Gut Microbial Signatures of Broiler Lines Divergently Selected for Inosine Monophosphate and Intramuscular Fat Content
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design and Animal Management
2.2. Sample Collection and Phenotyping
2.3. DNA Extraction and Sequencing
2.3.1. 16S rRNA Gene Sequencing
2.3.2. Metagenomic Sequencing
2.4. Bioinformatics Analysis
2.4.1. 16S rRNA Gene Sequencing Data Processing
2.4.2. Metagenomic Analysis
2.4.3. Chicken MAG Database
2.5. Statistical Analysis
3. Results
3.1. Phenotypic Measurements
3.2. 16S rRNA Gene Sequencing
3.2.1. Sequencing Data Quality
3.2.2. Taxonomic Composition
3.2.3. Diversity Analysis
3.2.4. Differential Microbial Signatures
3.3. Metagenomic Sequencing
3.3.1. Data Quality Control
3.3.2. Diversity and LEfSe Analysis
3.4. MAG Reconstruction and Functional Annotation
3.4.1. MAG Characteristics
3.4.2. Taxonomic Profiling
3.4.3. Functional Enrichment
3.5. Chicken Gastrointestinal MAG Database
4. Discussion
4.1. Overview of Core Findings
4.2. Microbial Community Structure–Phenotype Association Revealed by 16S rRNA and Metagenomic Sequencing
4.3. Regulatory Roles of Signature Microorganisms Identified by LEfSe Analysis
4.4. Host–Microbiota Interaction Mechanisms Uncovered by MAG Functional Analysis
4.5. Construction and Significance of the Chicken MAG Database
4.6. Limitations and Future Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Font-i-Furnols, M. Meat Consumption, Sustainability and Alternatives: An Overview of Motives and Barriers. Foods 2023, 12, 2144. [Google Scholar] [CrossRef]
- You, Z.R.; Bai, Y.L.; Bo, D.D.; Feng, Y.Q.; Shen, J.M.; Wang, Y.Y.; Li, J.; Bai, Y.Y. A review of taste-active compounds in meat: Identification, influencing factors, and taste transduction mechanism. J. Food Sci. 2024, 89, 8128–8155. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.; Lee, S.; Jo, C. Application of Animal Resources into the Maillard Reaction Model System to Improve Meat Flavor. Food Sci. Anim. Resour. 2025, 45, 303–327. [Google Scholar] [CrossRef] [PubMed]
- Park, M.K.; Choi, Y.S. Effective Strategies for Understanding Meat Flavor: A Review. Food Sci. Anim. Resour. 2025, 45, 165–184. [Google Scholar] [CrossRef]
- Nakatani, Y.; Fujita, T.; Sawa, S.; Otani, T.; Hori, Y.; Takagahara, I. Changes in ATP-Related Compounds of Beef and Rabbit Muscles and a New Index of Freshness of Muscle. Agric. Biol. Chem. 1986, 50, 1751–1856. [Google Scholar] [CrossRef]
- Huang, Z.W.; Zhang, J.; Gu, Y.L.; Cai, Z.Y.; Feng, X.F.; Yang, C.Y.; Xin, G.S. Research progress on inosine monophosphate deposition mechanism in chicken muscle. Crit. Rev. Food Sci. Nutr. 2022, 62, 1062–1078. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.Z.; Xing, Y.X.; Guan, H.B.; Ma, C.L.; Jia, Q.H.; Tian, W.H.; Li, G.X.; Tian, Y.D.; Kang, X.T.; Liu, X.J.; et al. Genomic Insights into Molecular Regulation Mechanisms of Intramuscular Fat Deposition in Chicken. Genes 2023, 14, 2197. [Google Scholar] [CrossRef]
- Zampiga, M.; Soglia, F.; Baldi, G.; Petracci, M.; Strasburg, G.M.; Sirri, F. Muscle Abnormalities and Meat Quality Consequences in Modern Turkey Hybrids. Front. Physiol. 2020, 11, 554. [Google Scholar] [CrossRef]
