Development of a Methodology for Measuring Oxytocin in Feces: Insights from a Preliminary Study in Captive Lions (Panthera leo)
Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. Study Animals and Sample Collection
2.2. Selection of Solvents and Extraction Procedure
2.3. Extraction Efficiency of MeOH and ACN
2.4. Oxytocin Assay Validation
2.4.1. Precision
2.4.2. Specificity
2.4.3. Lower Limit of Quantification
2.4.4. Accuracy
2.5. Quantification of fOT in Lions and Relationship with fGM Levels
2.6. Statistical Analysis
3. Results
3.1. Extraction Efficiency for the Two Solvents
3.2. Assay Validation
3.2.1. Precision
3.2.2. Specificity
3.2.3. Lower Limit of Quantification
3.2.4. Accuracy
3.3. Selection of the Extraction Solvent
3.4. fOT Concentrations in Captive Lions
3.5. Relationship Between fOT and fGM Concentrations in Lions
4. Discussion
4.1. Development of a Reliable Methodology for the Measurement of OT in Feces
4.2. Exploring the fOT Levels in Captive Lions
4.3. Relationship Between fOT and fGM Concentrations in Lions
4.4. Limitations and Future Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Uvnäs Moberg, K.; Handlin, L.; Kendall-Tackett, K.; Petersson, M. Oxytocin is a principal hormone that exerts part of its effects by active fragments. Med. Hypotheses 2019, 133, 109394. [Google Scholar] [CrossRef]
- Dabrowska, J.; Hazra, R.; Ahern, T.H.; Guo, J.D.; McDonald, A.J.; Mascagni, F.; Muller, J.F.; Young, L.J.; Rainnie, D.G. Neuroanatomical evidence for reciprocal regulation of the corticotrophin-releasing factor and oxytocin systems in the hypothalamus and the bed nucleus of the stria terminalis of the rat: Implications for balancing stress and affect. Psychoneuroendocrinology 2011, 36, 1312–1326. [Google Scholar] [CrossRef]
- Onaka, T.; Takayanagi, Y. Role of oxytocin in the control of stress and food intake. J. Neuroendocrinol. 2019, 31, e12700. [Google Scholar] [CrossRef] [PubMed]
- Uvnäs-Moberg, K.; Gross, M.M.; Calleja-Agius, J.; Turner, J.D. The Yin and Yang of the oxytocin and stress systems: Opposites, yet interdependent and intertwined determinants of lifelong health trajectories. Front. Endocrinol. 2024, 15, 1272270. [Google Scholar] [CrossRef]
- Olff, M.; Frijling, J.L.; Kubzansky, L.D.; Bradley, B.; Ellenbogen, M.A.; Cardoso, C.; Bartz, J.A.; Yee, J.R.; van Zuiden, M. The role of oxytocin in social bonding, stress regulation and mental health: An update on the moderating effects of context and interindividual differences. Psychoneuroendocrinology 2013, 38, 1883–1894. [Google Scholar] [CrossRef]
- Froemke, R.C.; Young, L.J. Oxytocin, neural plasticity, and social behavior. Annu. Rev. Neurosci. 2021, 44, 359–381. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Hassett, A.L.; Seng, J.S. Exploring the mutual regulation between oxytocin and cortisol as a marker of resilience. Arch. Psychiatr. Nurs. 2019, 33, 164–173. [Google Scholar] [CrossRef]
- Chen, S.; Sato, S. Role of oxytocin in improving the welfare of farm animals—A review. Asian-Australas. J. Anim. Sci. 2017, 30, 449–454. [Google Scholar] [CrossRef] [PubMed]
