Determination of Retinol, Cholecalciferol, α-Tocopherol and Phylloquinone Levels in Dogs with Dilated Cardiomyopathy: A Preliminary Study
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Study Design
2.2. Vitamin Analysis (A, D, E and K)
2.2.1. Extraction Process
2.2.2. Chromatographic Conditions
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wess, G. Screening for dilated cardiomyopathy in dogs. J. Vet. Cardiol. 2022, 40, 51–68. [Google Scholar] [CrossRef] [PubMed]
- Martin, M.W.S.; Stafford Johnson, M.J.; Celona, B. Canine dilated cardiomyopathy: A retrospective study of signalment, presentation and clinical findings in 369 cases. J. Small Anim. Pract. 2009, 50, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Bagardi, M.; Ghilardi, S.; Castellazzi, I.; Fusi, E.; Polli, M.; Minozzi, G.; Brambilla, P.G. Preliminary Data on Echocardiographic Evaluation and Serum Taurine Concentration in Healthy Dogs of Two Breeds (10 Golden Retrievers and 12 German Shorthaired Pointers) with Different Predispositions to Nutritional Dilated Cardiomyopathy: A Pilot Study. Animals 2022, 12, 2924. [Google Scholar] [CrossRef]
- Tidholm, A.; Jönsson, L. Histologic characterization of canine dilated cardiomyopathy. Vet. Pathol. 2005, 42, 1–8. [Google Scholar] [CrossRef]
- Meurs, K.M.; Lahmers, S.; Keene, B.W.; White, S.N.; Oyama, M.A.; Mauceli, E.; Lindblad-Toh, K. A splice site mutation in a gene encoding for PDK4, a mitochondrial protein, is associated with the development of dilated cardiomyopathy in the Doberman pinscher. Human Genet. 2012, 131, 1319–1325. [Google Scholar] [CrossRef]
- Ghosh, R.; Alajbegovic, A.; Gomes, A.V. NSAIDs and cardiovascular diseases: Role of reactive oxygen species. Oxid. Med. Cell. Longev. 2015, 2015, 536962. [Google Scholar] [CrossRef]
- Shi, Y.; Moon, M.; Dawood, S.; McManus, B.; Liu, P.P. Mechanisms and management of doxorubicin cardiotoxicity. Herz 2011, 36, 296–305. [Google Scholar] [CrossRef]
- Kaplan, J.L.; Stern, J.A.; Fascetti, A.J.; Larsen, J.A.; Skolnik, H.; Peddle, G.D.; Kienle, R.D.; Waxman, A.; Cocchiaro, M.; Gunther-Harrington, C.T.; et al. Taurine deficiency and dilated cardiomyopathy in golden retrievers fed commercial diets. PLoS ONE 2018, 13, e0209112. [Google Scholar]
- Freeman, L.M.; Stern, J.A.; Fries, R.; Adin, D.B.; Rush, J.E. Diet-associated dilated cardiomyopathy in dogs: What do we know? J. Am. Vet. Med. Assoc. 2018, 253, 1390–1394. [Google Scholar] [CrossRef] [PubMed]
- Quest, B.W.; Leach, S.B.; Garimella, S.; Konie, A.; Clark, S.D. Incidence of canine dilated cardiomyopathy diagnosed at referral institutes and grain-free pet food store sales: A retrospective survey. Front. Anim. Sci. 2022, 3, 846227. [Google Scholar] [CrossRef]
- Walker, A.L.; DeFrancesco, T.C.; Bonagura, J.D.; Keene, B.W.; Meurs, K.M.; Tou, S.P.; Kurtz, K.; Barron, L.; McManamey, A.; Robertson, J.; et al. Association of diet with clinical outcomes in dogs with dilated cardiomyopathy and congestive heart failure. J. Vet. Cardiol. 2022, 40, 99–109. [Google Scholar] [CrossRef] [PubMed]
