Does Low-Field MRI Tenography Improve the Detection of Naturally Occurring Manica Flexoria Tears in Horses?
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ultrasonography
2.2. Contrast Radiography
2.3. Magnetic Resonance Imaging and Magnetic Resonance Imaging Tenography
2.4. Tenoscopic Procedure
2.5. Image Analysis
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Arensburg, L.; Wilderjans, H.; Simon, O.; Dewulf, J.; Boussauw, B. Nonseptic tenosynovitis of the digital flexor tendon sheath caused by longitudinal tears in the digital flexor tendons: A retrospective study of 135 tenoscopic procedures. Equine Vet. J. 2011, 43, 660–668. [Google Scholar] [CrossRef]
- Wilderjans, H.; Boussau, B.; Madder, K.; Simon, O. Tenosynovitis of the digital flexor tendon sheath and annular ligament constriction syndrome caused by longitudinal tears in the deep digital flexor tendon: A clinical and surgical report of 17 cases in Warmblood horses. Equine Vet. J. 2003, 35, 270–275. [Google Scholar] [CrossRef]
- Smith, M.R.; Wright, I.M. Noninfected tenosynovitis of the digital flexor tendon sheath: A retrospective analysis of 76 cases. Equine Vet. J. 2006, 38, 134–141. [Google Scholar] [CrossRef]
- Findley, J.A.; De Oliveira, F.; Bladon, B. Tenoscopic surgical treatment of tears of the manica flexoria in 53 horses. Vet. Surg. 2012, 41, 924–930. [Google Scholar] [CrossRef]
- Cender, A.N.; Mählmann, K.; Ehrle, A.; Merle, R.; Pieper, L.; Lischer, C.J. Diagnosis and outcome following tenoscopic surgery of the digital flexor tendon sheath in German sports and pleasure horses. Equine Vet. J. 2023, 55, 48–58. [Google Scholar] [CrossRef]
- Kent, A.V.; Chesworth, M.J.; Wells, G.; Gerdes, C.; Bladon, B.M.; Smith, R.K.W.; Fiske-Jackson, A.R. Improved diagnostic criteria for digital flexor tendon sheath pathology using contrast tenography. Equine Vet. J. 2019, 52, 205–212. [Google Scholar] [CrossRef]
- Fiske-Jackson, A.R.; Barker, W.H.; Eliashar, E.; Foy, K.; Smith, R.K. The use of intrathecal analgesia and contrast radiography as preoperative diagnostic methods for digital flexor tendon sheath pathology. Equine Vet. J. 2013, 45, 36–40. [Google Scholar] [CrossRef]
- Nixon, A.J.; McIlwraith, C.W.; Wright, I.M. Arthroscopic Surgery of the Carpal and Digital Tendon Sheaths, 4th ed.; Mosby: Maryland Heights, MI, USA, 2015. [Google Scholar]
- Edinger, J.; Möbius, G.; Ferguson, J. Comparison of tenoscopic and ultrasonographic methods of examination of the digital flexor tendon sheath in horses. Vet. Comp. Orthop. Traumatol. 2005, 18, 209–214. [Google Scholar]
- Pauwels, F.E.; Van der Vekens, E.; Christan, Y.; Koch, C.; Schweizer, D. Feasibility, indications, and radiographically confirmed diagnoses of standing extremity cone beam computed tomography in the horse. Vet. Surg. 2021, 50, 365–374. [Google Scholar] [CrossRef]
- Shanklin, A.J.; Baldwin, C.M.; Ellesmere, L.; Stack, J.D. Computed tomographic contrast tenography aids pre-operative diagnosis in clinical conditions of the digital flexor tendon sheath. Equine Vet. Educ. 2024, 36, 197–205. [Google Scholar] [CrossRef]
- Fletcher, O.; Agass, R.; Dixon, J. Standing cone-beam computed tomographic digital flexor tendon sheath contrast tenography in 18 horses. Equine Vet. Educ. 2025. [Google Scholar] [CrossRef]