- Rault, J.L.; van den Munkhof, M.; Buisman-Pijlman, F.T.A. Oxytocin as an indicator of psychological and social well-being in domesticated animals: A critical review. Front. Psychol. 2017, 8, 1521. [Google Scholar] [CrossRef]
- López-Arjona, M.; Botía, M.; Martínez-Subiela, S.; Cerón, J.J. Oxytocin measurements in saliva: An analytical perspective. BMC Vet. Res. 2023, 19, 96. [Google Scholar] [CrossRef]
- Yeates, J.W.; Main, D.C.J. Assessment of positive welfare: A review. Vet. J. 2008, 175, 293–300. [Google Scholar] [CrossRef]
- Edwards, K.L.; Edes, A.N.; Brown, J.L. Stress, well-being and reproductive success. In Reproductive Sciences in Animal Conservation. Advances in Experimental Medicine and Biology; Comizzoli, P., Brown, J., Holt, W., Eds.; Springer: Cham, Switzerland, 2019; Volume 1200, pp. 91–162. [Google Scholar]
- Whitham, J.C.; Wielebnowski, N. New directions for zoo animal welfare science. Appl. Anim. Behav. Sci. 2013, 147, 247–260. [Google Scholar] [CrossRef]
- Staley, M.; Conners, M.G.; Hall, K.; Miller, L.J. Linking stress and immunity: Immunoglobulin A as a non-invasive physiological biomarker in animal welfare studies. Horm. Behav. 2018, 102, 55–68. [Google Scholar] [CrossRef]
- Danhof, H.A.; Lee, J.; Thapa, A.; Britton, R.A.; Di Rienzi, S.C. Microbial stimulation of oxytocin release from the intestinal epithelium via secretin signaling. Gut Microbes 2023, 15, 2256043. [Google Scholar] [CrossRef]
- Ohlsson, B.; Truedsson, M.; Djerf, P.; Sundler, F. Oxytocin is expressed throughout the human gastrointestinal tract. Regul. Pept. 2006, 135, 7–11. [Google Scholar] [CrossRef]
- Neumann, I.D.; Landgraf, R. Balance of brain oxytocin and vasopressin: Implications for anxiety, depression, and social behaviors. Trends Neurosci. 2012, 35, 649–659. [Google Scholar] [CrossRef] [PubMed]
- Gimpl, G.; Fahrenholz, F. The oxytocin receptor system: Structure, function, and regulation. Physiol. Rev. 2001, 81, 629–683. [Google Scholar] [CrossRef] [PubMed]
- Leeds, A.; Dennis, P.M.; Lukas, K.E.; Stoinski, T.S.; Willis, M.A.; Schook, M.W. Validating the use of a commercial enzyme immunoassay to measure oxytocin in unextracted urine and saliva of the western lowland gorilla (Gorilla gorilla gorilla). Primates 2018, 59, 499–515. [Google Scholar] [CrossRef]
- Tabak, B.A.; Leng, G.; Szeto, A.; Parker, K.J.; Verbalis, J.G.; Ziegler, T.E.; Lee, M.R.; Neumann, I.D.; Mendez, A.J. Advances in human oxytocin measurement: Challenges and proposed solutions. Mol. Psychiatry 2023, 28, 127–140. [Google Scholar] [CrossRef] [PubMed]
- McCullough, M.E.; Churchland, P.S.; Mendez, A.J. Problems with measuring peripheral oxytocin: Can the data on oxytocin and human behavior be trusted? Neurosci. Biobehav. Rev. 2013, 37, 1485–1492. [Google Scholar] [CrossRef]
- Ziegler, T.E. Measuring peripheral oxytocin and vasopressin in nonhuman primates. Am. J. Primatol. 2018, 80, e22871. [Google Scholar] [CrossRef]
- Maclean, E.L.; Wilson, S.R.; Martin, W.L.; Davis, J.M.; Nazarloo, H.P.; Carter, C.S. Challenges for measuring oxytocin: The blind men and the elephant? Psychoneuroendocrinology 2019, 107, 225–231. [Google Scholar] [CrossRef] [PubMed]