- Zhao, W.; Cai, Z.Y.; Zhang, J.; Zhang, X.Y.; Yu, B.J.; Fu, X.; Zhang, T.; Hu, J.H.; Shao, Y.D.; Gu, Y.L. PKM2 promotes myoblast growth and inosine monophosphate-specific deposition in Jingyuan chicken. Res. Vet. Sci. 2024, 173, 105275. [Google Scholar] [CrossRef]
- Zhao, W.; Cai, Z.Y.; Wei, C.H.; Ma, X.P.; Yu, B.J.; Fu, X.; Zhang, T.; Gu, Y.L.; Zhang, J. Functional identification of PGM1 in the regulating development and depositing of inosine monophosphate specific for myoblasts. Front. Vet. Sci. 2023, 10, 1276582. [Google Scholar] [CrossRef]
- Yu, B.J.; Cai, Z.Y.; Liu, J.M.; Zhao, W.; Fu, X.; Gu, Y.L.; Zhang, J. Transcriptome and co-expression network analysis reveals the molecular mechanism of inosine monophosphate-specific deposition in chicken muscle. Front. Physiol. 2023, 14, 1199311. [Google Scholar] [CrossRef]
- Zhao, W.; Cai, Z.Y.; Jiang, Q.F.; Zhang, J.; Yu, B.J.; Feng, X.F.; Fu, X.; Zhang, T.; Hu, J.H.; Gu, Y.L. Transcriptome analysis reveals the role of long noncoding RNAs in specific deposition of inosine monphosphate in Jingyuan chickens. J. Anim. Sci. 2024, 102, skae136. [Google Scholar] [CrossRef]
- Zhang, M.; Li, D.H.; Zhai, Y.H.; Wang, Z.Z.; Ma, X.F.; Zhang, D.Y.; Li, G.X.; Han, R.L.; Jiang, R.R.; Li, Z.J.; et al. The landscape of DNA methylation associated with the transcriptomic network of intramuscular adipocytes generates insight into intramuscular fat deposition in chicken. Front. Cell Dev. Biol. 2020, 8, 206. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.X.; Wang, Y.L.; Zhu, Y.T.; Liu, X.J.; Liu, L.; Wang, J.; Tan, X.D.; Wang, Y.D.; Xing, S.Y.; Luo, N.; et al. Genomic insights into the contribution of de novo lipogenesis to intramuscular fat deposition in chicken. J. Adv. Res. 2024, 65, 19–31. [Google Scholar] [CrossRef] [PubMed]
- Li, H.T.; Zhang, H.Y.; Dai, Y.Q.; Li, S.H.; Gu, J.X.; Wu, R.; Jia, J.Y.; Shen, J.Q.; Zhang, Y.H.; Li, H.; et al. CircITGB5 regulates the proliferation and adipogenic differentiation of chicken intramuscular preadipocytes through the miR-181b-5p/CPT1A axis. Int. J. Biol. Macromol. 2024, 283, 137608. [Google Scholar] [CrossRef]
- Yue, K.; Cao, Q.Q.; Shaukat, A.; Zhang, C.; Huang, S.C. Insights into the evaluation, influential factors and improvement strategies for poultry meat quality: A review. npj Sci. Food 2024, 8, 62. [Google Scholar] [CrossRef] [PubMed]
- Lan, Y.H.; He, Q.; Gibril, B.A.A.; Xu, J.G.; Shang, H.L.; Xiong, X.W. Influencing factors and quality traits of pigeon meat: A systematic review. Poult. Sci. 2025, 104, 105000. [Google Scholar] [CrossRef]
- Dai, Z.C.; Feng, M.W.; Feng, C.A.; Zhu, H.X.; Chen, Z.; Guo, B.B.; Yan, L.L. Effects of sex on meat quality traits, amino acid and fatty acid compositions, and plasma metabolome profiles in White King squabs. Poult. Sci. 2024, 103, 103524. [Google Scholar] [CrossRef]
- Ding, J.M.; Zhao, L.L.; Wang, L.F.; Zhao, W.J.; Zhai, Z.X.; Leng, L.; Wang, Y.X.; He, C.; Zhang, Y.; Zhang, H.P.; et al. Divergent selection-induced obesity alters the composition and functional pathways of chicken gut microbiota. Genet. Sel. Evol. 2016, 48, 93. [Google Scholar] [CrossRef]
- Jing, Y.; Yuan, Y.Q.; Monson, M.; Wang, P.; Mu, F.; Zhang, Q.; Na, W.; Zhang, K.; Wang, Y.X.; Leng, L.; et al. Multi-omics association reveals the effects of intestinal microbiome–host interactions on fat deposition in broilers. Front. Microbiol. 2022, 12, 815538. [Google Scholar] [CrossRef]
