Utility of Infrared Thermography for Monitoring of Surface Temperature Changes During Horses’ Work on Water Treadmill with an Artificial River System
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Water Treadmill Exercise
2.3. Infrared Thermographic Imaging
2.3.1. Thermographic Image Collection
2.3.2. Thermographic Image Analysis
2.4. Statistical Analysis
3. Results
3.1. Exercise Effect on Surface Temperature
3.2. Training Type Effect on Surface Temperature
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nankervis, K.; Tranquille, C.; McCrae, P.; York, J.; Lashley, M.; Baumann, M.; King, M.; Sykes, E.; Lambourn, J.; Miskimmin, K.A.; et al. Consensus for the general use of equine water treadmills for healthy horses. Animals 2021, 11, 305. [Google Scholar] [CrossRef]
- Tranquille, C.A.; Tacey, J.B.; Walker, V.A.; Nankervis, K.J.; Murray, R.C. International survey of equine water treadmills–Why, when and how? J. Equine Vet. Sci. 2018, 69, 34–42. [Google Scholar] [CrossRef]
- Potenza, K.N.; Huggons, N.A.; Jones, A.R.; Rosanowski, S.M.; McIlwraith, C.W. Comparing racing performance following arthroscopic surgery of metacarpophalangeal/metatarsophalangeal and carpal joints in Thoroughbred racehorses rehabilitated using conventional and underwater treadmill therapies. Vet. Rec. 2020, 187, 355. [Google Scholar] [CrossRef] [PubMed]
- King, M.R.; Haussler, K.K.; Kawcak, C.E.; McIlwraith, C.W.; Reiser, R.F., II. Effect of underwater treadmill exercise on postural sway in horses with experimentally induced carpal joint osteoarthritis. Am. J. Vet. Res. 2013, 74, 971–982. [Google Scholar] [CrossRef] [PubMed]
- King, M.R.; Haussler, K.K.; Kawcak, C.E.; McIlwraith, C.W.; Reiser, R.F.; Frisbie, D.D.; Werpy, N.M. Biomechanical and histologic evaluation of the effects of underwater treadmill exercise on horses with experimentally induced osteoarthritis of the middle carpal joint. Am. J. Vet. Res. 2017, 78, 558–569. [Google Scholar] [CrossRef]
- Greco–Otto, P.; Bond, S.; Sides, R.; Bayly, W.; Leguillette, R. Conditioning equine athletes on water treadmills significantly improves peak oxygen consumption. Vet. Rec. 2020, 186, 250. [Google Scholar] [CrossRef]
- Fair, N.; Blake, S.; Blake, R. Four Weeks of Incline Water Treadmill Exercise Can Contribute to Increase Epaxial Muscle Profile in Horses. Vet. Med. Int. 2023, 2023, 9090406. [Google Scholar] [CrossRef]
- de Meeûs d’Argenteuil, C.; Boshuizen, B.; Oosterlinck, M.; van de Winkel, D.; De Spiegelaere, W.; de Bruijn, C.M.; Goethals, K.; Vanderperren, K.; Delesalle, C.J.G. Flexibility of equine bioenergetics and muscle plasticity in response to different types of training: An integrative approach, questioning existing paradigms. PLoS ONE 2021, 16, e0249922. [Google Scholar] [CrossRef]
- Murray, R.C.; Hopkins, E.; Tracey, J.B.; Nankervis, K.; Deckers, I.; MacKechnie–Guire, R.; Tranquille, C.A. Change in muscle development of horses undergoing 20 weeks of water treadmill exercise compared with control horses. Equine Vet. J. 2020, 52, 554. [Google Scholar]
- Nankervis, K.; Tranquille, C.; Tacey, J.; Deckers, I.; MacKechnie–Guire, R.; Walker, V.; Hopkins, E.; Newton, R.; Murray, R. Kinematic Responses to Water Treadmill Exercise When Used Regularly within a Sport Horse Training Programme: A Longitudinal, Observational Study. Animals 2024, 14, 2393. [Google Scholar] [CrossRef]