- Moscovice, L.R.; Sobczak, B.; Niittynen, T.; Koski, S.E.; Gimsa, U. Changes in salivary oxytocin in response to biologically-relevant events in farm animals: Method optimization and usefulness as a biomarker. Front. Physiol. 2024, 15, 1370557. [Google Scholar] [CrossRef]
- Schaebs, F.S.; Marshall-Pescini, S.; Range, F.; Deschner, T. Analytical validation of an Enzyme Immunoassay for the measurement of urinary oxytocin in dogs and wolves. Gen. Comp. Endocrinol. 2019, 281, 73–82. [Google Scholar] [CrossRef] [PubMed]
- Nagasawa, T.; Ohta, M.; Uchiyama, H. The urinary hormonal state of cats associated with social interaction with humans. Front. Vet. Sci. 2021, 8, 680843. [Google Scholar] [CrossRef]
- Moscovice, L.R.; Ziegler, T.E. Peripheral oxytocin in female baboons relates to estrous state and maintenance of sexual consortships. Horm. Behav. 2012, 62, 592–597. [Google Scholar] [CrossRef] [PubMed]
- Crockford, C.; Wittig, R.M.; Langergraber, K.; Ziegler, T.E.; Zuberbühler, K.; Deschner, T. Urinary oxytocin and social bonding in related and unrelated wild chimpanzees. Proc. R. Soc. B Biol. Sci. 2013, 280, 20122765. [Google Scholar] [CrossRef]
- Prado, N.A.; Keady, M.; Oestmann, A.; Steinbeiser, C.M.; Brown, J.L. Hyperprolactinemic African elephant (Loxodonta africana) females exhibit elevated dopamine, oxytocin and serotonin concentrations compared to normal cycling and noncycling, low prolactin elephants. Biol. Reprod. 2019, 100, 1549–1560. [Google Scholar] [CrossRef]
- MacLean, E.L.; Gesquiere, L.R.; Gee, N.; Levy, K.; Martin, W.L.; Carter, C.S. Validation of salivary oxytocin and vasopressin as biomarkers in domestic dogs. J. Neurosci. Methods 2018, 293, 67–76. [Google Scholar] [CrossRef]
- Lürzel, S.; Bückendorf, L.; Waiblinger, S.; Rault, J.L. Salivary oxytocin in pigs, cattle, and goats during positive human-animal interactions. Psychoneuroendocrinology 2020, 115, 104636. [Google Scholar] [CrossRef]
- López-Arjona, M.; Tecles, F.; Mateo, S.V.; Contreras-Aguilar, M.D.; Martínez-Miró, S.; Cerón, J.J.; Martínez-Subiela, S. A procedure for oxytocin measurement in hair of pig: Analytical validation and a pilot application. Biology 2021, 10, 527. [Google Scholar] [CrossRef]
- Zagoory-Sharon, O.; Levine, A.; Feldman, R. Human sweat contains oxytocin. Psychoneuroendocrinology 2023, 158, 106407. [Google Scholar] [CrossRef]
- Schwarzenberger, F. The many uses of non-invasive faecal steroid monitoring in zoo and wildlife species. Int. Zoo Yearb. 2007, 41, 52–74. [Google Scholar] [CrossRef]
- Millspaugh, J.J.; Washburn, B.E. Use of fecal glucocorticoid metabolite measures in conservation biology research: Considerations for application and interpretation. Gen. Comp. Endocrinol. 2004, 138, 189–199. [Google Scholar] [CrossRef]
- Palme, R. Measuring fecal steroids: Guidelines for practical application. Ann. N. Y. Acad. Sci. 2005, 1046, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Palme, R. Non-invasive measurement of glucocorticoids: Advances and problems. Physiol. Behav. 2019, 199, 229–243. [Google Scholar] [CrossRef] [PubMed]