- Beldowska, A.; Barszcz, M.; Dunislawska, A. State of the art in research on the gut-liver and gut-brain axis in poultry. J. Anim. Sci. Biotechnol. 2023, 14, 37. [Google Scholar] [CrossRef] [PubMed]
- Deng, F.L.; Wang, C.D.; Li, D.S.; Peng, Y.J.; Deng, L.H.; Zhao, Y.X.; Zhang, Z.H.; Wei, M.; Wu, K.; Zhao, J.C.; et al. The unique gut microbiome of giant pandas involved in protein metabolism contributes to the host’s dietary adaption to bamboo. Microbiome 2023, 11, 180. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.Q.; Tu, Y.; Sun, J.B.; Cai, P.R.; Zhou, Y.B.; Huang, Y.Q.; Zhang, S.; Chen, W.T.; Wang, L.Y.; Du, M.; et al. Fermented mixed feed regulates intestinal microbial community and metabolism and alters pork flavor and umami. Meat Sci. 2023, 201, 109177. [Google Scholar] [CrossRef]
- Yin, J.; Li, Y.X.; Tian, Y.; Zhou, F.; Ma, J.; Xia, S.T.; Yang, T.; Ma, L.B.; Zeng, Q.H.; Liu, G.; et al. Obese Ningxiang pig-derived microbiota rewires carnitine metabolism to promote muscle fatty acid deposition in lean DLY pigs. Innov. 2023, 4, 100486. [Google Scholar] [CrossRef] [PubMed]
- Wen, C.L.; Gou, Q.L.; Gu, S.; Huang, Q.; Sun, C.J.; Zheng, J.X.; Yang, N. The cecal ecosystem is a great contributor to intramuscular fat deposition in broilers. Poult. Sci. 2023, 102, 102568. [Google Scholar] [CrossRef]
- Long, X.X.; Zhang, F.P.; Wang, L.Q.; Wang, Z. The chicken cecal microbiome alters bile acids and riboflavin metabolism that correlate with intramuscular fat content. Front. Microbiol. 2024, 15, 1494139. [Google Scholar] [CrossRef]
- Deng, F.L.; Han, Y.H.; Li, M.H.; Peng, Y.J.; Chai, J.M.; Yang, G.; Li, Y.; Zhao, J.C. HiFi based metagenomic assembly strategy provides accuracy near isolated genome resolution in MAG assembly. iMetaOmics 2025, 7–8, e70041. [Google Scholar] [CrossRef]
- Han, Y.H.; He, J.L.; Li, M.H.; Peng, Y.J.; Jiang, H.; Zhao, J.C.; Li, Y.; Deng, F.L. Unlocking the Potential of Metagenomics with the PacBio High-Fidelity Sequencing Technology. Microorganisms 2024, 12, 2482. [Google Scholar] [CrossRef]
- Sohail, M.U.; Hume, M.E.; Byrd, J.A.; Nisbet, D.J.; Shabbir, M.Z.; Ijaz, A.; Rehman, H. Molecular analysis of the caecal and tracheal microbiome of heat-stressed broilers supplemented with prebiotic and probiotic. Avian Pathol. 2015, 44, 67–74. [Google Scholar] [CrossRef]
- Kers, J.G.; Velkers, F.C.; Fischer, E.A.J.; Hermes, G.D.A.; Stegeman, J.A.; Smidt, H. Host and environmental factors affecting the intestinal microbiota in chickens. Front. Microbiol. 2018, 9, 235. [Google Scholar] [CrossRef]
- Sergeant, M.J.; Constantinidou, C.; Cogan, T.A.; Bedford, M.R.; Penn, C.W.; Pallen, M.J. Extensive microbial and functional diversity within the chicken cecal microbiome. PLoS ONE 2014, 9, e91941. [Google Scholar] [CrossRef]
- Krautkramer, K.A.; Fan, J.; Bäckhed, F. Gut microbial metabolites as multi-kingdom intermediates. Nat. Rev. Microbiol. 2021, 19, 77–94. [Google Scholar] [CrossRef]
- GB/T 35892-2018; Laboratory Animal—Guideline for Ethical Review of Animal Welfare. Standardization Administration of China: Beijing, China, 2018.