- Aßmann, A.D.; Ohlerth, S.; Torgerson, P.R.; Bischofberger, A.S. Sensitivity and specificity of 3 Tesla magnetic resonance imaging and multidetector computed tomographic tenography to identify artificially induced soft tissue lesions in the equine cadaveric digital flexor tendon sheath. Equine Vet. Educ. 2023, 35, e507–e516. [Google Scholar] [CrossRef]
- Tucker, R.L.; Sande, R.D. Computed tomography and magnetic resonance imaging in equine musculoskeletal conditions. Vet. Clin. N. Am. Equine Pract. 2001, 17, 145–157. [Google Scholar] [CrossRef]
- Murray, R.C. Equine MRI; John Wiley & Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
- Murray, R.; Mair, T.; Sherlock, C.; Blunden, A. Comparison of high-field and low-field magnetic resonance images of cadaver limbs of horses. Vet. Rec. 2009, 165, 281–288. [Google Scholar] [CrossRef]
- Dyson, S.; Murray, R.; Schramme, M. Lameness associated with foot pain: Results of magnetic resonance imaging in 199 horses (January 2001–December 2003) and response to treatment. Equine Vet. J. 2005, 37, 113–121. [Google Scholar] [CrossRef]
- Crass, J.R.; Genovese, R.L.; Render, J.A.; Bellon, E.M. Magnetic resonance, ultrasound and histopathologic correlation of acute and healing equine tendon injuries. Vet. Radiol. Ultrasound 1992, 33, 206–216. [Google Scholar] [CrossRef]
- Blunden, A.; Murray, R.; Dyson, S. Lesions of the deep digital flexor tendon in the digit: A correlative MRI and post mortem study in control and lame horses. Equine Vet. J. 2009, 41, 25–33. [Google Scholar] [CrossRef]
- Dyson, S.; Murray, R. Magnetic resonance imaging of the equine fetlock. Clin. Tech. Equine Pract. 2007, 6, 62–77. [Google Scholar] [CrossRef]
- Gonzalez, L.M.; Schramme, M.C.; Robertson, I.D.; Thrall, D.E.; Redding, R.W. MRI features of metacarpo (tarso) phalangeal region lameness in 40 horses. Vet. Radiol. Ultrasound 2010, 51, 404–414. [Google Scholar] [CrossRef]
- King, J.N.; Zubrod, C.J.; Schneider, R.K.; Sampson, S.N.; Roberts, G. MRI findings in 232 horses with lameness localized to the metacarpo (tarso) phalangeal region and without a radiographic diagnosis. Vet. Radiol. Ultrasound 2013, 54, 36–47. [Google Scholar] [CrossRef]
- Werpy, N.M. Magnetic resonance imaging of the equine patient: A comparison of high-and low-field systems. Clin. Tech. Equine Pract. 2007, 6, 37–45. [Google Scholar] [CrossRef]
- Murray, R.; Mair, T. Use of magnetic resonance imaging in lameness diagnosis in the horse. In Pract. 2005, 27, 138–146. [Google Scholar] [CrossRef]
- Lin, S.P.; Brown, J.J. MR contrast agents: Physical and pharmacologic basics. J. Magn. Reson. Imaging 2007, 25, 884–899. [Google Scholar] [CrossRef]
- Steinbach, L.S.; Palmer, W.E.; Schweitzer, M.E. Special focus session: MR arthrography. Radiographics 2002, 22, 1223–1246. [Google Scholar] [CrossRef]
- Bergin, D.; Schweitzer, M. Indirect magnetic resonance arthrography. Skelet. Radiol. 2003, 32, 551–558. [Google Scholar] [CrossRef]
- Bittersohl, B.; Hosalkar, H.S.; Werlen, S.; Trattnig, S.; Siebenrock, K.A.; Mamisch, T.C. Intravenous versus intra-articular delayed gadolinium-enhanced magnetic resonance imaging in the hip joint: A comparative analysis. Investig. Radiol. 2010, 45, 538–542. [Google Scholar] [CrossRef]
- Şahin, G.; Demirtaş, M. An overview of MR arthrography with emphasis on the current technique and applicational hints and tips. Clin. Imaging 2007, 31, 73. [Google Scholar] [CrossRef]