- Voss, B.; Mohr, E.; Krzywanek, H. Effects of aqua–treadmill exercise on selected blood parameters and on heart–rate variability of horses. J. Vet. Med. Ser. A 2002, 49, 137–143. [Google Scholar] [CrossRef]
- Nankervis, K.J.; Williams, R.J. Heart rate responses during acclimation of horses to water treadmill exercise. Equine Vet. J. 2006, 38 (Suppl. S36), 110–112. [Google Scholar] [CrossRef]
- Greco–Otto, P.; Bond, S.; Sides, R.; Kwong, G.P.; Bayly, W.; Léguillette, R. Workload of horses on a water treadmill: Effect of speed and water height on oxygen consumption and cardiorespiratory parameters. BMC Vet. Res. 2017, 13, 360. [Google Scholar] [CrossRef] [PubMed]
- Sikorska, U.; Maśko, M.; Rey, B.; Domino, M. Heart Rate, Hematological, and Biochemical Responses to Exercise on Water Treadmill with Artificial River in School Horses. Appl. Sci. 2025, 15, 1772. [Google Scholar] [CrossRef]
- Krysiak, K.; Kobryń, H.; Kobryńczuk, F. Anatomia Zwierząt, t. 1; PWN: Warszawa, Poland, 2008. [Google Scholar]
- Nankervis, K.J.; Tranquille, C.A.; Chojnacka, K.; Tacey, J.B.; Deckers, I.; Newton, J.R.; Murray, R.C. Effect of speed and water depth on limb and back kinematics in Thoroughbred horses walking on a water treadmill. Vet. J. 2023, 300, 106033. [Google Scholar] [CrossRef] [PubMed]
- Nankervis, K.J.; Lefrancois, K. A comparison of protraction-retraction of the distal limb during treadmill and water treadmill walking in horses. J. Equine Vet. Sci. 2018, 70, 57–62. [Google Scholar] [CrossRef]
- Nankervis, K.J.; Finney, P.; Launder, L. Water depth modifies back kinematics of horses during water treadmill exercise. Equine Vet. J. 2016, 48, 732–736. [Google Scholar] [CrossRef]
- Mendez–Angulo, J.L.; Firshman, A.M.; Groschen, D.M.; Kieffer, P.J.; Trumble, T.N. Effect of water depth on amount of flexion and extension of joints of the distal aspects of the limbs in healthy horses walking on an underwater treadmill. Am. J. Vet. Res. 2013, 74, 557–566. [Google Scholar] [CrossRef]
- McCrae, P.; Bradley, M.; Rolian, C.; Léguillette, R. Water height modifies forelimb kinematics of horses during water treadmill exercise. Comp. Exerc. Physiol. 2021, 17, 91–98. [Google Scholar] [CrossRef]
- Tranquille, C.; Tacey, J.; Walker, V.; Mackechnie–Guire, R.; Ellis, J.; Nankervis, K.; Newton, R.; Murray, R. Effect of water depth on limb and back kinematics in horses walking on a water treadmill. J. Equine Vet. Sci. 2022, 115, 104025. [Google Scholar] [CrossRef]
- Faber, M.; Schamhardt, H.; van Weeren, R.; Barneveld, A. Methodology and validity of assessing kinematics of the thoracolumbar vertebral column in horses on the basis of skin–fixated markers. Am. J. Vet. Res. 2001, 62, 301–306. [Google Scholar] [CrossRef]
- Mooij, M.J.W.; Jans, W.; Den Heijer, G.J.L.; De Pater, M.; Back, W. Biomechanical responses of the back of riding horses to water treadmill exercise. Vet. J. 2013, 198, 120–123. [Google Scholar] [CrossRef]
- Scott, R.; Nankervis, K.; Stringer, C.; Westcott, K.; Marlin, D. The effect of water height on stride frequency, stride length and heart rate during water treadmill exercise. Equine Vet. J. 2010, 42, 662–664. [Google Scholar] [CrossRef] [PubMed]