- GB/T 35823-2018; Laboratory Animals—General Requirements for Animal Experiment. Standardization Administration of China: Beijing, China, 2018.
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef]
- Wood, D.E.; Lu, J.; Langmead, B. Improved metagenomic analysis with Kraken 2. Genome Biol. 2019, 20, 257. [Google Scholar] [CrossRef]
- Li, D.H.; Liu, C.M.; Luo, R.B.; Sadakane, K.; Lam, T.W. MEGAHIT: An ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 2015, 31, 1674–1676. [Google Scholar] [CrossRef]
- Olm, M.R.; Brown, C.T.; Brooks, B.; Banfield, J.F. dRep: A tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J. 2017, 11, 2864–2868. [Google Scholar] [CrossRef] [PubMed]
- Chaumeil, P.A.; Mussig, A.J.; Hugenholtz, P.; Parks, D.H. GTDB-Tk: A toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 2020, 36, 1925–1927. [Google Scholar] [CrossRef]
- Tas, N.; de Jong, A.E.E.; Li, Y.M.; Trubl, G.; Xue, Y.X.; Dove, N.C. Metagenomic tools in microbial ecology research. Curr. Opin. Biotechnol. 2021, 67, 184–191. [Google Scholar] [CrossRef]
- Nogueira, T.; Botelho, A. Metagenomics and Other Omics Approaches to Bacterial Communities and Antimicrobial Resistance Assessment in Aquacultures. Antibiotics 2021, 10, 787. [Google Scholar] [CrossRef] [PubMed]
- Laursen, M.F.; Dalgaard, M.D.; Bahl, M.I. Genomic GC-Content Affects the Accuracy of 16S rRNA Gene Sequencing Based Microbial Profiling due to PCR Bias. Front. Microbiol. 2017, 8, 1934. [Google Scholar] [CrossRef] [PubMed]
- Aruwa, C.E.; Pillay, C.; Nyaga, M.M.; Sabiu, S. Poultry gut health–microbiome functions, environmental impacts, microbiome engineering and advancements in characterization technologies. J. Anim. Sci. Biotechnol. 2021, 12, 119. [Google Scholar] [CrossRef]
- Wang, J.; Tong, T.J.; Yu, C.Q.; Wu, Q. The research progress on the impact of pig gut microbiota on health and production performance. Front. Vet. Sci. 2025, 12, 1564519. [Google Scholar] [CrossRef]
- Tan, H.Z.; Zhai, Q.X.; Chen, W. Investigations of Bacteroides spp. towards next-generation probiotics. Food Res. Int. 2019, 116, 637–644. [Google Scholar] [CrossRef]
- Xu, M.C.; Lan, R.T.; Qiao, L.; Lin, X.Y.; Hu, D.L.; Zhang, S.P.; Yang, J.; Zhou, J.; Ren, Z.H.; Li, X.P.; et al. Bacteroides vulgatus ameliorates lipid metabolic disorders and modulates gut microbial composition in hyperlipidemic rats. Microbiol. Spectrum. 2023, 11, e0251722. [Google Scholar] [CrossRef]
- Deng, Z.C.; Cao, K.X.; Huang, Y.X.; Peng, Z.; Zhao, L.; Yi, D.; Liu, M.; Sun, L.H. Comprehensive cultivation of the broiler gut microbiota guides bacterial isolation from chickens. Sci. China Life Sci. 2025, 68, 836–845. [Google Scholar] [CrossRef]
- Salanitro, J.P.; Muirhead, P.A.; Goodman, J.R. Morphological and physiological characteristics of Gemmiger formicilis isolated from chicken ceca. Appl. Environ. Microbiol. 1976, 32, 623–632. [Google Scholar] [CrossRef]
- Liu, X.M.; Mao, B.Y.; Gu, J.Y.; Wu, J.Y.; Cui, S.M.; Wang, G.; Zhao, J.X.; Zhang, H.; Chen, W. Blautia—A new functional genus with potential probiotic properties? Gut Microbes 2021, 13, 1875796. [Google Scholar] [CrossRef] [PubMed]
