Through the Mouth or Nostrils: The Methane Excretion Route in Belching Dairy Cows
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Description of Spirometry Mask Modification of the Original Mask Described by Correa and Jaimes [16]
Appendix B. Circuit Diagram of Sensors’ Connection to the Arduino Data Logger Shield
Appendix C. Arduino Code for the ESM
#include <SPI.h> |
#include <SD.h> |
#include <TimeLib.h> |
#include <Wire.h> |
#include "RTClib.h" |
RTC_DS1307 rtc; |
DateTime dateTime; |
File file; |
volatile int pulses = 0; |
const int flowSensor = 2; |
unsigned long totalPulses = 0; |
unsigned int flowRate; |
float totalLiters; |
float methane; |
void countPulses() { |
pulses++; |
} |
void setup() |
{ |
pinMode(flowSensor, INPUT); |
Serial.begin(115200); |
rtc.begin(); |
setTime(0, 0, 1, 29, 7, 2023); |
attachInterrupt(digitalPinToInterrupt(flowSensor), countPulses, RISING); |
interrupts(); |
Serial.print("Initializing SD card…"); |
if (!SD.begin(10)) { |
Serial.println("Initialization failed!"); |
return; |
} |
Serial.println("Initialization successful."); |
} |
void loop() { |
time_t t = now(); |
unsigned long myTime = millis(); |
file = SD.open("UNICORN.CSV", FILE_WRITE); |
if (file) { |
dateTime = rtc.now(); |
int h = dateTime.hour(); |
int m = dateTime.minute(); |
int s = dateTime.second(); |
int d = dateTime.day(); |
int mo = dateTime.month(); |
int y = dateTime.year(); |
Serial.print("hour = "); |
Serial.print(h); |
Serial.print(":"); |
Serial.print(m); |
Serial.print(":"); |
Serial.print(s); |
Serial.print(":"); |
Serial.print(d); |
Serial.print("/"); |
Serial.print(mo); |
Serial.print("/"); |
Serial.print(y); |
Serial.println("/"); |
file.print("hour = "); |
file.print(h); |
file.print(":"); |
file.print(m); |
file.print(":"); |
file.print(s); |
file.print(":"); |
file.print(d); |
file.print("/"); |
file.print(mo); |
file.print("/"); |
file.print(y); |
file.println("/"); |
int sensorValue = analogRead(A1); |
// print out the value you read: |
Serial.print("CH4: "); |
Serial.println((sensorValue-454)*3.3);// The values are an example after calibration |
file.print("CH4: "); |
file.println((sensorValue-454)*3.3); |
totalPulses += pulses; |
flowRate = (pulses * 2.7 / 0.085);// The values are an example after calibration |
pulses = 0; |
totalLiters = totalPulses * 2.7 / 27; |
Serial.print(flowRate); |
Serial.print(" L/hour"); |
file.print(flowRate); |
file.print(" L/hour"); |
Serial.println(millis()); |
file.println(millis()); |
while(millis() < myTime+10); |
file.close(); |
} else { |
Serial.println("Error opening file."); |
} |
} |
Appendix D. NLIN Procedure in SAS/STAT for Methane Concentration
data SINE; |
options pagesize=500; |
options linesize=120 nocenter; |
title 'NONLINEAR REGRESSION'; |
input t ppm; |
cards; |
PROC NLIN DATA=SINE; |
PARMS A=4.0 C=390 d=1400 e=870 f=0.3 g=0.01; |
MODEL ppm = SIN(a*t*c)/SQRT(t)+(d+e*t**f*2.71828**(-g*t)); |
RUN; |
References
- Jackson, R.B.; Saunois, M.; Bousquet, P.; Canadell, J.G.; Poulter, B.; Stavert, A.R.; Bergamaschi, P.; Niwa, Y.; Segers, A.; Tsuruta, A. Increasing anthropogenic methane emissions arise equally from agricultural and fossil fuel sources. Environ. Res. Lett. 2020, 15, 071002. [Google Scholar] [CrossRef]
- IDEAM; Fundación Natura; PNUD; MADS; DNP; CANCILLERÍA. Informe del Inventario Nacional de Gases Efecto Invernadero 1990–2018 Y Carbono Negro 2010–2018 de Colombia. Tercer Informe Bienal de Actualización de Cambio Climático, BUR3. Dirigido a la Convención Marco de las Naciones Unidas Sobre Cambio Climático; IDEAM: Bogotá, Colombia; Fundación Natura: Bogotá, Colombia; PNUD: New York, NY, USA; MADS: Saswad, India; DNP: New York, NY, USA; CANCILLERÍA: CABA, Argentina; FMAM: Kuala Lumpur, Malaysia, 2022.
- Bravo-Parra, A.M. Cadenas Sostenibles Ante un Clima Cambiante. La Ganadería en Colombia, 1st ed.; Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ): Bonn, Germany, 2021; 142p.