- Saitua, A.; Becero, M.; Argüelles, D.; Castejón–Riber, C.; de Medina, A.S.; Satué, K.; Muñoz, A. Combined effects of water depth and velocity on the accelerometric parameters measured in horses exercised on a water treadmill. Animals 2020, 10, 236. [Google Scholar] [CrossRef] [PubMed]
- Fraschetto, C.; Hatrisse, C.; Moiroud, C.; Beaumont, A.; Audigié, F.; Chateau, H.; Denoix, J.-M.; Jacquet, S. Water depth and speed may have an opposite effect on the trunk vertical displacement in horses trotting on a water treadmill. Am. J. Vet. Res. 2024, 85, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Nankervis, K.J.; Thomas, S.; Marlin, D.J. Effect of water temperature on heart rate of horses during water treadmill exercise. Comp. Exerc. Physiol. 2008, 5, 127–131. [Google Scholar] [CrossRef]
- Borgia, L.A.; Valberg, S.J.; Essen–Gustavsson, B. Differences in the metabolic properties of gluteus medius and superficial digital flexor muscles and the effect of water treadmill training in the horse. Equine Vet. J. 2010, 42, 665–670. [Google Scholar] [CrossRef]
- Lindner, A.; Wäschle, S.; Sasse, H.H.L. Physiological and blood biochemical variables in horses exercising on a treadmill submerged in water. J. Anim. Physiol. Anim. Nutr. 2012, 96, 563–569. [Google Scholar] [CrossRef]
- Vincze, A.; Szabó, C.; Szabó, V.; Veres, S.; Ütő, D.; Hevesi, Á. The effect of deep water aqua treadmill training on the plasma biochemical parameters of show jumpers. Agric. Conspec. Sci. 2013, 78, 289–293. [Google Scholar]
- Tokuriki, M.; Ohtsuki, R.; Kal, M.; Hiraga, A.; Oki, H.; Miyahara, Y.; Aoki, O. EMG activity of the muscles of the neck and forelimbs during different forms of locomotion. Equine Vet. J. 1999, 31 (Suppl. S30), 231–234. [Google Scholar] [CrossRef]
- Yarnell, K.; Fleming, J.; Stratton, T.D.; Brassington, R. Monitoring changes in skin temperature associated with exercise in horses on a water treadmill by use of infrared thermography. J. Therm. Biol. 2014, 45, 110–116. [Google Scholar] [CrossRef] [PubMed]
- Eddy, A.L.; Van Hoogmoed, L.M.; Snyder, J.R. The role of thermography in the management of equine lameness. Vet. J. 2001, 162, 172–181. [Google Scholar] [CrossRef] [PubMed]
- Tunley, B.V.; Henson, F.M.D. Reliability and repeatability of thermographic examination and the normal thermographic image of the thoracolumbar region in the horse. Equine Vet. J. 2004, 36, 306–312. [Google Scholar] [CrossRef] [PubMed]
- Hodgson, D.R.; Davis, R.E.; McConaghy, F.F. Thermoregulation in the horse in response to exercise. Brit. Vet. J. 1994, 150, 219–235. [Google Scholar] [CrossRef]
- Soroko, M.; Śpitalniak–Bajerska, K.; Zaborski, D.; Poźniak, B.; Dudek, K.; Janczarek, I. Exercise–induced changes in skin temperature and blood parameters in horses. Arch. Anim. Breed. 2019, 62, 205–213. [Google Scholar] [CrossRef]
- Witkowska–Piłaszewicz, O.; Maśko, M.; Domino, M.; Winnicka, A. Infrared thermography correlates with lactate concentration in blood during race training in horses. Animals 2020, 10, 2072. [Google Scholar] [CrossRef]
- Verdegaal, E.L.J.; Howarth, G.S.; McWhorter, T.J.; Delesalle, C.J. Thermoregulation during field exercise in horses using skin temperature monitoring. Animals 2023, 14, 136. [Google Scholar] [CrossRef]
