Baicalin Alleviates ADAM17/EGFR Axis-Induced Peritonitis in Weaned Piglets Infected by Glaesserella parasuis
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents and Chemicals
2.2. Cell and Bacterial Cultures
2.3. Experiment Design
2.4. Cell Viability Assay
2.5. Cell Transfection
2.6. Western Blot
2.7. Statistical Analysis
3. Results
3.1. Effect of Baicalin Concentration on Cytotoxicity to PPMCs
3.2. Baicalin Inhibition of Inflammatory Protein Expression in PPMCs Infected with GPS
3.3. Baicalin Inhibition of the Expression of ADAM17/EGFR Axis-Related Proteins in PPMCs Infected with GPS
3.4. Baicalin Inhibition of Inflammatory Protein Expression via the ADAM17/EGFR Axis in PPMCs Infected with GPS
3.5. Baicalin Inhibition of Inflammatory Protein Expression via the ADAM17/EGFR Axis in the Peritoneum of Piglets Infected with GPS
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ADAM17 | Disintegrin and metalloproteinase 17 |
BSA | Bovine serum albumin |
b.w. | Body weight |
CCK8 | Cell counting kit-8 |
CFUs | Colony-forming units |
EGFR | Epidermal growth factor receptor |
ERK | Extracellular signal-regulated kinase |
GAPDH | Glyceraldehyde-3-phosphate dehydrogenase |
GPS | Glaesserella parasuis |
HMGB1 | High mobility group box 1 |
IL-1β | Interleukin-1 beta |
IL-6 | Interleukin-6 |
NC | Negative control siRNA |
NF-κB | Nuclear factor kappa B |
NLRP3 | NOD-like receptor pyrin 3 inflammasome |
OvADAM17 | Overexpression of ADAM17 |
PKC-MAPK | Protein kinase C-mitogen-activated protein kinases |
PPMCs | Porcine peritoneal mesothelial cells |
siRNA | Small interfering RNA |
TBST | Tris-buffered saline containing 0.1% Tween-20 |
TNF-α | Tumor necrosis factor alpha |
TSB | Tryptic soy broth |
References
- Li, J.; Liu, S.; Dong, Q.; Fu, Y.; Sun, Y.; Luo, R.; Tian, X.; Guo, L.; Liu, W.; Qiu, Y.; et al. Pd-1/pd-l1 axis induced host immunosuppression via pi3k/akt/mtor signalling pathway in piglets infected by glaesserella parasuis. BMC Vet. Res. 2024, 20, 141. [Google Scholar] [CrossRef] [PubMed]
- Ni, H.B.; Gong, Q.L.; Zhao, Q.; Li, X.Y.; Zhang, X.X. Prevalence of haemophilus parasuis “glaesserella parasuis” in pigs in china: A systematic review and meta-analysis. Prev. Vet. Med. 2020, 182, 105083. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.; Zhou, L.; Wang, Z.; Li, X.; Ding, L.; Qiu, Y.; Guo, P.; Ye, C.; Fu, S.; Wu, Z.; et al. Baicalin alleviate apoptosis via pkc-mapk pathway in porcine peritoneal mesothelial cells induced by glaesserella parasuis. Molecules 2022, 27, 5083. [Google Scholar] [CrossRef]
- Lee, C.Y.; Ong, H.X.; Tan, C.Y.; Low, S.E.; Phang, L.Y.; Lai, J.; Ooi, P.T.; Fong, M.W.C. Molecular characterization and phylogenetic analysis of outer membrane protein p2 (ompp2) of glaesserella (haemophilus) parasuis isolates in central state of peninsular malaysia. Pathogens 2023, 12, 308. [Google Scholar] [CrossRef]
- Zhang, B.; Tang, C.; Liao, M.; Yue, H. Update on the pathogenesis of haemophilus parasuis infection and virulence factors. Vet. Microbiol. 2014, 168, 1–7. [Google Scholar] [CrossRef]