- Tedeschi, L.O.; Abdalla, A.L.; Álvarez, C.; Anuga, S.W.; Arango, J.; Beauchemin, K.A.; Becquet, P.; Berndt, A.; Burns, R.; De Camillis, C.; et al. Quantification of methane emitted by ruminants: A review of methods. J. Anim. Sci. 2022, 100, skac197. [Google Scholar] [CrossRef]
- Reiset, M.J. Recherches chimiques sur la respiration des animaux d’une ferme. Ann. Chim. Phys. 1863, 69, 129–169. [Google Scholar]
- Tappeiner, H. Die Gase des Verdauungsschlauches der Pflanzenfresser. Z. Biol. 1883, 19, 228–279. [Google Scholar]
- Murray, R.M.; Bryant, A.M.; Leng, R.A. Rates of production of methane in the rumen and large intestine of sheep. Br. J. Nutr. 1976, 36, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, C.K.; Crompton, L.A.; Barrat, C.B.; Donovan, N.; Misselbrook, T. Arterial, rumen and milk concentration and net absorption of methane into the portal vein of lactating dairy cattle. Adv. Anim. Biosci. 2013, 4, 392. [Google Scholar]
- Colvin, H.W.; Wheat, J.D.; Rhode, E.A.; Boda, J.M. Technique for Measuring Eructated Gas in Cattle. J. Dairy Sci. 1957, 40, 492–502. [Google Scholar] [CrossRef]
- Hoernicke, H.; Williams, W.F.; Waldo, D.R.; Flatt, W.P. Composition and absorption of rumen gases and their importance for the accuracy of respiration trials with tracheostomized ruminants. In Energy Metabolism; Blaxter, K.L., Ed.; Academic Press: London, UK, 1965; pp. 165–178. [Google Scholar]
- Dougherty, W.; Hill, K.J.; Campeti, F.I.; Mcclure, R.C.; Habel, R.E. Studies of pharyngeal and laryngeal activity during eructation in ruminants. Am. J. Vet. Res. 1962, 23, 213–219. [Google Scholar]
- Malone, E. Large Animal Surgery–Supplemental Notes; University of Minnesota Libraries Publishing: Minneapolis, MN, USA, 2019; 929p. [Google Scholar]
- Sorg, D. Measuring livestock CH4 emissions with the laser methane detector: A Review. Methane 2021, 1, 38–57. [Google Scholar] [CrossRef]
- Palangi, V.; Taghizadeh, A.; Abachi, S.; Lackner, M. Strategies to mitigate enteric methane emissions in ruminants: A Review. Sustainability 2022, 14, 13229. [Google Scholar] [CrossRef]
- Glasson, C.R.K.; Kinley, R.D.; De Nys, R.; King, N.; Adams, S.L.; Packer, M.A.; Svenson, J.; Eason, C.T.; Magnusson, M. Benefits and risks of including the bromoform containing seaweed Asparagopsis in feed for the reduction of methane production from ruminants. Algal Res. 2022, 64, 102673. [Google Scholar] [CrossRef]
- Correa, H.J.; Jaimes, L.J. Design and operation of a spirometry mask to quantify exhaled methane emission by grazing cattle. Livest. Res. Rural. Dev. 2023, 35, 83. [Google Scholar]
- Chagunda, M.G.G.; Romer, D.A.M.; Roberts, D.J. Effect of Genotype and Feeding Regime on Enteric Methane, Non-Milk Nitrogen and Performance of Dairy Cows during the Winter Feeding Period. Liv. Sci. 2009, 122, 323–332. [Google Scholar] [CrossRef]
- Ricci, P.; Chagunda, M.G.; Rooke, J.; Houdijk, J.G.M.; Duthie, C.A.; Hyslop, J.; Roehe, R.; Waterhouse, A. Evaluation of the laser methane detector to estimate methane emissions from ewes and steers. J. Anim. Sci. 2014, 92, 5239–5250. [Google Scholar] [CrossRef]
- Sorg, D.; Difford, G.F.; Mühlbach, S.; Kuhla, B.; Swalve, H.; Lassen, J.; Strabel, T.; Pszczola, M. Comparison of a laser methane detector with the GreenFeed and two breath analysers for on-farm measurements of methane emissions from dairy cows. Comput. Electron. Agric. 2018, 153, 285–294. [Google Scholar] [CrossRef]
- Koch, A.-K.S.; Nørgaard, P.; Hilden, K. A new method for simultaneous recording of methane eructation, reticulo-rumen motility and jaw movements in rumen fistulated cattle. In Ruminant Physiology: Digestion, Metabolism, and Effects of Nutrition on Reproduction and Welfare; Chilliard, Y., Glasser, F., Faulconnier, Y., Bocquier, F., Veissier, I., Doreau, M., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2009; pp. 360–361. [Google Scholar]
- Wood, P.D.P. Algebraic Model of the Lactation Curve in Cattle. Nature 1967, 216, 164–165. [Google Scholar] [CrossRef]
- Garnsworthy, P.C.; Craigon, J.; Hernandez-Medrano, J.H.; Saunders, N. On-farm methane measurements during milking correlate with total methane production by individual dairy cows. J. Dairy Sci. 2012, 95, 3166–3180. [Google Scholar] [CrossRef]