- Domino, M.; Borowska, M.; Kozłowska, N.; Trojakowska, A.; Zdrojkowski, Ł.; Jasiński, T.; Smyth, G.; Maśko, M. Selection of image texture analysis and color model in the advanced image processing of thermal images of horses following exercise. Animals 2022, 12, 444. [Google Scholar] [CrossRef]
- Domino, M.; Borowska, M.; Trojakowska, A.; Kozłowska, N.; Zdrojkowski, Ł.; Jasiński, T.; Smyth, G.; Maśko, M. The effect of rider: Horse bodyweight ratio on the superficial body temperature of horse’s thoracolumbar region evaluated by advanced thermal image processing. Animals 2022, 12, 195. [Google Scholar] [CrossRef]
- Valberg, S.J. Muscular causes of exercise intolerance in horses. Vet. Clin. N. Am. 1996, 12, 495–515. [Google Scholar] [CrossRef]
- Costa, L.R. History and Physical Examination of the Horse. In Manual of Clinical Procedures in the Horse; Wiley–Blackwell: Hoboken, NJ, USA, 2017; pp. 27–58. [Google Scholar]
- Keegan, K.G.; Dent, E.V.; Wilson, D.A.; Janicek, J.; Kramer, J.; Lacarrubba, A.; Walsh, D.M.; Cassells, M.W.; Esther, T.M.; Schiltz, P.; et al. Repeatability of subjective evaluation of lameness in horses. Equine Vet. J. 2010, 42, 92–97. [Google Scholar] [CrossRef]
- Maśko, M.; Domino, M.; Lewczuk, D.; Jasiński, T.; Gajewski, Z. Horse behavior, physiology and emotions during habituation to a treadmill. Animals 2020, 10, 921. [Google Scholar] [CrossRef]
- Soroko, M.; Howell, K. Infrared Thermography: Current Applications in Equine Medicine. J. Equine Vet. Sci. 2018, 60, 90–96. [Google Scholar] [CrossRef]
- Ashdown, R.R.; Done, S.H. Color Atlas of Veterinary Anatomy, 2nd ed.; Mosby–Wolfe: London, UK, 2000. [Google Scholar]
- Hartmann, E.; Bøe, K.E.; Jørgensen, G.H.M.; Mejdell, C.M.; Dahlborn, K. Management of horses with focus on blanketing and clipping practices reported by members of the Swedish and Norwegian equestrian community. J. Anim. Sci. 2017, 95, 1104–1117. [Google Scholar] [CrossRef]
- Steinhoff–Wagner, J. Coat clipping of horses: A survey. J. Appl. Anim. Welf. Sci. 2019, 22, 171–187. [Google Scholar] [CrossRef]
- Maśko, M.; Witkowska-Piłaszewicz, O.; Jasiński, T.; Domino, M. Thermal features, ambient temperature and hair coat lengths: Limitations of infrared imaging in pregnant primitive breed mares within a year. Reprod. Domest. Anim. 2021, 56, 1315–1328. [Google Scholar] [CrossRef] [PubMed]
- Gefen, A.; Cohen, L.P.; Amrani, G.; Hoffer, O.; Ovadia-Blechman, Z. The roles of infrared thermography in pressure ulcer research with focus on skin microclimate induced by medical devices and prophylactic dressings. Wounds Int. 2019, 10, 8–15. [Google Scholar]
- Soroko–Dubrovina, M.; Zielińska, P.; Dudek, K.D.; Śniegucka, K.; Nawrot, K. Thermal Effects of High–Intensity Laser Therapy on the Temporomandibular Joint Area in Clinically Healthy Racehorses—A Pilot Study. Animals 2025, 15, 1426. [Google Scholar] [CrossRef] [PubMed]
- Simon, E.L.; Gaughan, E.M.; Epp, T.; Spire, M. Influence of exercise on thermographically determined surface temperatures of thoracic and pelvic limbs in horses. J. Am. Vet. Med. Assoc. 2006, 229, 1940–1944. [Google Scholar] [CrossRef]