- Duan, Y.; Hao, Y.; Feng, H.; Shu, J.; He, Y. Research progress on haemophilus parasuis vaccines. Front. Vet. Sci. 2025, 12, 1492144. [Google Scholar] [CrossRef]
- Huang, J.; Yang, X.; Wang, A.; Huang, C.; Tang, H.; Zhang, Q.; Fang, Q.; Yu, Z.; Liu, X.; Huang, Q.; et al. Pigs overexpressing porcine β-defensin 2 display increased resilience to glaesserella parasuis infection. Antibiotics 2020, 9, 903. [Google Scholar] [CrossRef]
- Galina Pantoja, L.; Stammen, B.; Minton, B.; Amodie, D. Serologic profiling of haemophilus parasuis-vaccinated sows and their litters using a novel oligopeptide permease a enzyme-linked immunosorbent assay reveals unexpected patterns of serological response and maternal antibody transfer. J. Vet. Diagn. Investig. 2014, 26, 125–130. [Google Scholar] [CrossRef]
- Nedbalcova, K.; Satran, P.; Jaglic, Z.; Ondriasova, R.; Kucerova, Z. Haemophilus parasuis and glasser’s disease in pigs: A review. Vet. Med. 2006, 51, 168–179. [Google Scholar] [CrossRef]
- Oliveira, S.; Pijoan, C.; Morrison, R. Evaluation of haemophilus parasuis control in the nursery using vaccination and controlled exposure. J. Swine Health Prod. 2004, 12, 123–128. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Perera, J.C.; Piñeiro-Pérez, D.; Martínez-Muñiz, J.O.; Correa-Padilla, J.M.; de Armas-Fernández, M.C.; Jordán-González, J.A.; Dávila-Gómez, C.A.; Domínguez-Romero, A.; Contino-López, R. Polyserositis as a post-COVID-19 complication. MEDICC Rev. 2022, 24, 57–60. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Z.; Xu, J.; Ye, C.; Fu, S.; Hu, C.A.; Qiu, Y.; Liu, Y. Protective effects of baicalin on peritoneal tight junctions in piglets challenged with glaesserella parasuis. Molecules 2021, 26, 1268. [Google Scholar] [CrossRef]
- Lee, C.Y.; Ooi, P.T.; Zunita, Z.; Noordin, M.M. Molecular detection of haemophilus parasuis serotypes 4, 5 or 12 and 13 in peninsular malaysia. Trop. Biomed. 2019, 36, 482–487. [Google Scholar] [PubMed]
- Hattab, J.; Marruchella, G.; Trachtman, A.R.; Gabrielli, L.; Bernabò, N.; Mosca, F.; Tiscar, P.G. Effect of vaccination against glässer’s disease in a farm suffering from polyserositis in weaned pigs. Vet. Sci. 2022, 9, 691. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Song, X.; Cao, H.; Zhou, Q.; Zhang, J.; Yue, H.; Zhang, B. Glaesserella parasuis induces il-17 production might through pkc-erk/mapk and iκb/nf-κb signaling pathways. Vet. Microbiol. 2022, 273, 109521. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Yan, P.; Jia, Y.; Guo, Z.; Guo, Y.; Yin, R.; Wang, L.; Fan, Z.; Zhou, Y.; Yuan, J.; et al. Expression profiles of mirnas in the lung tissue of piglets infected with glaesserella parasuis and the roles of ssc-mir-135 and ssc-mir-155-3p in the regulation of inflammation. Comp. Immunol. Microbiol. Infect. Dis. 2024, 111, 102214. [Google Scholar] [CrossRef]