- Pecyna, P.; Bykowska-Derda, A.; Gabryel, M.; Mankowska-Wierzbicka, D.; Nowak-Malczewska, D.; Jaskiewicz-Rajewicz, K.; Jaworska, M.M.; Grzymislawski, M.; Dobrowolska, A.; Czlapka-Matyasik, M.; et al. Blautia spp. in gut microbiome, its relation to dietary choices and nutritional status of patients with irritable bowel syndrome. Nutrition 2025, 2025, 112836. [Google Scholar] [CrossRef] [PubMed]
- Gilroy, R.; Ravi, A.; Getino, M.; Pursley, I.; Horton, D.L.; Alikhan, N.F.; Baker, D.; Gharbi, K.; Hall, N.; Watson, M.; et al. Extensive microbial diversity within the chicken gut microbiome revealed by metagenomics and culture. PeerJ 2021, 9, e10941. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.P.; Wei, D.W.; Raza, S.H.A.; Zhao, Y.; Jiang, C.; Song, X.Y.; Wu, H.; Wang, X.P.; Luoreng, Z.M.; Ma, Y. Research progress of intramuscular fat formation based on co-culture. Anim. Biotechnol. 2023, 34, 3216–3236. [Google Scholar] [CrossRef]
- Zhang, X.L.; Hu, Y.F.; Ansari, A.R.; Akhtar, M.; Chen, Y.; Cheng, R.R.; Cui, L.; Nafady, A.A.; Elokil, A.A.; Abdel-Kafy, E.M.; et al. Caecal microbiota could effectively increase chicken growth performance by regulating fat metabolism. Microb. Biotechnol. 2022, 15, 844–861. [Google Scholar] [CrossRef] [PubMed]
- Bindari, Y.R.; Gerber, P.F. Centennial Review: Factors affecting the chicken gastrointestinal microbial composition and their association with gut health and productive performance. Poult. Sci. 2022, 101, 101612. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.Y.; Zhang, S.; Huang, Y.Q.; You, W.J.; Zhou, Y.B.; Chen, W.T.; Sun, Y.; Yi, W.Z.; Sun, H.W.; Xie, J.T.; et al. CLA improves the lipo-nutritional quality of pork and regulates the gut microbiota in Heigai pigs. Food Funct. 2022, 13, 12093–12104. [Google Scholar] [CrossRef] [PubMed]
- Xiong, L.; Yao, X.X.; Pei, J.; Wang, X.D.; Guo, S.K.; Cao, M.L.; Bao, P.J.; Wang, H.; Yah, P.; Guo, X. Do microbial-gut-muscle mediated by SCFAs, microbial-gut-brain axis mediated by insulin simultaneously regulate yak IMF deposition? Int. J. Biol. Macromol. 2024, 257, 128632. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, T.; Lu, B.Q.; Li, X.F.; Jiang, L. Application of cofactors in the regulation of microbial metabolism: A state of the art review. Front. Microbiol. 2023, 14, 1145784. [Google Scholar] [CrossRef]
- Yang, J.T.; Qin, K.L.; Wang, Q.G.; Yang, X.J. Deciphering the nutritional strategies for polysaccharides effects on intestinal barrier in broilers: Selectively promote microbial ecosystems. Int. J. Biol. Macromol. 2024, 264, 130677. [Google Scholar] [CrossRef]
- Shen, H.Y.; Wang, T.H.; Dong, W.W.; Sun, G.P.; Liu, J.; Peng, N.; Zhao, S.M. Metagenome-assembled genome reveals species and functional composition of Jianghan chicken gut microbiota and isolation of Pediococcus acidilactic with probiotic properties. Microbiome 2024, 12, 25. [Google Scholar] [CrossRef]
- Segura-Wang, M.; Grabner, N.; Koestelbauer, A.; Klose, V.; Ghanbari, M. Genome-resolved metagenomics of the chicken gut microbiome. Front. Microbiol. 2021, 12, 726923. [Google Scholar] [CrossRef]
- Qu, A.; Brulc, J.M.; Wilson, M.K.; Law, B.F.; Theoret, J.R.; Joens, L.A.; Konkel, M.E.; Angly, F.; Dinsdale, E.A.; Edwards, R.A.; et al. Comparative metagenomics reveals host specific metavirulomes and horizontal gene transfer elements in the chicken cecum microbiome. PLoS ONE 2008, 3, e2945. [Google Scholar] [CrossRef]