- Soroko, M.; Howell, K.; Dudek, K.; Wilk, I.; Zastrzeżyńska, M.; Janczarek, I. A pilot study into the utility of dynamic infrared thermography for measuring body surface temperature changes during treadmill exercise in horses. J. Equine Vet. Sci. 2018, 62, 44–46. [Google Scholar] [CrossRef]
- Bouzigon, R.; Grappe, F.; Ravier, G.; Dugue, B. Whole–and partial–body cryostimulation/cryotherapy: Current technologies and practical applications. J. Therm. Biol. 2016, 61, 67–81. [Google Scholar] [CrossRef] [PubMed]
- van Eps, A.W. Therapeutic hypothermia (cryotherapy) to prevent and treat acute laminitis. Vet. Clin. N. Am. Equine Pract. 2010, 26, 125–133. [Google Scholar] [CrossRef]
- Vincze, A.; Szabó, C.; Bakos, Z.; Szabó, V.; Veres, S.; Ütő, D.; Hevesi, Á. Effect of dietary energy source on the plasma parameters of equine athletes trained in a deep water aqua treadmill. Ital. J. Anim. Sci. 2016, 15, 137–143. [Google Scholar] [CrossRef]
- Vincze, A.; Szabó, C.; Veres, S.; Uto, D.; Hevesi, A.T. Fitness improvement of show jumping horses with deep water treadmill training. Vet. Med. 2017, 62, 192–199. [Google Scholar] [CrossRef]
- Silvers, B.L.; Leatherwood, J.L.; Arnold, C.E.; Nielsen, B.D.; Huseman, C.J.; Dominguez, B.J.; Glass, K.G.; Martinez, R.E.; Much, M.L.; Bradbery, A.N. Effects of aquatic conditioning on cartilage and bone metabolism in young horses. J. Anim. Sci. 2020, 98, skaa239. [Google Scholar] [CrossRef]
- Satchell, G.; McGrath, M.; Dixon, J.; Pfau, T.; Weller, R. Effects of time of day, ambient temperature and relative humidity on the repeatability of infrared thermographic imaging in horses. Equine Vet. J. 2015, 47, 13–14. [Google Scholar] [CrossRef]
WT Sessions | Duration | Belt Speed | Gait | Water Depth | AR Mode |
---|---|---|---|---|---|
DT | 20 min | 1.25 m/s | walk | dry belt | off |
fetlock-depth WT | 20 min | 1.25 m/s | walk | fetlock level | off |
fetlock-depth WT + AR | 20 min | 1.25 m/s | walk | fetlock level | on |
carpal-depth WT | 20 min | 1.25 m/s | walk | carpus level | off |
carpal-depth WT + AR | 20 min | 1.25 m/s | walk | carpus level | on |
ROIs | Superficial Muscles * | Topographical Location | Function |
---|---|---|---|
ROI 1 | m. trapezius pars cervicalis | from: half the length of the neck; to: one third the length of the scapula; at the level of spine of the scapula | forelimb protraction; scapula protraction |
ROI 2 | m. brachiocephalicus | from: wing of atlas; to: major tuberosity of humerus; dorsally to dorsal edge of the jugular groove | forelimb protraction; shoulder joint extension |
ROI 3 | m. extensor digitorum communis | from: lateral epicondyle of humerus; to: radiocarpal joint; cranially to the midline of the forelimb region | forelimb protraction; elbow joint flexion; carpal joint extension |
ROI 4 | m. trapezius pars thoracica | from: one third the length of the scapula; at the level of spine of the scapula; to: position of elastic belt | forelimb retraction; scapula retraction |
ROI 5 | m. infraspinatus; m. deltoideus | from: spine of the scapula; to: cranial border of m. triceps brachii; at the level of the lateral epicondyle of humerus | forelimb retraction; shoulder joint flexion |
ROI 6 | m. triceps brachii | from: the level of one third the length of the scapula; to: cranial border and caudal border of forelimb; at the level of lateral epicondyle of humerus | forelimb retraction; shoulder joint flexion; elbow joint extension |