- Ginsburg, M.; Smith, M.W. The fate of oxytocin in male and female rats. Br. J. Pharmacol. Chemother. 1959, 14, 327–333. [Google Scholar] [CrossRef] [PubMed]
- Leng, G.; Sabatier, N. Measuring oxytocin and vasopressin: Bioassays, immunoassays and random numbers. J. Neuroendocrinol. 2016, 28. [Google Scholar] [CrossRef]
- Fjellestad-Paulsen, A.; Lundin, S. Metabolism of vasopressin, oxytocin and their analogues [Mpa1, D-Arg8]-vasopressin (dDAVP) and [Mpa1, D-Tyr(Et)2, Thr4, Orn8]-oxytocin (antocin) in human kidney and liver homogenates. Regul. Pept. 1996, 67, 27–32. [Google Scholar] [CrossRef]
- Mitsui, S.; Yamamoto, M.; Nagasawa, M.; Mogi, K.; Kikusui, T.; Ohtani, N.; Ohta, M. Urinary oxytocin as a noninvasive biomarker of positive emotion in dogs. Horm. Behav. 2011, 60, 239–243. [Google Scholar] [CrossRef]
- Amico, J.A.; Ulbrecht, J.S.; Robinson, A.G. Clearance studies of oxytocin in humans using radioimmunoassay measurements of the hormone in plasma and urine. J. Clin. Endocrinol. Metab. 1987, 64, 340–345. [Google Scholar] [CrossRef]
- Seltzer, L.J.; Ziegler, T.E. Non-invasive measurement of small peptides in the common marmoset (Callithrix jacchus): A radiolabeled clearance study and endogenous excretion under varying social conditions. Horm. Behav. 2007, 51, 436–442. [Google Scholar] [CrossRef]
- Serres-Corral, P.; Almagro, V.; Ensenyat, C.; Carbonell, L.; Borragán, S.; Martínez-Nevado, E.; Quevedo, M.A.; Fernández-Bellon, H.; Carbajal, A.; López-Béjar, M. Noninvasive Assessment of Stress and Reproduction in Captive Lions (Panthera leo) Using Fecal Hormone Analysis. Zoo Biol. 2025, 44, 248–261. [Google Scholar] [CrossRef]
- Serres-Corral, P.; Fernández-Bellon, H.; Padilla-Solé, P.; Carbajal, A.; López-Béjar, M. Evaluation of fecal glucocorticoid metabolite levels in response to a change in social and handling conditions in African lions (Panthera leo bleyenberghi). Animals 2021, 11, 1877. [Google Scholar] [CrossRef]
- Palme, R.; Touma, C.; Arias, N.; Dominchin, M.F.; Lepschy, M. Steroid extraction: Get the best out of faecal samples. Wien. Tierarztl. Monatsschr. 2013, 100, 238–246. [Google Scholar]
- Chertov, O.; Biragyn, A.; Kwak, L.W.; Simpson, J.T.; Boronina, T.; Hoang, V.M.; Prieto, D.R.A.; Conrads, T.P.; Veenstra, T.D.; Fisher, R.J. Organic solvent extraction of proteins and peptides from serum as an effective sample preparation for detection and identification of biomarkers by mass spectrometry. Proteomics 2004, 4, 1195–1203. [Google Scholar] [CrossRef]
- Pearson, J.D. HPLC Separation of peptides. In Encyclopedia of Biological Chemistry; Lennarz, W.J., Lane, M.D., Eds.; Academic Press: Cambridge, MA, USA, 2004; Volume 22, pp. 398–403. ISBN 9780124437104. [Google Scholar]
- Bienboire-Frosini, C.; Chabaud, C.; Cozzi, A.; Codecasa, E.; Pageat, P. Validation of a commercially available enzyme immunoassay for the determination of oxytocin in plasma samples from seven domestic animal species. Front. Neurosci. 2017, 11, 524. [Google Scholar] [CrossRef]
