Wilk, I.; Wnuk-Pawlak, E.; Janczarek, I.; Kaczmarek, B.; Dybczyńska, M.; Przetacznik, M. Distribution of superficial body temperature in horses ridden by two riders with varied body weights. Animals 2020, 10, 340. [Google Scholar] [CrossRef] [PubMed]
- Autio, E.; Neste, R.; Airaksinen, S.; Heiskanen, M.L. Measuring the heat loss in horses in different seasons by infrared thermography. J. Appl. Anim. Welf. Sci. 2006, 9, 211–221. [Google Scholar] [CrossRef] [PubMed]
- Arfuso, F.; Giudice, E.; Panzera, M.; Rizzo, M.; Fazio, F.; Piccione, P.; Giannetto, V. Interleukin-1Ra (Il-1Ra) and serum cortisol level relationship in horse as dynamic adaptive response during physical exercise. Vet. Immunol. Immunopathol. 2022, 243, 110368. [Google Scholar] [CrossRef]
- Assenza, A.; Bergero, D.; Congiu, F.; Tosto, F.; Giannetto, C.; Piccione, G. Evaluation of serum Eeectrolytes and blood lactate concentration during repeated maximal exercise in horse. J. Equine Vet. Sci. 2014, 34, 1175–1180. [Google Scholar] [CrossRef]
- Arfuso, F.; Giannetto, C.; Giudice, E.; Fazio, F.; Piccione, G. Dynamic modulation of platelet aggregation, albumin and nonesterified fatty acids during physical exercise in Thoroughbred horses. Res. Vet. Sci. 2016, 104, 86–91. [Google Scholar] [CrossRef]
- Ertelt, A.; Merle, R.; Stumpff, F.; Bollinger, L.; Liertz, S.; Weber, C.; Gehlen, H. Evaluation of different blood parameters from endurance horses competing at 160 km. J. Equine Vet. Sci. 2021, 104, 103687. [Google Scholar] [CrossRef]
- Colahan, P.T.; Kollias-Baker, C.; Leutenegger, C.M.; Jones, J.H. Does training affect mRNA transciption for cytokine production in circulating leucocytes? Equine Vet. J. 2002, 34, 154–158. [Google Scholar] [CrossRef]
- Özçelik, M.; Cotter, L.; Jacob, C.; Pereira, J.A.; Relvas, J.B.; Suter, U.; Tricaud, N. Pals1 is a major regulator of the epithelial-like polarization and the extension of the myelin sheath in peripheral nerves. J. Neurosci. 2010, 30, 4120–4131. [Google Scholar] [CrossRef]
- Holobová, A.; Štofkovm, A.; Jurčovičová, J.; Šlamberová, R. The effect of neonatal maternal stress on plasma levels of adrenocorticotropic hormone, corticosterone, leptin, and ghrelin in adult male rats exposed to acute heterotypic stressor. Physiol. Res. 2016, 65, 557–566. [Google Scholar] [CrossRef]
- Boucher, P.; Plusquellec, P. Acute stress assessment from excess cortisol secretion: Fundamentals and perspectives. Front. Endocrinol. 2019, 10, 749. [Google Scholar] [CrossRef] [PubMed]
- Shephard, R.J.; Shek, P.N. Associations between physical activity and susceptibility to cancer. Sports Med. 1998, 26, 293–315. [Google Scholar] [CrossRef] [PubMed]
- Steptoe, A.; Hamer, M.; Chida, Y. The effects of acute psychological stress on circulating inflammatory factors in humans: A review and meta-analysis. Brain. Behav. Immun. 2007, 21, 901–912. [Google Scholar] [CrossRef]