ROI 7 | m. extensor carpi ulnaris | from: lateral epicondyle of humerus; to: radiocarpal joint; caudally to the midline of the forelimb region | forelimb retraction; carpal joint flexion |
ROI 8 | m. quadriceps femoris; m. tensor fasciae latae | from: tuber coxae and cranial border of hindlimb; to: the third trochanter of femur and the level of patella | hindlimb protraction; knee joint extension |
ROI 9 | m. extensor digitorum longus | from: cut edge of deep crural fascia; to: tibiotarsal joint; cranially to the midline of the leg region | hindlimb protraction; tarsal joint flexion |
ROI 10 | m. gluteus superficialis | from: level of the tuber coxae; to: level of the third trochanter of femur and line between tuber coxae and third trochanter | hindlimb retraction; hip joint extension |
ROI 11 | m. semitendinosus | from: intermuscular groove (poverty line); to: caudal border of hindlimb and the level of cut edge of deep crural fascia | hindlimb retraction; hip joint extension; tarsal joint extension |
ROI 12 | m. biceps femoris | from: caudal border of m. gluteus and m. quadriceps; to: intermuscular groove (poverty line) and the level of cut edge of deep crural fascia | hindlimb retraction; knee joint flexion |
ROI 13 | m. flexor digitorum lateralis | from: cut edge of deep crural fascia; to: tibiotarsal joint; caudally to the midline of the leg region | hindlimb retraction; tarsal joint extension |
ROI 14 | m. latissimus dorsi; m. longissimus | from: position of elastic belt at the level of two thirds the length of the scapula; to: level of the tuber coxae | dorsoventral displacement of the trunk |
Sessions | DT | Fetlock-Depth WT | Fetlock-Depth WT + AR | Carpal-Depth WT | Carpal-Depth WT + AR | |||||
---|---|---|---|---|---|---|---|---|---|---|
ROIs | Before | After | Before | After | Before | After | Before | After | Before | After |
ROI 1 | 22.9 a °C (19.5; 26.2) | 25.7 b °C (22.2; 29.3) | 23.8 a °C (20.3; 26.5) | 27.0 b °C (23.9; 30.5) | 22.9 a °C (19.3; 26.7) | 26.5 b °C (23.9; 30.0) | 23.6 a °C (20.8; 25.6) | 27.4 b °C (25.1; 29.8) | 24.2 a °C (20.9; 25.9) | 28.3 b °C (24.9; 29.9) |
ROI 2 | 23.5 a °C (20.1; 27.0) | 26.3 b °C (22.4; 30.2) | 24.1 a °C (21.0; 26.6) | 27.5 b °C (25.3; 29.6) | 23.0 a °C (20.0; 28.3) | 26.7 b °C (23.8; 31.3) | 24.1 a °C (21.7; 27.0) | 27.8 b °C (24.6; 31.9) | 24.4 a °C (21.4; 26.6) | wet |
ROI 3 | 23.0 a °C (19.7; 26.8) | 25.9 b °C (22.6; 29.8) | 23.5 a °C (20.9; 26.0) | wet | 22.4 a °C (19.3; 27.8) | wet | 23.3 a °C (20.9; 26.8) | wet | 23.8 a °C (20.7; 26.2) | wet |
ROI 4 | 22.2 a °C (18.7; 25.9) | 25.5 b °C (22.0; 28.6) | 23.4 a °C (20.8; 26.2) | 26.4 b °C (24.2; 30.8) | 21.9 a °C (18.4; 26.4) | 25.4 b °C (23.5; 29.6) | 23.3 a °C (19.9; 25.2) | 27.1 b °C (24.4; 30.0) | 23.5 a °C (20.2; 25.5) | 28.2 b °C (24.1; 30.4) |
ROI 5 | 23.9 a °C (20.2; 27.1) | 26.5 b °C (23.1; 29.7) | 24.2 a °C (21.8; 26.9) | 27.7 b °C (25.2; 30.1) | 23.0 a °C (20.0; 28.3) | 26.5 b °C (23.5; 30.7) | 23.9 a °C (21.5; 27.1) | 27.8 b °C (24.9; 31.6) | 24.5 a °C (21.7; 26.3) | wet |
ROI 6 | 23.9 a °C (20.2; 27.1) | 26.7 b °C (22.7; 30.1) | 24.3 a °C (21.6; 26.8) | 27.6 b °C (25.1; 30.2) | 23.1 a °C (19.9; 28.6) | 26.7 b °C (23.1; 30.6) | 24.1 a °C (21.2; 27.8) | 27.9 b °C (25.0; 31.2) | 24.6 a °C (21.8; 26.7) | wet |