- Gnanadesikan, G.E.; Hammock, E.A.D.; Tecot, S.R.; Lewis, R.J.; Hart, R.; Carter, C.S.; MacLean, E.L. What are oxytocin assays measuring? Epitope mapping, metabolites, and comparisons of wildtype & knockout mouse urine. Psychoneuroendocrinology 2022, 143, 105827. [Google Scholar] [CrossRef] [PubMed]
- Andreasson, U.; Perret-Liaudet, A.; van Waalwijk van Doorn, L.J.C.; Blennow, K.; Chiasserini, D.; Engelborghs, S.; Fladby, T.; Genc, S.; Kruse, N.; Kuiperij, H.B.; et al. A practical guide to immunoassay method validation. Front. Neurol. 2015, 6, 179. [Google Scholar] [CrossRef] [PubMed]
- Schaebs, F.S.; Wirobski, G.; Marshall-Pescini, S.; Range, F.; Deschner, T. Validation of a commercial enzyme immunoassay to assess urinary oxytocin in humans. Endocr. Connect. 2021, 10, 290–301. [Google Scholar] [CrossRef]
- Galligan, T.M.; Temkin, A.M.; Hale, M.D. Endocrine system. In Environmental Contaminants and Endocrine Health; Carnevali, O., Hardiman, G., Eds.; Academic Press: Cambridge, MA, USA, 2023; pp. 3–23. ISBN 9798886975345. [Google Scholar]
- Welch, M.G.; Tamir, H.; Gross, K.J.; Chen, J.; Anwar, M.; Gershon, M.D. Expression and developmental regulation of Oxytocin (OT) and Oxytocin Receptors (OTR) in the Enteric Nervous System (ENS) and intestinal epithelium. J. Comp. Neurol. 2009, 512, 256–270. [Google Scholar] [CrossRef] [PubMed]
- Moresco, A.; Prado, N.; Davis, M.; Schreier, A.L.; Readyhough, T.S.; Joseph, S.; Gray, C.; Brown, J.L. Immunoglobulin A and physiologic correlates of well-being in Asian elephants. J. Zool. Bot. Gard. 2022, 3, 677–687. [Google Scholar] [CrossRef]
- Snowdon, C.T.; Pieper, B.A.; Boe, C.Y.; Cronin, K.A.; Kurian, A.V.; Ziegler, T.E. Variation in oxytocin is related to variation in affiliative behavior in monogamous, pairbonded tamarins. Horm. Behav. 2010, 58, 614–618. [Google Scholar] [CrossRef]
- Buisman-Pijlman, F.T.A.; Sumracki, N.M.; Gordon, J.J.; Hull, P.R.; Carter, C.S.; Tops, M. Individual differences underlying susceptibility to addiction: Role for the endogenous oxytocin system. Pharmacol. Biochem. Behav. 2014, 119, 22–38. [Google Scholar] [CrossRef]
- Robinson, K.J.; Ternes, K.; Hazon, N.; Wells, R.S.; Janik, V.M. Bottlenose dolphin calves have multi-year elevations of plasma oxytocin compared to all other age classes. Gen. Comp. Endocrinol. 2020, 286, 113323. [Google Scholar] [CrossRef]
- Leeds, A.; Schook, M.W.; Dennis, P.M.; Stoinski, T.S.; Willis, M.A.; Lukas, K.E. Urinary oxytocin and cortisol concentrations vary by group type in male western lowland gorillas (Gorilla gorilla gorilla) in North American zoos. Primates 2023, 64, 65–77. [Google Scholar] [CrossRef]
- Berg, M.R.; Heagerty, A.; Coleman, K. Oxytocin and pair compatibility in adult male rhesus macaques (Macaca mulatta). Am. J. Primatol. 2019, 81, e23031. [Google Scholar] [CrossRef]
- Wittig, R.M.; Crockford, C.; Deschner, T.; Langergraber, K.E.; Ziegler, T.E.; Zuberbühler, K. Food sharing is linked to urinary oxytocin levels and bonding in related and unrelated wild chimpanzees. Proc. R. Soc. B Biol. Sci. 2014, 281, 20133096. [Google Scholar] [CrossRef]