- Rizzo, S.R.; Shilling, R. Clinical virtual eeality tools to advance the prevention, assessment, and treatment of PTSD. Eur. J. Psychotraumatology 2017, 8, 1414560. [Google Scholar] [CrossRef]
- Akimoto, T.; Kumai, Y.; Akama, T.; Hayashi, E.; Murakami, H.; Soma, R.; Kuno, S.; Kono, I. Effects of 12 months of exercise training on salivary secretory IgA levels in elderly subjects. Br. J. Sport. Med. 2003, 37, 76–79. [Google Scholar] [CrossRef] [PubMed]
- Etim, N.N.; Williams, M.E.; Evans, E.I.; Offiong, E.A. Physiological and behavioural responses of farm animals to stress: Implications to animal productivity. Am. J. Adv. Agric. Res. 2013, 1, 53–61. [Google Scholar]
- Hovey, M.R.; Davis, A.; Chen, S.; Godwin, P.; Porr, C.S. Evaluating stress in riding horses: Part one—Behavior assessment and serum cortisol. J. Equine Vet. Sci. 2021, 96, 103297. [Google Scholar] [CrossRef]
- Ono, A.; Matsuura, A.; Yamazaki, Y.; Sakai, W.; Watanabe, K.; Nakanowatari, T.; Kobayashi, H.; Irimajiri, M.; Hodate, K. Influence of riders’ skill on plasma cortisol levels of horses walking on forest and field trekking courses. Anim. Sci. J. 2017, 88, 1629–1635. [Google Scholar] [CrossRef]
- Kang, O.D.; Lee, W.S. Changes in salivary cortisol concentration in horses during different types of exercise. Asian-Australas. J. Anim. Sci. 2016, 29, 747–752. [Google Scholar] [CrossRef]
- Strzelec, K.; Kankofer, M.; Pietrzak, S. Cortisol concentration in the saliva of horses subjected to different kinds of exercise. Acta Vet. Brno 2011, 80, 101–105. [Google Scholar] [CrossRef]
- Franklin, R.P.; Peloso, J.G. Review of the clinical use of lactate. Am. Assoc. Equine Pract. Proc. 2006, 52, 305–309. [Google Scholar]
- Henderson, I.S.F. Diagnostic and prognostic use of L-lactate measurement in equine practice. Equine Vet. Educ. 2013, 25, 468–475. [Google Scholar] [CrossRef]
- Lindner, A.; Mosen, H.; Kissenbeck, S.; Fuhrmann, H.; Sallmann, H.P. Effect of blood lactate-guided conditioning of horses with exercises of differing durations and intensities on heart rate and biochemical blood variables. J. Anim. Sci. 2009, 87, 3211–3217. [Google Scholar] [CrossRef] [PubMed]
- Kang, O.D.; Park, Y.S. Effect of age on heart rate, blood lactate concentration, packed cell volume and hemoglobin to exercise in Jeju crossbreed horses. J. Anim. Sci. Technol. 2017, 59, 2. [Google Scholar] [CrossRef] [PubMed]
Phase of the Test | Duration of Activity [min] | Activity | Recordings and Sampling * |
---|---|---|---|
Before exercise (BEx) | 10 | Rest | BST, RT, RR, HR, VP ** |
During exercise (Ex) | 5 | Lunging (walk) | HR |
5 | Lunging (trot) | HR | |
5 | Lunging (canter) | HR | |
After exercise (AEx) | 10 | Rest | BST, RT, RR, HR, VP ** |
Variable | ExT-1 | ExT-2 | ExT-3 | ExT-4 |
---|---|---|---|---|
Walk (km/h) | 7.5 ± 0.8 a | 8.0 ± 0.5 a,b | 7.2 ± 0.8 a,b | 15.4 ± 0.8 a,b,* |
Trot (km/h) | 11.9 ± 1.0 | 16.1 ± 0.5 b | 12.1 ± 1.0 b | 26.9 ± 1.4 b,c,* |
Canter (km/h) | 16.0 ± 1.2 a | 22.0 ± 0.7 a | 16.8 ± 1.4 a | 37.3 ± 3.3 a,c,* |