- Frandoloso, R.; Martínez-Martínez, S.; Rodríguez-Ferri, E.F.; Yubero, S.; Rodríguez-Lázaro, D.; Hernández, M.; Gutiérrez-Martín, C.B. Haemophilus parasuis subunit vaccines based on native proteins with affinity to porcine transferrin prevent the expression of proinflammatory chemokines and cytokines in pigs. Clin. Dev. Immunol. 2013, 2013, 132432. [Google Scholar] [CrossRef]
- Wang, X.; Chen, J.; Yang, F.; Ali, F.; Mao, Y.; Hu, A.; Xu, T.; Yang, Y.; Wang, F.; Zhou, G.; et al. Two kinds of traditional chinese medicine prescriptions reduce thymic inflammation levels and improve humoral immunity of finishing pigs. Front. Vet. Sci. 2022, 9, 929112. [Google Scholar] [CrossRef]
- Zhao, H.; Huang, Y.; Yang, W.; Huang, C.; Ou, Z.; He, J.; Yang, M.; Wu, J.; Yao, H.; Yang, Y.; et al. Viola yedoensis makino alleviates lipopolysaccharide-induced intestinal oxidative stress and inflammatory response by regulating the gut microbiota and nf-κb-nlrp3/ nrf2-mapk signaling pathway in broiler. Ecotoxicol. Environ. Saf. 2024, 282, 116692. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Z.; Chen, G.; Xing, Y.; Wang, J.; Zhao, Y.; Kang, M.; Huang, K.; Li, E.; Ma, X. Dietary galacto-oligosaccharides enhance growth performance and modulate gut microbiota in weaned piglets: A sustainable alternative to antibiotics. Animals 2025, 15, 1508. [Google Scholar] [CrossRef]
- Wang, J.; Tang, L.; Wang, Y.; Xing, Y.; Chen, G.; Jiang, Q.; Wang, J.; Li, E.; Tan, B.; Ma, X. Effects of enzymatic hydrolysate of cottonseed protein on growth performance, nutrient digestibility, blood indexes and fecal volatile fatty acids of weaned piglets. J. Anim. Physiol. Anim. Nutr. 2025, 109, 1062–1071. [Google Scholar] [CrossRef]
- Fu, Y.J.; Xu, B.; Huang, S.W.; Luo, X.; Deng, X.L.; Luo, S.; Liu, C.; Wang, Q.; Chen, J.Y.; Zhou, L. Baicalin prevents lps-induced activation of tlr4/nf-κb p65 pathway and inflammation in mice via inhibiting the expression of cd14. Acta Pharmacol. Sin. 2021, 42, 88–96. [Google Scholar] [CrossRef]
- Sabry, K.; Jamshidi, Z.; Emami, S.A.; Sahebka, A. Potential therapeutic effects of baicalin and baicalein. Avicenna J. Phytomed 2024, 14, 23–49. [Google Scholar]
- Hu, Q.; Zhang, W.; Wu, Z.; Tian, X.; Xiang, J.; Li, L.; Li, Z.; Peng, X.; Wei, S.; Ma, X.; et al. Baicalin and the liver-gut system: Pharmacological bases explaining its therapeutic effects. Pharmacol. Res. 2021, 165, 105444. [Google Scholar] [CrossRef]
- Zou, M.; Yang, L.; Niu, L.; Zhao, Y.; Sun, Y.; Fu, Y.; Peng, X. Baicalin ameliorates mycoplasma gallisepticum-induced lung inflammation in chicken by inhibiting tlr6-mediated nf-κb signalling. Br. Poult. Sci. 2021, 62, 199–210. [Google Scholar] [CrossRef] [PubMed]
- Fu, S.; Xu, L.; Li, S.; Qiu, Y.; Liu, Y.; Wu, Z.; Ye, C.; Hou, Y.; Hu, C.A. Baicalin suppresses nlrp3 inflammasome and nuclear factor-kappa b (nf-κb) signaling during haemophilus parasuis infection. Vet. Res. 2016, 47, 80. [Google Scholar] [CrossRef] [PubMed]
- Fu, S.; Liu, H.; Chen, X.; Qiu, Y.; Ye, C.; Liu, Y.; Wu, Z.; Guo, L.; Hou, Y.; Hu, C.A. Baicalin inhibits haemophilus parasuis-induced high-mobility group box 1 release during inflammation. Int. J. Mol. Sci. 2018, 19, 1307. [Google Scholar] [CrossRef] [PubMed]