- Samuni, L.; Preis, A.; Mundry, R.; Deschner, T.; Crockford, C.; Wittig, R.M. Oxytocin reactivity during intergroup conflict in wild chimpanzees. Proc. Natl. Acad. Sci. USA 2017, 114, 268–273. [Google Scholar] [CrossRef] [PubMed]
- Nagasawa, T.; Kimura, Y.; Masuda, K.; Uchiyama, H. Physiological assessment of the health and welfare of domestic cats—An exploration of factors affecting urinary cortisol and oxytocin. Animals 2022, 12, 3330. [Google Scholar] [CrossRef]
- Koyasu, H.; Takahashi, H.; Yoneda, M.; Naba, S.; Sakawa, N.; Sasao, I.; Nagasawa, M.; Kikusui, T. Correlations between behavior and hormone concentrations or gut microbiome imply that domestic cats (Felis silvestris catus) living in a group are not like ‘groupmates’. PLoS ONE 2022, 17, e0269589. [Google Scholar] [CrossRef] [PubMed]
- Campbell, A. Attachment, aggression and affiliation: The role of oxytocin in female social behavior. Biol. Psychol. 2008, 77, 1–10. [Google Scholar] [CrossRef]
- Robinson, K.J.; Twiss, S.D.; Hazon, N.; Pomeroy, P.P. Maternal oxytocin is linked to close mother-infant proximity in grey seals (Halichoerus grypus). PLoS ONE 2015, 10, e0144577. [Google Scholar] [CrossRef]
- Burkhart, J.C.; Gupta, S.; Borrego, N.; Heilbronner, S.R.; Packer, C. Oxytocin promotes social proximity and decreases vigilance in groups of African lions. iScience 2022, 25, 104049. [Google Scholar] [CrossRef] [PubMed]
- Neumann, I.D.; Krömer, S.A.; Toschi, N.; Ebner, K. Brain oxytocin inhibits the (re)activity of the hypothalamo-pituitary-adrenal axis in male rats: Involvement of hypothalamic and limbic brain regions. Regul. Pept. 2000, 96, 31–38. [Google Scholar] [CrossRef]
- Gibbs, D.M. Stress-specific modulation of ACTH secretion by oxytocin. Neuroendocrinology 1986, 42, 456–458. [Google Scholar] [CrossRef]
- Moscovice, L.R.; Gimsa, U.; Otten, W.; Eggert, A. Salivary cortisol, but not oxytocin, varies with social challenges in domestic pigs: Implications for measuring emotions. Front. Behav. Neurosci. 2022, 16, 899397. [Google Scholar] [CrossRef]
- Brown, C.A.; Cardoso, C.; Ellenbogen, M.A. A meta-analytic review of the correlation between peripheral oxytocin and cortisol concentrations. Front. Neuroendocrinol. 2016, 43, 19–27. [Google Scholar] [CrossRef]
- Wirobski, G.; Range, F.; Schaebs, F.S.; Palme, R.; Deschner, T.; Marshall-Pescini, S. Endocrine changes related to dog domestication: Comparing urinary cortisol and oxytocin in hand-raised, pack-living dogs and wolves. Horm. Behav. 2021, 128, 104901. [Google Scholar] [CrossRef] [PubMed]
Extraction Solvent | Spiked OT Standard (pg/mL) | Sample | Observed OT Concentration (pg/mL) | %REE | %REE (Mean ± SD) | Global %REE (Mean ± SD) |
---|---|---|---|---|---|---|
55% MeOH | 820 (high OT) | Pool 1 | 920.52 | 90.64 | 101.12 ± 15.29 | 95.45 ± 13.25 |
Pool 2 | 930.54 | 107.87 | ||||
Pool 3 | 788.23 | 86.57 | ||||
Pool 4 | 1204.97 | 119.40 | ||||
370 (low OT) | Pool 1 | 509.04 | 90.21 | 89.79 ± 9.49 | ||
Pool 2 | 420.14 | 101.75 | ||||
Pool 3 | 367.30 | 78.58 | ||||
Pool 4 | 551.55 | 88.62 | ||||