- Saito, T.; Suzuki, R.; Yuchi, Y.; Yasumura, Y.; Teshima, T.; Matsumoto, H.; Koyama, H. A Case of a Small-Breed Dog with Diet-Related Dilated Cardiomyopathy Showing Marked Improvements in Cardiac Morphology and Function after Dietary Modification. Vet. Sci. 2022, 9, 593. [Google Scholar] [CrossRef]
- Beveridge, L.A.; Witham, M.D. Vitamin D and the cardiovascular system. Osteoporos. Int. 2013, 24, 2167–2180. [Google Scholar] [CrossRef]
- Nitsa, A.; Toutouza, M.; Machairas, N.; Mariolis, A.; Philippou, A.; Koutsilieris, M. Vitamin D in cardiovascular disease. In Vivo 2018, 32, 977–981. [Google Scholar] [CrossRef]
- Pilz, S.; Verheyen, N.; Grübler, M.R.; Tomaschitz, A.; März, W. Vitamin D and cardiovascular disease prevention. Nat. Rev. Cardiol. 2016, 7, 404–417. [Google Scholar] [CrossRef]
- Schroten, N.F.; Ruifrok, W.P.; Kleijn, L.; Dokter, M.M.; Silljé, H.H.; Heerspink, H.J.L.; Bakker, S.J.; Kema, I.P.; van Gilst, W.H.; van Veldhuisen, D.J.; et al. Short-term vitamin D3 supplementation lowers plasma renin activity in patients with stable chronic heart failure: An open-label, blinded end point, randomized prospective trial (VitD-CHF trial). Am. Heart J. 2013, 166, 357–364. [Google Scholar] [CrossRef]
- Condoleo, V.; Pelaia, C.; Armentaro, G.; Severini, G.; Clausi, E.; Cassano, V.; Miceli, S.; Fiorentino, T.V.; Succurro, E.; Arturi, F.; et al. Role of vitamin D in cardiovascular diseases. Endocr. J. 2021, 2, 417–426. [Google Scholar] [CrossRef]
- Sozen, E.; Demirel, T.; Ozer, N.K. Vitamin E: Regulatory role in the cardiovascular system. IUBMB Life 2019, 71, 507–515. [Google Scholar] [CrossRef]
- Mathur, P.; Ding, Z.; Saldeen, T.; Mehta, J.L. Tocopherols in the prevention and treatment of atherosclerosis and related cardiovascular disease. Clin. Cardiol. 2015, 38, 570–576. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; Baker, K.M. Retinoic acid and the heart. Vit. Horm. 2007, 75, 257–283. [Google Scholar]
- Choudhary, R.; Palm-Leis, A.; Scott, R.C., III; Guleria, R.S.; Rachut, E.; Baker, K.M.; Pan, J. All-trans retinoic acid prevents development of cardiac remodeling in aortic banded rats by inhibiting the renin-angiotensin system. Am. J. Physiol. Heart Circ. Physiol. 2008, 294, H633–H644. [Google Scholar] [CrossRef]
- Booth, S.L. Vitamin K: Food composition and dietary intakes. Food Nutr. Res. 2012, 56, 5505. [Google Scholar] [CrossRef]
- Macias-Cervantes, H.E.; Ocampo-Apolonio, M.A.; Guardado-Mendoza, R.; Baron-Manzo, M.; Pereyra-Nobara, T.A.; Hinojosa-Gutiérrez, L.R.; Escalante-Gutiérrez, S.E.; Castillo-Velázquez, M.A.; Aguilar-Guerrero, R. Effect of vitamin K1 supplementation on coronary calcifications in hemodialysis patients: A randomized controlled trial. J. Nephrol. 2025, 38, 511–519. [Google Scholar] [CrossRef]