- Fu, S.; Liu, S.; Li, J.; Dong, Q.; Fu, Y.; Luo, R.; Sun, Y.; Tian, X.; Liu, W.; Zong, B.; et al. Baicalin and probenecid protect against glaesserella parasuis challenge in a piglet model. Vet. Res. 2024, 55, 96. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Gu, J.; Xiao, K.; Zhu, W.; Lin, Y.; Wen, S.; He, Q.; Xu, X.; Cai, X. Glaesserella parasuis autotransporters espp1 and espp2 are novel iga-specific proteases. Front. Microbiol. 2022, 13, 1041774. [Google Scholar] [CrossRef]
- Zhang, X.; Lin, Y.; Xu, X.; Wen, S.; Wang, Z.; Gu, J.; He, Q.; Cai, X. Htra is involved in stress response and adhesion in glaesserella parasuis serovar 5 strain nagasaki. Vet. Microbiol. 2023, 282, 109748. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, Y.; Zhao, Q.; Du, S.; Huang, X.; Wu, R.; Yan, Q.; Han, X.; Wen, Y.; Cao, S.J. Hbpa from glaesserella parasuis induces an inflammatory response in 3d4/21 cells by activating the mapk and nf-κb signalling pathways and protects mice against g. Parasuis when used as an immunogen. Vet. Res. 2024, 55, 93. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Gao, Y.; Jiao, J.; Zhang, Y.; Li, J.; Ding, L.; Zhang, L.; Chen, Z.; Song, X.; Yang, G.; et al. Upregulation of tlr4-dependent atp production is critical for glaesserella parasuis lps-mediated inflammation. Cells 2023, 12, 751. [Google Scholar] [CrossRef]
- Fu, S.; Yin, R.; Zuo, S.; Liu, J.; Zhang, Y.; Guo, L.; Qiu, Y.; Ye, C.; Liu, Y.; Wu, Z.; et al. The effects of baicalin on piglets challenged with glaesserella parasuis. Vet. Res. 2020, 51, 102. [Google Scholar] [CrossRef]
- Li, X.H.; Zhao, G.Z.; Qiu, L.X.; Dai, A.L.; Wu, W.W.; Yang, X.Y. Protective efficacy of an inactive vaccine based on the ly02 isolate against acute haemophilus parasuis infection in piglets. Biomed. Res. Int. 2015, 2015, 649878. [Google Scholar] [CrossRef]
- Tang, B.Y.; Ge, J.; Wu, Y.; Wen, J.; Tang, X.H. The role of adam17 in inflammation-related atherosclerosis. J. Cardiovasc. Transl. Res. 2022, 15, 1283–1296. [Google Scholar] [CrossRef] [PubMed]
- Düsterhöft, S.; Lokau, J.; Garbers, C. The metalloprotease adam17 in inflammation and cancer. Pathol. Res. Pract. 2019, 215, 152410. [Google Scholar] [CrossRef]
- Yang, J.; LeBlanc, M.E.; Cano, I.; Saez-Torres, K.L.; Saint-Geniez, M.; Ng, Y.S.; D’Amore, P.A. Adam10 and adam17 proteases mediate proinflammatory cytokine-induced and constitutive cleavage of endomucin from the endothelial surface. J. Biol. Chem. 2020, 295, 6641–6651. [Google Scholar] [CrossRef]
- Abo-El Fetoh, M.E.; Abdel-Fattah, M.M.; Mohamed, W.R.; Ramadan, L.A.A.; Afify, H. Cyclooxygenase-2 activates egfr-erk1/2 pathway via pge2-mediated adam-17 signaling in testosterone-induced benign prostatic hyperplasia. Inflammopharmacology 2023, 31, 499–516. [Google Scholar] [CrossRef]
- Calligaris, M.; Cuffaro, D.; Bonelli, S.; Spanò, D.P.; Rossello, A.; Nuti, E.; Scilabra, S.D. Strategies to target adam17 in disease: From its discovery to the irhom revolution. Molecules 2021, 26, 944. [Google Scholar] [CrossRef] [PubMed]