ROI 7 | 22.9 a °C (19.5; 26.8) | 26.2 b °C (22.6; 30.0) | 23.4 a °C (21.1; 26.0) | wet | 22.3 a °C (19.7; 27.3) | wet | 23.3 a °C (20.8; 26.8) | wet | 23.5 a °C (19.8; 26.2) | wet |
ROI 8 | 23.6 a °C (21.4; 26.5) | 26.8 b °C (23.5; 30.3) | 23.8 a °C (20.7; 26.2) | 27.7 b °C (25.0; 29.7) | 22.9 a °C (19.0; 27.7) | 26.3 b °C (24.3; 30.8) | 23.5 a °C (21.4; 27.2) | 27.6 b °C (25.3; 31.1) | 23.8 a °C (22.1; 27.3) | wet |
ROI 9 | 23.3 a °C (19.6; 26.8) | 26.9 b °C (23.1; 29.8) | 23.8 a °C (21.4; 26.5) | wet | 22.4 a °C (19.3; 28.3) | wet | 23.4 a °C (21.0; 27.8) | wet | 23.7 a °C (21.1; 26.4) | wet |
ROI 10 | 24.0 a °C (19.5; 26.8) | 27.0 b °C (23.7; 30.3) | 24.1 a °C (21.9; 27.3) | 27.5 b °C (26.0; 31.3) | 23.2 a °C (20.9; 26.5) | 27.1 b °C (24.7; 30.8) | 24.4 a °C (21.1; 26.3) | 28.0 b °C (25.3; 30.3) | 24.6 a °C (21.4; 26.6) | 28.8 b °C (25.5; 30.9) |
ROI 11 | 23.0 a °C (18.9; 26.1) | 26.2 b °C (22.5; 29.6) | 23.1 a °C (19.8; 24.9) | 27.2 b °C (24.7; 29.2) | 22.2 a °C (19.0; 27.7) | 26.2 b °C (23.2; 30.7) | 23.5 a °C (20.9; 27.2) | 27.3 b °C (24.0; 31.3) | 23.7 a °C (20.2; 25.8) | wet |
ROI 12 | 23.3 a °C (19.7; 26.4) | 26.2 b °C (23.0; 29.5) | 23.6 a °C (20.9; 26.0) | 27.2 b °C (24.9; 29.2) | 22.4 a °C (19.5; 28.1) | 26.0 b °C (23.3; 30.7) | 23.5 a °C (20.4; 26.5) | 27.6 b °C (24.8; 30.5) | 23.9 a °C (20.7; 26.3) | wet |
ROI 13 | 22.9 a °C (19.3; 26.6) | 26.3 b °C (22.5; 29.2) | 23.3 a °C (20.2; 25.5) | wet | 21.6 a °C (19.2; 27.7) | wet | 22.8 a °C (20.5; 25.4) | wet | 23.1 a °C (20.8; 25.8) | wet |
ROI 14 | 24.5 a °C (20.1; 27.7) | 27.2 b °C (23.6; 30.2) | 24.2 a °C (21.7; 27.6) | 27.7 b °C (25.2; 31.4) | 23.3 a °C (20.0; 28.3) | 27.2 b °C (24.1; 31.7) | 24.5 a °C (21.6; 26.8) | 28.3 b °C (25.7; 30.6) | 24.7 a °C (21.6; 27.1) | 29.4 b °C (26.3; 32.3) |
p value | <0.0001 |
Sessions | DT | Fetlock-Depth WT | Fetlock-Depth WT + AR | Carpal-Depth WT | Carpal-Depth WT + AR | |||||
---|---|---|---|---|---|---|---|---|---|---|
ROIs | Before | After | Before | After | Before | After | Before | After | Before | After |
ROI 1 | 33.2 a °C (31.1; 35.5) | 35.0 b °C (31.5; 36.9) | 34.1 a °C (31.6; 35.7) | 35.7 b °C (34.6; 37.9) | 33.1 a °C (30.7; 35.6) | 35.2 b °C (33.5; 36.8) | 34.1 a °C (31.7; 36.0) | 35.9 b °C (34.2; 37.5) | 33.8 a °C (32.0; 35.2) | 36.8 b °C (35.1; 37.7) |
ROI 2 | 33.6 a °C (31.0; 35.9) | 33.8 a °C (32.4; 35.8) | 33.8 a °C (32.4; 35.8) | 36.1 b °C (34.5; 37.6) | 33.4 a °C (31.4; 35.5) | 35.9 b °C (34.5; 37.0) | 34.2 a °C (32.6; 35.0) | 36.5 b °C (35.4; 37.8) | 34.1 a °C (32.9; 35.2) | wet |
ROI 3 | 33.5 a °C (31.0; 35.5) | 35.0 b °C (33.0; 36.5) | 33.8 a °C (32.4; 35.6) | wet | 32.9 a °C (29.7; 35.2) | wet | 33.7 a °C (32.0; 35.3) | wet | 34.1 a °C (31.3; 35.1) | wet |
ROI 4 | 32.8 a °C (31.2; 35.2) | 34.6 b °C (32.2; 36.8) | 33.6 a °C (31.9; 35.3) | 35.5 b °C (34.4; 37.6) | 32.7 a °C (29.7; 35.0) | 34.9 b °C (32.3; 36.8) | 33.5 a °C (31.4; 35.8) | 35.5 b °C (33.7; 37.4) | 33.9 a °C (31.5; 35.2) | 36.2 b °C (33.9; 37.6) |
ROI 5 | 34.0 a °C (32.4; 36.3) | 35.5 b °C (32.9; 36.9) | 34.3 a °C (32.9; 36.1) | 36.3 b °C (34.8; 38.1) | 33.3 a °C (31.4; 36.1) | 35.4 b °C (34.0; 36.7) | 34.4 a °C (32.3; 36.0) | 36.0 b °C (35.1; 38.1) | 34.8 a °C (33.1; 35.9) | wet |