- Erkkilä, A.T.; Booth, S.L.; Hu, F.B.; Jacques, P.F.; Lichtenstein, A.H. Phylloquinone intake and risk of cardiovascular diseases in men. Nutr. Metab. Cardiovasc. Dis. 2007, 17, 58–62. [Google Scholar] [CrossRef] [PubMed]
- Douthit, M.K.; Fain, M.E.; Nguyen, J.T.; Williams, C.F.; Jasti, A.H.; Gutin, B.; Pollock, N.K. Phylloquinone intake is associated with cardiac structure and function in adolescents. J. Nutr. 2017, 147, 1960–1967. [Google Scholar] [CrossRef] [PubMed]
- Dukes-McEwan, J.; Borgarelli, M.; Tidholm, A.; Vollmar, A.C.; Häggström, J. Proposed guidelines for the diagnosis of canine idiopathic dilated cardiomyopathy. J. Vet. Cardiol. 2003, 5, 7–19. [Google Scholar] [CrossRef]
- Siluk, D.; Oliveira, R.V.; Esther-Rodriguez-Rosas, M.; Ling, S.; Bos, A.; Ferrucci, L.; Wainer, I.W. A validated liquid chromatography method for the simultaneous determination of vitamins A and E in human plasma. J. Pharm. Biomed. Anal. 2007, 44, 1001–1007. [Google Scholar] [CrossRef] [PubMed]
- Dukes-McEwan, J.; Garven, K.E.; Lopez Alvarez, J.; Oliveira, P.; Motskula, P.F.; Willis, R. Usefulness of cardiac biomarker screening to detect dilated cardiomyopathy in Dobermanns. J. Small Anim. Pract. 2022, 63, 275–285. [Google Scholar] [CrossRef]
- Bilić, P.; Guillemin, N.; Kovačević, A.; Ljubić, B.B.; Jović, I.; Galan, A.; Mrljak, V. Serum proteome profiling in canine idiopathic dilated cardiomyopathy using TMT-based quantitative proteomics approach. J. Proteom. 2018, 179, 110–121. [Google Scholar] [CrossRef]
- Kocatürk, M.; At, B.; Türkseven, Ş.; Acioğlu, Ç.; Cf, A.; Yilmaz, Z. Evaluation of serum and ascitic fluid proteomes in dogs with dilated cardiomyopathy. Kafkas Univ. Vet. Fak. Derg. 2016, 22, 273–279. [Google Scholar]
- Saril, A.; Kocaturk, M.; Shimada, K.; Uemura, A.; Akgün, E.; Levent, P.; Yilmaz, Z. Serum proteomic changes in dogs with different stages of chronic heart failure. Animals 2022, 12, 490. [Google Scholar] [CrossRef]
- Hoover, L.L.; Burton, E.G.; Brooks, B.A.; Kubalak, S.W. The expanding role for retinoid signaling in heart development. Sci. World J. 2008, 8, 194–211. [Google Scholar] [CrossRef]
- Sandell, L.L. Regulated metabolism of vitamin a by retinol dehydrogenase 10 is critical for embryonic development of the heart. FASEB J. 2012, 26, 339. [Google Scholar] [CrossRef]
- Perl, E.; Waxman, J.S. Retinoic acid signaling and heart development. Subcell. Biochem. 2020, 95, 119–149. [Google Scholar] [CrossRef] [PubMed]
- Wiesinger, A.; Boink, G.J.; Christoffels, V.M.; Devalla, H.D. Retinoic acid signaling in heart development: Application in the differentiation of cardiovascular lineages from human pluripotent stem cells. Stem Cell Rep. 2021, 16, 2589–2606. [Google Scholar] [CrossRef] [PubMed]