- Dittoe, D.K.; Olson, E.G.; Ricke, S.C. Impact of the gastrointestinal microbiome and fermentation metabolites on broiler performance. Poult. Sci. 2022, 101, 101786. [Google Scholar] [CrossRef]
- Zhang, Q.F.; Yu, K.; Li, S.H.; Zhang, X.L.; Zhao, Q.; Zhao, X.; Liu, Z.K.; Cheng, H.; Liu, Z.X.; Li, X.X. gutMEGA: A database of the human gut MEtaGenome Atlas. Brief. Bioinform. 2021, 22, bbaa082. [Google Scholar] [CrossRef] [PubMed]
- Hu, R.R.; Yao, R.; Li, L.; Xu, Y.R.; Lei, B.B.; Tang, G.H.; Liang, H.W.; Lei, Y.J.; Li, C.Y.; Li, X.Y.; et al. A database of animal metagenomes. Sci. Data 2022, 9, 312. [Google Scholar] [CrossRef] [PubMed]
- Deng, F.L.; Han, Y.H.; Huang, Y.S.; Li, D.S.; Chai, J.M.; Deng, L.H.; Wei, M.; Wu, K.; Zhao, H.B.; Yang, G.; et al. A comprehensive analysis of antibiotic resistance genes in the giant panda gut. iMeta 2024, 3, e171. [Google Scholar] [CrossRef]
- Feng, Y.Q.; Wang, Y.A.; Zhu, B.L.; Gao, G.F.; Guo, Y.M.; Hu, Y.F. Metagenome-assembled genomes and gene catalog from the chicken gut microbiome aid in deciphering antibiotic resistomes. Commun. Biol. 2021, 4, 1305. [Google Scholar] [CrossRef] [PubMed]
Penotypic Traits | High Group | Control Group | p Value |
---|---|---|---|
Body slanting length (cm) | 19.72 ± 0.17 | 18.20 ± 0.17 | <0.0001 |
Back width (cm) | 7.62 ± 0.08 | 7.34 ± 0.08 | 0.018 |
Slaughter live weight (g) | 1251.86 ± 26.83 | 1080.69 ± 26.83 | 0.0003 |
Lymphocyte ratio (%) | 77.78 ± 2.41 | 70.57 ± 2.41 | 0.046 |
Granulocyte ratio (%) | 13.31 ± 2.09 | 20.09 ± 2.09 | 0.032 |
Hemoglobin concentration (g/L) | 106.83 ± 5.97 | 89.08 ± 5.97 | 0.048 |
Hemoglobin content (pg) | 46.66 ± 1.70 | 41.63 ± 1.70 | 0.048 |
Platelet count (109/L) | 53.75 ± 3.53 | 66.58 ± 3.53 | 0.017 |
Mean platelet volume (fL) | 11.95 ± 0.19 | 11.20 ± 0.19 | 0.009 |
Platelet distribution width (%) | 19.64 ± 0.72 | 17.15 ± 0.72 | 0.023 |
HDL-C (mmol/L) | 1.24 ± 0.06 | 1.47 ± 0.06 | 0.018 |
TG (mmol/L) | 0.95 ± 0.10 | 0.54 ± 0.10 | 0.016 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Y.; Cui, P.; Han, S.; Xiong, X.; Huang, Q.; Song, X.; He, G.; Ren, P. Gut Microbial Signatures of Broiler Lines Divergently Selected for Inosine Monophosphate and Intramuscular Fat Content. Animals 2025, 15, 2337. https://doi.org/10.3390/ani15162337
Hu Y, Cui P, Han S, Xiong X, Huang Q, Song X, He G, Ren P. Gut Microbial Signatures of Broiler Lines Divergently Selected for Inosine Monophosphate and Intramuscular Fat Content. Animals. 2025; 15(16):2337. https://doi.org/10.3390/ani15162337
Chicago/Turabian StyleHu, Yaodong, Pengxin Cui, Shunshun Han, Xia Xiong, Qinke Huang, Xiaoyan Song, Guo He, and Peng Ren. 2025. "Gut Microbial Signatures of Broiler Lines Divergently Selected for Inosine Monophosphate and Intramuscular Fat Content" Animals 15, no. 16: 2337. https://doi.org/10.3390/ani15162337
APA StyleHu, Y., Cui, P., Han, S., Xiong, X., Huang, Q., Song, X., He, G., & Ren, P. (2025). Gut Microbial Signatures of Broiler Lines Divergently Selected for Inosine Monophosphate and Intramuscular Fat Content. Animals, 15(16), 2337. https://doi.org/10.3390/ani15162337