- Suzuki, T.; Kamiya, Y.; Oikawa, K.; Nonaka, I.; Shinkai, T.; Terada, F.; Obitsu, T. Prediction of enteric methane emissions from lactating cows using methane to carbon dioxide ratio in the breath. Anim. Sci. J. 2021, 92, e13637. [Google Scholar] [CrossRef]
- Dougherty, R.W. Eructation in ruminants. Ann. N. Y. Acad. Sci. 1968, 150, 22–26. [Google Scholar] [CrossRef]
- Moate, P.J.; Clarke, T.; Davis, L.H.; Laby, R.H. Rumen gases and bloat in grazing dairy cattle. J. Agric. Sci. 1997, 129, 459–469. [Google Scholar] [CrossRef]
- Washburn, L.E.; Brody, S. XLII, Methane, Hydrogen, and Carbon Dioxide Production in the Digestive Tract of Ruminants in Relation to the Respiratory Exchange. In Growth and Development with Special Reference to Domestic Animals; University of Missouri, College of Agriculture, Agricultural Experiment Station: Columbia, MO, USA, 1937; 40p. [Google Scholar]
- Van Breukelen, A.E.; Aldridge, M.N.; Veerkamp, R.F.; Koning, L.; Sebek, L.B.; de Haas, Y. Heritability and genetic correlations between enteric methane production and concentration recorded by GreenFeed and sniffers on dairy cows. J. Dairy Sci. 2023, 106, 4121–4132. [Google Scholar] [CrossRef]
- Antanaitis, R.; Anskiene, L.; Rapaliute, E.; Bilskis, R.; Džermeikaite, K.; Bačėninaitė, D.; Juškiene, V.; Juška, R.; Meškinytė, E. Relationship between Reticulorumen Parameters Measured in Real Time and Methane Emission and Heat Stress Risk in Dairy Cows. Animals 2022, 12, 3257. [Google Scholar] [CrossRef] [PubMed]
- Sypniewski, M.; Strabel, T.; Cieslak, A.; Szumacher-Strabel, M.; Pszczola, M. Technical note: Interchangeability and comparison of methane measurements in dairy cows with 2 noninvasive infrared systems. J. Dairy Sci. 2019, 102, 9512–9517. [Google Scholar] [CrossRef] [PubMed]
- Huhtanen, P.; Cabezas-Garcia, E.H.; Utsumi, S.; Zimmerman, S. Comparison of methods to determine methane emissions from dairy cows in farm conditions. J. Dairy Sci. 2015, 98, 3394–3409. [Google Scholar] [CrossRef] [PubMed]
- Berman, A. Estimates of heat stress relief needs for Holstein dairy cows. J. Anim. Sci. 2005, 83, 1377–1384. [Google Scholar] [CrossRef]
- Gallivan, G.J.; McDonell, W.N.; Forrest, J.B. Comparative pulmonary mechanics in the horse and the cow. Res. Vet. Sci. 1989, 46, 322–330. [Google Scholar] [CrossRef]
- Meo-Filho, P.; Hood, J.; Lee, M.R.F.; Fleming, H.; Meethal, M.E.; Misselbrook, T. Performance and enteric methane emissions from housed beef cattle fed silage produced on pastures with different forage profiles. Animal 2023, 17, 100726. [Google Scholar] [CrossRef]
- Hardan, A.; Garnsworthy, P.C.; Bell, M.J. Detection of methane eructation peaks in dairy cows at a robotic milking station using signal processing. Animals 2021, 12, 26. [Google Scholar] [CrossRef]
- Harding, R.; Wood, G.A. The role of carotid bodies in the establishment of oral breathing during nasal obstruction in lambs and ewes. Respir. Physiol. 1990, 80, 71–82. [Google Scholar] [CrossRef]
- Mazan, M. Equine exercise physiology—Challenges to the respiratory system. Anim. Front. 2022, 12, 15–24. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jaimes, L.J.; Castrillón, S.; Bustamante, B.S.; Correa, H.J. Through the Mouth or Nostrils: The Methane Excretion Route in Belching Dairy Cows. Animals 2025, 15, 2350. https://doi.org/10.3390/ani15162350
Jaimes LJ, Castrillón S, Bustamante BS, Correa HJ. Through the Mouth or Nostrils: The Methane Excretion Route in Belching Dairy Cows. Animals. 2025; 15(16):2350. https://doi.org/10.3390/ani15162350
Chicago/Turabian StyleJaimes, Ligia Johana, Sebastián Castrillón, Brandon Stiven Bustamante, and Héctor Jairo Correa. 2025. "Through the Mouth or Nostrils: The Methane Excretion Route in Belching Dairy Cows" Animals 15, no. 16: 2350. https://doi.org/10.3390/ani15162350
APA StyleJaimes, L. J., Castrillón, S., Bustamante, B. S., & Correa, H. J. (2025). Through the Mouth or Nostrils: The Methane Excretion Route in Belching Dairy Cows. Animals, 15(16), 2350. https://doi.org/10.3390/ani15162350