- Miao, S.; Zhao, D.; Wang, X.; Ni, X.; Fang, X.; Yu, M.; Ye, L.; Yang, J.; Wu, H.; Han, X.; et al. Retinoic acid promotes metabolic maturation of human Embryonic Stem Cell-derived Cardiomyocytes. Theranostics 2020, 10, 9686. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, F.; Jian Motamedi, F.; Weerasinghe Arachchige, L.C.; Tison, A.; Bradford, S.T.; Lefebvre, J.; Dolle, P.; Ghyselinck, N.B.; Wagner, K.D.; Schedl, A. Retinoic acid signaling is directly activated in cardiomyocytes and protects mouse hearts from apoptosis after myocardial infarction. eLife 2021, 10, e68280. [Google Scholar] [CrossRef]
- Yang, N.; Parker, L.E.; Yu, J.; Jones, J.W.; Liu, T.; Papanicolaou, K.N.; Foster, D.B. Cardiac retinoic acid levels decline in heart failure. JCI Insight 2021, 6, e137593. [Google Scholar] [CrossRef]
- Ali, R.; Campos, B.; Dyckhoff, G.; Haefeli, W.E.; Herold-Mende, C.; Burhenne, J. Quantification of retinoid concentrations in human serum and brain tumor tissues. Anal. Chim. Acta 2012, 725, 57–66. [Google Scholar] [CrossRef]
- Olsen, K.; Suri, D.J.; Davis, C.; Sheftel, J.; Nishimoto, K.; Yamaoka, Y.; Tanumihardjo, S.A. Serum retinyl esters are positively correlated with analyzed total liver vitamin A reserves collected from US adults at time of death. Am. J. Clin. Nutr. 2018, 108, 997–1005. [Google Scholar] [CrossRef]
- Napoli, J.L. Interactions of retinoid binding proteins and enzymes in retinoid metabolism. Biochim. Biophys. Acta 1999, 1440, 139–162. [Google Scholar] [CrossRef]
- Gaar-Humphreys, K.R.; Spanjersberg, T.C.F.; Santarelli, G.; Grinwis, G.C.M.; Szatmári, V.; Roelen, B.A.J.; Vink, A.; van Tintelen, J.P.; Asselbergs, F.W.; Fieten, H.; et al. Genetic Basis of Dilated Cardiomyopathy in Dogs and Its Potential as a Bidirectional Model. Animals 2022, 12, 1679. [Google Scholar] [CrossRef] [PubMed]
- Raila, J.; Forterre, S.; Schweigert, F.J. Levels of retinol and retinyl esters in plasma and urine of dogs with urolithiasis. J. Vet. Med. A Physiol. Pathol. Clin. Med. 2003, 50, 380–382. [Google Scholar] [CrossRef]
- Schweigert, F.; Bok, V. Vitamin A in blood plasma and urine of dogs is affected by the dietary level of vitamin A. Int. J. Vitam. Nutr. Res. 2000, 70, 84–91. [Google Scholar] [CrossRef]
- Freeman, L.M.; Rush, J.E.; Milbury, P.E.; Blumberg, J.B. Antioxidant status and biomarkers of oxidative stress in dogs with congestive heart failure. J. Vet. Intern. Med. 2005, 19, 537–541. [Google Scholar] [CrossRef] [PubMed]
- Schleithoff, S.S.; Zittermann, A.; Tenderich, G.; Berthold, H.K.; Stehle, P.; Koerfer, R. Vitamin D supplementation improves cytokine profiles in patients with congestive heart failure: A double-blind, randomized, placebo-controlled trial. Am. J. Clin. Nutr. 2006, 83, 754–759. [Google Scholar] [CrossRef] [PubMed]
- Gupta, G.K.; Agrawal, T.; DelCore, M.G.; Mohiuddin, S.M.; Agrawal, D.K. Vitamin D deficiency induces cardiac hypertrophy and inflammation in epicardial adipose tissue in hypercholesterolemic swine. Exp. Mol. Pathol. 2012, 93, 82–90. [Google Scholar] [CrossRef]
- O’Connell, T.D.; Simpson, R.U. Immunochemical identification of the 1,25-dihydroxyvitamin d3receptor protein in human heart. Cell Biol. Int. 1996, 20, 621–624. [Google Scholar] [CrossRef]