30% ACN | 820 (high OT) | Pool 1 | 763.33 | 70.79 | 116.01 ± 30.49 | 99.31 ± 28.23 |
Pool 2 | 1087.18 | 124.72 | ||||
Pool 3 | 1184.52 | 133.50 | ||||
Pool 4 | 1323.71 | 135.03 | ||||
370 (low OT) | Pool 1 | 432.32 | 67.84 | 82.62 ± 13.65 | ||
Pool 2 | 360.09 | 80.47 | ||||
Pool 3 | 460.71 | 100.91 | ||||
Pool 4 | 514.87 | 81.26 |
Lion a | Age | Sex | Contraceptive Status b | n | Mean ± SD | Range | CV (%) | Peaks (%) |
---|---|---|---|---|---|---|---|---|
BCN1 | 3 | M | Intact | 14 | 31.87 ± 18.17 | 8.30–71.16 | 57 | 50 |
BCN2 | 15 | M | Intact | 6 | 90.91 ± 85.49 | 22.36–225.81 | 94 | 33 |
BCN3 | 15 | F | Contracepted | 12 | 49.91 ± 53.94 | 8.86–203.36 | 108 | 33 |
BCN4 | 15 | F | Contracepted | 11 | 43.82 ± 37.08 | 6.56–117.46 | 85 | 45 |
BCN5 | 15 | F | Contracepted | 7 | 56.15 ± 50.15 | 15.65–159.66 | 89 | 14 |
BPV1 | 16 | F | Ovariectomized | 13 | 73.87 ± 55.95 | 10.85–187.99 | 76 | 23 |
BPV2 | 5 | M | Intact | 15 | 42.87 ± 23.31 | 13.39–98.14 | 54 | 40 |
BPV3 | 6 | F | Ovariectomized | 8 | 41.34 ± 27.43 | 12.67–96.31 | 66 | 13 |
BPV5 | 10 | F | Ovariectomized | 13 | 25.88 ± 13.95 | 6.43–47.60 | 54 | 8 |
CA2 | 6 | M | Intact | 14 | 10.72 ± 5.97 | 4.17–22.95 | 56 | 36 |
CA3 | 13 | F | Intact | 12 | 25.28 ± 29.30 | 3.00–112.90 | 116 | 25 |
CA4 | 13 | F | Intact | 6 | 18.38 ± 10.90 | 4.41–33.94 | 59 | 0 |
JZ1 | 8 | M | Intact | 6 | 52.96 ± 33.27 | 16.54–100.55 | 63 | 0 |
MAD1 | 7 | F | Contracepted | 7 | 9.60 ± 3.50 | 3.75–15.36 | 36 | 14 |
MAD2 | 11 | M | Intact | 11 | 18.63 ± 13.95 | 6.41–53.57 | 75 | 18 |
MAD3 | 7 | F | Contracepted | 7 | 58.12 ± 105.69 | 5.67–296.64 | 182 | 14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serres-Corral, P.; Almagro, V.; Carbonell, L.; Borragán, S.; Martínez-Nevado, E.; Quevedo, M.A.; Fernández-Bellon, H.; Carbajal, A.; López-Béjar, M. Development of a Methodology for Measuring Oxytocin in Feces: Insights from a Preliminary Study in Captive Lions (Panthera leo). Animals 2025, 15, 2409. https://doi.org/10.3390/ani15162409
Serres-Corral P, Almagro V, Carbonell L, Borragán S, Martínez-Nevado E, Quevedo MA, Fernández-Bellon H, Carbajal A, López-Béjar M. Development of a Methodology for Measuring Oxytocin in Feces: Insights from a Preliminary Study in Captive Lions (Panthera leo). Animals. 2025; 15(16):2409. https://doi.org/10.3390/ani15162409
Chicago/Turabian StyleSerres-Corral, Paula, Vanessa Almagro, Loles Carbonell, Santiago Borragán, Eva Martínez-Nevado, Miguel Angel Quevedo, Hugo Fernández-Bellon, Annaïs Carbajal, and Manel López-Béjar. 2025. "Development of a Methodology for Measuring Oxytocin in Feces: Insights from a Preliminary Study in Captive Lions (Panthera leo)" Animals 15, no. 16: 2409. https://doi.org/10.3390/ani15162409
APA StyleSerres-Corral, P., Almagro, V., Carbonell, L., Borragán, S., Martínez-Nevado, E., Quevedo, M. A., Fernández-Bellon, H., Carbajal, A., & López-Béjar, M. (2025). Development of a Methodology for Measuring Oxytocin in Feces: Insights from a Preliminary Study in Captive Lions (Panthera leo). Animals, 15(16), 2409. https://doi.org/10.3390/ani15162409