Variable | Phase of the Test | ExT-1 | ExT-2 | ExT-3 | ExT-4 |
---|---|---|---|---|---|
RT [°C] | BEx | 37.6 ± 0.05 a | 37.35 ± 0.05 c,B | 36.96 ± 0.3 a,B | 37.47 ± 0.06 |
AEx | 39.17 ± 0.16 a,* | 37.99 ± 0.22 c | 37.81 ± 0.14 a | 38.03 ± 0.14 | |
RR [/min] | BEx | 22.6 ± 2.6 a | 16.0 ± 1.7 b | 17.1 ± 2.7 | 20.8 ± 1.7 a |
AEx | 66.6 ± 8.2 a,D,B,A | 41.9 ± 3.8 b,B | 37.6 ± 4.4 A,C | 61.1 ± 4.9 a,D,C |
Variable | ExT-1 (May 2022) | ExT-2 (September 2022) | ExT-3 (January 2023) | ExT-4 (June 2023) |
---|---|---|---|---|
Temperature [°C] | 20.6 ± 0.1 | 19.2 ± 0.2 | 6.3 ± 0.5 | 24.4 ± 0.5 |
Humidity [%] | 71.4 ± 2.6 | 65.5 ± 2.9 | 77.0 ± 3.2 | 49.6 ± 3.9 |
Body Region | Air Temperature | Air Humidity | ||||||
---|---|---|---|---|---|---|---|---|
Before Exercise | After Exercise | Before Exercise | After Exercise | |||||
R | p | R | p | R | p | R | p | |
Chest | 0.961 | p < 0.05 | 0.988 | p < 0.05 | −0.601 | p > 0.05 | −0.686 | p > 0.05 |
Neck | 0.969 | p < 0.05 | 0.993 | p < 0.01 | −0.617 | p > 0.05 | −0.714 | p > 0.05 |
Back | 0.957 | p < 0.05 | 0.984 | p < 0.05 | −0.578 | p > 0.05 | −0.681 | p > 0.05 |
Croup | 0.954 | p < 0.05 | 0.988 | p < 0.05 | −0.572 | p > 0.05 | −0.692 | p > 0.05 |
Buttocks | 0.954 | p < 0.05 | 0.983 | p < 0.05 | −0.588 | p > 0.05 | −0.696 | p > 0.05 |
Metacarpus | 0.973 | p < 0.05 | 0.976 | p < 0.05 | −0.626 | p > 0.05 | −0.638 | p > 0.05 |
Metatarsus | 0.976 | p < 0.05 | 0.983 | p < 0.05 | −0.645 | p > 0.05 | −0.666 | p > 0.05 |
Variable [Units] | Phase of the Test | ExT-1 | ExT-2 | ExT-3 | ExT-4 |
---|---|---|---|---|---|
CORT serum [ng/mL] | BEx | 36.4 ± 2.7 a | 33.4 ± 2.0 | 42.8 ± 4.2 | 35.5 ± 2.8 |
AEx | 50.7 ± 4.6 a | 35.8 ± 2.1 | 44.2 ± 3.8 | 42.0 ± 3.6 | |
CORT saliva [ng/mL] | BEx | 1.7 ± 0.2 b | 1.7 ± 0.2 | 2.1 ± 0.2 | 2.1 ± 0.2 |
AEx | 3.0 ± 0.3 b,A | 1.5 ± 0.2 A | 2.3 ± 0.3 | 2.3 ± 0.3 | |
LAC [mmol/L] | BEx | 0.44 ± 0.06 c | 0.35 ± 0.07 | 0.39 ± 0.08 c | 0.5 ± 0.1 |
AEx | 0.98 ± 0.2 | 1.0 ± 0.05 | 1.0 ± 0.3 b | 0.62 ± 0.2 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Čebulj-Kadunc, N.; Frangež, R.; Kruljc, P. Long-Term Changes of Physiological Reactions in Young Lipizzan Stallions During Exercise Testing. Animals 2025, 15, 2479. https://doi.org/10.3390/ani15172479
Čebulj-Kadunc N, Frangež R, Kruljc P. Long-Term Changes of Physiological Reactions in Young Lipizzan Stallions During Exercise Testing. Animals. 2025; 15(17):2479. https://doi.org/10.3390/ani15172479
Chicago/Turabian StyleČebulj-Kadunc, Nina, Robert Frangež, and Peter Kruljc. 2025. "Long-Term Changes of Physiological Reactions in Young Lipizzan Stallions During Exercise Testing" Animals 15, no. 17: 2479. https://doi.org/10.3390/ani15172479
APA StyleČebulj-Kadunc, N., Frangež, R., & Kruljc, P. (2025). Long-Term Changes of Physiological Reactions in Young Lipizzan Stallions During Exercise Testing. Animals, 15(17), 2479. https://doi.org/10.3390/ani15172479