- Wallert, M.; Ziegler, M.; Wang, X.; Maluenda, A.; Xu, X.; Yap, M.L.; Witt, R.; Giles, C.; Kluge, S.; Hortmann, M.; et al. α-Tocopherol preserves cardiac function by reducing oxidative stress and inflammation in ischemia/reperfusion injury. Redox Biol. 2019, 26, 101292. [Google Scholar] [CrossRef]
- Erkkilä, A.T.; Booth, S.L.; Hu, F.B.; Jacques, P.F.; Manson, J.E.; Rexrode, K.M.; Stampfer, M.J.; Lichtenstein, A.H. Phylloquinone intake as a marker for coronary heart disease risk but not stroke in women. Eur. J. Clin. Nutr. 2005, 59, 196–204. [Google Scholar] [CrossRef]
DCM (n = 6) | Control (n = 10) | p | |
---|---|---|---|
Mean ± SD (Min–Max) | Mean ± SD (Min–Max) | ||
RBC (M/µL) | 6.07 ± 1.22 (4.36–7.99) | 7.15 ± 0.33 (6.38–7.75) | 0.042 1 |
HCT (%) | 36.96 ± 6.74 (25.9–43.7) | 47.45 ± 2.33 (44.4–53.3) | <0.001 1 |
Hgb (g/dL) | 13.93 ± 2.39 (9.9–16) | 17.77 ± 0.95 (15.8–19.8) | <0.001 1 |
MCV (fL) | 61.11 ± 3.74 (54.8–64.9) | 66.40 ± 1.95 (63–69.6) | 0.002 2 |
MCH (pg) | 23.05 ± 3.74 (19.6–25.4) | 24.85 ± 1.46 (21.8–27.8) | 0.056 2 |
MCHC (g/dL) | 37.73 ± 1.12 (35.9–39.2) | 37.42 ± 1.37 (34.6–49) | 0.645 2 |
RDW (%) | 14.91 ± 0.57 (14–15.2) | 12.92 ± 0.51 (12–14.1) | <0.001 1 |
RET (%) | 0.30 ± 0.10 (0.2–0.4) | N/A | |
RETIC (K/µL) | 16.66 ± 7.09 (8.7–22.3) | N/A | |
WBCs (K/µL) | 11.97 ± 4.18 (6.95–17.92) | 9.46 ± 0.93 (7.26–11.1) | 0.428 1 |
%NEU | 71.33 ± 4.37 (66.24–76.07) | 72.06 ± 1.74 (69.45–75.91) | 0.712 2 |
%LYM | 17.61 ± 3.69 (12.99–21.1) | 18.81 ± 1.94 (16.16–22.26) | 0.489 2 |
%MONO | 8.1 ± 3.41 (2.22–11.7) | 6.51 ± 1.34 (3.94–8.75) | 0.317 2 |
%EOS | 2.77 ± 2.00 (0.4–6.33) | 2.34 ± 0.73 (0.52–3.40) | 0.914 1 |
%BASO | 0.17 ± 0.10 (0.1–0.32) | 0.26 ± 0.12 (0.14–0.59) | 0.220 1 |
NEU (K/µL) | 8.55 ± 3.02 (4.6–12.52) | 6.78 ± 0.55 (5.51–7.78) | 0.073 1 |
LYM (K/µL) | 2.07 ± 0.74 (1.2–3.21) | 1.80 ± 0.33 (1.17–2.47) | 0.434 2 |
MONO (K/µL) | 1.05 ± 0.71 (0.21–1.6) | 0.62 ± 0.14 (0.28–0.84) | 0.313 1 |
EOS (K/µL) | 0.27 ± 0.12 (0.08–0.43) | 0.21 ± 0.06 (0.05–0.28) | 0.209 2 |
BASO (K/µL) | 0.015 ± 0.08 (0.01–0.03) | 0.05 ± 0.04 (0.01–0.16) | 0.016 1 |
PLT (K/µL) | 313.1 ± 79.1 (235–464) | 274.2 ± 74.9 (118–435) | 0.181 1 |
MPV (fL) | 9.76 ± 2.41 (7–12.8) | 8.55 ± 0.46 (7.6–9.3) | 0.513 1 |
PCT (%) | 10.7 ± 0.07 (0.34–0.49) | N/A |
DCM (n = 6) | Control (n = 10) | p | |
---|---|---|---|
Mean (Min–Max) | Mean (Min–Max) | ||
GLU (mg/dL) | 95.83 ± 7.98 (85–108) | 99.70 ± 3.83 (98–106) | 0.208 2 |
Crea (mg/dL) | 0.77 ± 0.33 (0.48–1.2) | 0.87 ± 0.20 (0.6–1.17) | 0.476 2 |
BUN (g/dL) | 15.7 ± 3.99 (9–19.8) | 18.27 ± 1.71 (16.7–22.6) | 0.313 1 |
BUN/CREA | 22.9 ± 10.7 (14–41.2) | 22.7 ± 4.95 (14.2–30.1) | 0.882 2 |
PHOS (mg/dL) | 3.86 ± 0.76 (3–4.7) | 3.59 ± 0.29 (3–3.8) | 0.302 2 |
CA (mg/dL) | 10.6 ± 0.15 (10.4–10.7) | 10.5 ± 0.14 (10.2–10.7) | 0.313 1 |
TP (g/dL) | 7.10 ± 0.67 (6.3–8.1) | 7.12 ± 0.35 (6.7–7.8) | 0.938 2 |