- Benkheil, M.; Paeshuyse, J.; Neyts, J.; Van Haele, M.; Roskams, T.; Liekens, S. Hcv-induced egfr-erk signaling promotes a pro-inflammatory and pro-angiogenic signature contributing to liver cancer pathogenesis. Biochem. Pharmacol. 2018, 155, 305–315. [Google Scholar] [CrossRef]
- Rayego-Mateos, S.; Morgado-Pascual, J.L.; Sanz, A.B.; Ramos, A.M.; Eguchi, S.; Batlle, D.; Pato, J.; Keri, G.; Egido, J.; Ortiz, A.; et al. Tweak transactivation of the epidermal growth factor receptor mediates renal inflammation. J. Pathol. 2013, 231, 480–494. [Google Scholar] [CrossRef]
- Gai, X.; Liu, F.; Chen, Y.; Zhang, B.; Zhang, Y.; Wu, Y.; Yang, S.; Chen, L.; Deng, W.; Wang, Y.; et al. Golm1 promotes atherogenesis by activating macrophage egfr-erk signaling cascade. Circ. Res. 2025, 136, 848–861. [Google Scholar] [CrossRef]
- Dreymueller, D.; Martin, C.; Kogel, T.; Pruessmeyer, J.; Hess, F.M.; Horiuchi, K.; Uhlig, S.; Ludwig, A. Lung endothelial adam17 regulates the acute inflammatory response to lipopolysaccharide. EMBO Mol. Med. 2012, 4, 412–423. [Google Scholar] [CrossRef]
- Shimoda, M.; Horiuchi, K.; Sasaki, A.; Tsukamoto, T.; Okabayashi, K.; Hasegawa, H.; Kitagawa, Y.; Okada, Y. Epithelial cell-derived a disintegrin and metalloproteinase-17 confers resistance to colonic inflammation through egfr activation. eBioMedicine 2016, 5, 114–124. [Google Scholar] [CrossRef]
- Li, Y.; Yan, J.; Xu, W.; Wang, H.; Xia, Y. Lentivirus-mediated adam17 rna interference inhibited interleukin-8 expression via egfr signaling in lung epithelial cells. Inflammation 2012, 35, 850–858. [Google Scholar] [CrossRef]
- Zeng, S.Y.; Yang, L.; Hong, C.L.; Lu, H.Q.; Yan, Q.J.; Chen, Y.; Qin, X.P. Evidence that adam17 mediates the protective action of cgrp against angiotensin ii-induced inflammation in vascular smooth muscle cells. Mediat. Inflamm. 2018, 2018, 2109352. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Q.; Liu, X.; Tian, J.; Guo, P.; Ye, C.; Fu, S.; Liu, Y.; Qiu, Y. Baicalin Alleviates ADAM17/EGFR Axis-Induced Peritonitis in Weaned Piglets Infected by Glaesserella parasuis. Animals 2025, 15, 2457. https://doi.org/10.3390/ani15162457
Lu Q, Liu X, Tian J, Guo P, Ye C, Fu S, Liu Y, Qiu Y. Baicalin Alleviates ADAM17/EGFR Axis-Induced Peritonitis in Weaned Piglets Infected by Glaesserella parasuis. Animals. 2025; 15(16):2457. https://doi.org/10.3390/ani15162457
Chicago/Turabian StyleLu, Qirong, Xuwen Liu, Junke Tian, Pu Guo, Chun Ye, Shulin Fu, Yu Liu, and Yinsheng Qiu. 2025. "Baicalin Alleviates ADAM17/EGFR Axis-Induced Peritonitis in Weaned Piglets Infected by Glaesserella parasuis" Animals 15, no. 16: 2457. https://doi.org/10.3390/ani15162457
APA StyleLu, Q., Liu, X., Tian, J., Guo, P., Ye, C., Fu, S., Liu, Y., & Qiu, Y. (2025). Baicalin Alleviates ADAM17/EGFR Axis-Induced Peritonitis in Weaned Piglets Infected by Glaesserella parasuis. Animals, 15(16), 2457. https://doi.org/10.3390/ani15162457