ROI 6 | 34.2 a °C (32.3; 36.1) | 35.7 b °C (32.6; 37.5) | 34.3 a °C (33.1; 36.2) | 36.3 b °C (34.1; 38.2) | 33.5 a °C (31.3; 35.8) | 35.3 b °C (33.6; 37.4) | 34.7 a °C (32.4; 36.2) | 36.4 b °C (35.1; 38.2) | 34.8 a °C (32.8; 36.6) | wet |
ROI 7 | 33.1 a °C (31.1; 35.4) | 35.0 b °C (32.9; 37.1) | 33.8 a °C (32.3; 35.6) | wet | 32.8 a °C (29.8; 35.2) | wet | 33.5 a °C (32.0; 35.0) | wet | 33.9 a °C (31.4; 35.6) | wet |
ROI 8 | 33.9 a °C (32.3; 35.9) | 35.8 b °C (33.1; 37.3) | 34.3 a °C (32.1; 35.7) | 36.4 b °C (33.7; 37.8) | 33.4 a °C (30.4; 36.1) | 35.9 b °C (33.5; 37.1) | 34.4 a °C (32.2; 36.0) | 36.3 b °C (34.5; 38.1) | 34.6 a °C (32.9; 36.5) | wet |
ROI 9 | 33.6 a °C (31.3; 36.0) | 35.5 b °C (32.4; 37.6) | 34.1 a °C (32.8; 35.7) | wet | 32.6 a °C (30.0; 35.5) | wet | 34.0 a °C (31.7; 35.2) | wet | 34.0 a °C (32.0; 35.3) | wet |
ROI 10 | 33.9 a °C (32.0; 36.1) | 36.0 b °C (34.0; 38.0) | 34.6 a °C (33.0; 36.0) | 36.9 b °C (35.1; 38.2) | 33.5 a °C (31.9; 35.8) | 36.2 b °C (34.1; 38.0) | 34.5 a °C (32.7; 35.8) | 36.3 b °C (34.2; 38.0) | 34.7 a °C (32.5; 36.7) | 37.3 b °C (35.0; 38.5) |
ROI 11 | 32.9 a °C (31.2; 35.5) | 35.1 b °C (32.9; 37.5) | 33.4 a °C (31.8; 35.6) | 35.9 b °C (34.1; 37.2) | 32.7 a °C (30.4; 35.2) | 35.2 b °C (33.5; 36.3) | 33.8 a °C (31.8; 35.2) | 35.7 b °C (34.2; 37.8) | 33.9 a °C (32.2; 35.3) | wet |
ROI 12 | 33.3 a °C (32.0; 35.6) | 35.2 b °C (32.6; 37.5) | 33.8 a °C (32.4; 35.8) | 35.9 b °C (34.2; 36.9) | 33.0 a °C (30.9; 35.3) | 35.3 b °C (33.0; 36.4) | 34.0 a °C (32.1; 35.6) | 35.7 b °C (34.0; 37.8) | 34.2 a °C (32.0; 35.5) | wet |
ROI 13 | 32.7 a °C (31.3; 35.8) | 35.0 b °C (31.8; 37.2) | 33.1 a °C (32.1; 35.3) | wet | 31.9 a °C (30.1; 34.9) | wet | 33.4 a °C (31.2; 34.9) | wet | 33.6 a °C (31.7; 35.1) | wet |
ROI 14 | 34.5 a °C (32.4; 36.0) | 36.0 b °C (33.5; 37.6) | 34.8 a °C (33.1; 35.9) | 36.5 b °C (35.0; 37.7) | 34.3 a °C (31.4; 35.8) | 36.3 b °C (34.5; 37.3) | 35.0 a °C (32.6; 36.4) | 36.7 b °C (34.6; 37.9) | 35.1 a °C (33.7; 36.4) | 37.3 b °C (35.7; 38.3) |
p value | <0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sikorska, U.; Maśko, M.; Rey, B.; Domino, M. Utility of Infrared Thermography for Monitoring of Surface Temperature Changes During Horses’ Work on Water Treadmill with an Artificial River System. Animals 2025, 15, 2266. https://doi.org/10.3390/ani15152266
Sikorska U, Maśko M, Rey B, Domino M. Utility of Infrared Thermography for Monitoring of Surface Temperature Changes During Horses’ Work on Water Treadmill with an Artificial River System. Animals. 2025; 15(15):2266. https://doi.org/10.3390/ani15152266
Chicago/Turabian StyleSikorska, Urszula, Małgorzata Maśko, Barbara Rey, and Małgorzata Domino. 2025. "Utility of Infrared Thermography for Monitoring of Surface Temperature Changes During Horses’ Work on Water Treadmill with an Artificial River System" Animals 15, no. 15: 2266. https://doi.org/10.3390/ani15152266
APA StyleSikorska, U., Maśko, M., Rey, B., & Domino, M. (2025). Utility of Infrared Thermography for Monitoring of Surface Temperature Changes During Horses’ Work on Water Treadmill with an Artificial River System. Animals, 15(15), 2266. https://doi.org/10.3390/ani15152266