ALB (g/dL) | 3.13 ± 0.53 (2.7–3.9) | 3.38 ± 0.25 (3.2–3.7) | 0.259 2 |
GLOB | 3.95 ± 0.97 (2.8–5.4) | 3.73 ± 0.26 (3.2–4.1) | 0.562 2 |
ALB/GLOB | 0.66 ± 0.22 (0.36–1) | 0.87 ± 0.07 (0.86–1.09) | 0.022 1 |
ALT (U/L) | 39.8 ± 10.2 (31–59) | 51.4 ± 11.9 (39–69) | 0.278 2 |
ALKP (U/L) | 62.6 ± 36.7 (26–121) | 35.6 ± 8.34 (24–46) | 0.181 1 |
GGT (mg/dL) | 10 ± 3.57 (6–14) | 10.2 ± 1.19 (9–12) | 0.949 2 |
TBIL (mg/dL) | 0.73 ± 0.54 (0.2–1.4) | 0.40 ± 0.12 (0.2–0.5) | 0.220 1 |
TCHOL (mg/dL) | 203.6 ± 74.4 (106–255) | 270.9 ± 8.11 (265–283) | <0.001 1 |
AMY (U/L) | 979.6 ± 364.8 (545–1354) | 788.4 ± 74.8 (604–840) | 0.277 1 |
LIPA (U/L) | 168 ± 119.8 (32–300) | 116.5 ± 90.5 (25–250) | 0.274 1 |
Groups | Mean | Std. Deviation | Min–Max | p | |
---|---|---|---|---|---|
LVIDd (cm) | DCM | 5.58 | 1.26 | 3.95–7.83 | <0.001 1 |
Healthy | 2.64 | 0.83 | 1.28–7.83 | ||
LVIDs (cm) | DCM | 3.68 | 0.59 | 3.07–4.78 | <0.001 1 |
Healthy | 1.34 | 0.52 | 0.47–2.31 | ||
EPSS (cm) | DCM | 0.83 | 0.37 | 0.35–1.40 | <0.001 2 |
Healthy | 0.14 | 0.05 | 0.07–0.20 | ||
EF (%) | DCM | 67.17 | 8.57 | 53–76 | 0.006 1 |
Healthy | 81.60 | 8.69 | 68–96 | ||
FS (%) | DCM | 32.67 | 6.56 | 22–38 | 0.002 1 |
Healthy | 49.70 | 9.76 | 36–70 | ||
LA/Ao | DCM | 1.84 | 0.32 | 1.30–2.23 | 0.002 1 |
Healthy | 1.40 | 0.14 | 1.16–1.65 | ||
Sphericity | DCM | 1.42 | 0.27 | 1.16–1.73 | 0.004 1 |
Healthy | 2.29 | 0.54 | 1.65–3.27 |
Mean | Std. Deviation | Minimum | Maximum | p 1 | ||
---|---|---|---|---|---|---|
SAP | DCM | 145.5 | 22.56 | 111 | 181 | 0.124 |
Healthy | 131.5 | 11.96 | 108 | 152 | ||
DAP | DCM | 86.7 | 25.09 | 50 | 119 | 0.583 |
Healthy | 92.2 | 14.71 | 72 | 120 | ||
MAP | DCM | 105.8 | 23.84 | 70 | 140 | 0.528 |
Healthy | 99.4 | 16.12 | 72 | 129 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bilgiç, B.; Işık, M.; Bakır, A.; Ekin, S.; Kozat, S.; Pugliese, M.; Or, M.E. Determination of Retinol, Cholecalciferol, α-Tocopherol and Phylloquinone Levels in Dogs with Dilated Cardiomyopathy: A Preliminary Study. Animals 2025, 15, 2477. https://doi.org/10.3390/ani15172477
Bilgiç B, Işık M, Bakır A, Ekin S, Kozat S, Pugliese M, Or ME. Determination of Retinol, Cholecalciferol, α-Tocopherol and Phylloquinone Levels in Dogs with Dilated Cardiomyopathy: A Preliminary Study. Animals. 2025; 15(17):2477. https://doi.org/10.3390/ani15172477
Chicago/Turabian StyleBilgiç, Bengü, Muhammed Işık, Ahmet Bakır, Suat Ekin, Süleyman Kozat, Michela Pugliese, and Mehmet Erman Or. 2025. "Determination of Retinol, Cholecalciferol, α-Tocopherol and Phylloquinone Levels in Dogs with Dilated Cardiomyopathy: A Preliminary Study" Animals 15, no. 17: 2477. https://doi.org/10.3390/ani15172477
APA StyleBilgiç, B., Işık, M., Bakır, A., Ekin, S., Kozat, S., Pugliese, M., & Or, M. E. (2025). Determination of Retinol, Cholecalciferol, α-Tocopherol and Phylloquinone Levels in Dogs with Dilated Cardiomyopathy: A Preliminary Study. Animals, 15(17), 2477. https://doi.org/10.3390/ani15172477