- Kopka, L.; Funke, M.; Fischer, U.; Keating, D.; Oestmann, J.; Grabbe, E. MR arthrography of the shoulder with gadopentetate dimeglumine: Influence of concentration, iodinated contrast material, and time on signal intensity. Am. J. Roentgenol. 1994, 163, 621–623. [Google Scholar] [CrossRef]
- McCauley, T.R.; Elfar, A.; Moore, A.; Haims, A.H.; Jokl, P.; Lynch, J.K.; Ruwe, P.A.; Katz, L.D. MR arthrography of anterior cruciate ligament reconstruction grafts. Am. J. Roentgenol. 2003, 181, 1217–1223. [Google Scholar] [CrossRef]
- Robinson, P.; White, L.; Salonen, D.; Ogilvie-Harris, D. Anteromedial impingement of the ankle: Using MR arthrography to assess the anteromedial recess. Am. J. Roentgenol. 2002, 178, 601–604. [Google Scholar] [CrossRef]
- Sciulli, R.L.; Boutin, R.D.; Brown, R.; Nguyen, K.D.; Muhle, C.; Lektrakul, N.; Pathria, M.N.; Pedowitz, R.; Resnick, D. Evaluation of the postoperative meniscus of the knee: A study comparing conventional arthrography, conventional MR imaging, MR arthrography with iodinated contrast material, and MR arthrography with gadolinium-based contrast material. Skelet. Radiol. 1999, 28, 508–514. [Google Scholar] [CrossRef]
- Zhalniarovich, Y.; Przyborowska-Zhalniarovich, P.; Mieszkowska, M.; Adamiak, Z. Direct magnetic resonance arthrography of the canine elbow. Acta Vet. Brno 2017, 86, 85–89. [Google Scholar] [CrossRef]
- Banfield, C.M.; Morrison, W.B. Magnetic resonance arthrography of the canine stifle joint technique and applications in eleven military dogs. Vet. Radiol. Ultrasound 2000, 41, 200–213. [Google Scholar] [CrossRef]
- Van Zadelhoff, C.; Schwarz, T.; Smith, S.; Engerand, A.; Taylor, S. Identification of naturally occurring cartilage damage in the equine distal interphalangeal joint using low-field magnetic resonance imaging and magnetic resonance arthrography. Front. Vet. Sci. 2020, 6, 508. [Google Scholar] [CrossRef]
- Bischofberger, A.S.; Fürst, A.E.; Torgerson, P.R.; Carstens, A.; Hilbe, M.; Kircher, P. Use of a 3-telsa magnet to perform delayed gadolinium-enhanced magnetic resonance imaging of the distal interphalangeal joint of horses with and without naturally occurring osteoarthritis. Am. J. Vet. Res. 2018, 79, 287–298. [Google Scholar] [CrossRef]
- Carstens, A.; Kirberger, R.M.; Velleman, M.; Dahlberg, L.E.; Fletcher, L.; Lammentausta, E. Feasibility for mapping cartilage T1 relaxation times in the distal metacarpus3/metatarsus3 of thoroughbred racehorses using delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC): Normal cadaver study. Vet. Radiol. Ultrasound 2013, 54, 365–372. [Google Scholar] [CrossRef]
- Aßmann, A.; Ohlerth, S.; Hartmann, S.; Torgerson, P.; Bischofberger, A. Does Direct MRI Tenography Improve the Diagnostic Performance of Low-Field MRI to Identify Artificially Created Soft-Tissue Lesions within the Equine Cadaveric Digital Flexor Tendon Sheath? Animals 2023, 13, 3772. [Google Scholar] [CrossRef]
- Garcia da Fonseca, R.M.; Evrard, L.; Rabba, S.; Salciccia, A.; Busoni, V. Dynamic flexion/extension and non-weight bearing ultrasonography is helpful for identifying manica flexoria tears in horses. Vet. Radiol. Ultrasound 2019, 60, 65–74. [Google Scholar] [CrossRef]
- Hibner-Szaltys, M.; Cavallier, F.; Cantatore, F.; Withers, J.M.; Marcatili, M. Ultrasonography can be used to predict the location of manica flexoria tears in horses. Equine Vet. Educ. 2022, 35, e200–e207. [Google Scholar] [CrossRef]
- Martinelli, M.J.; Kuriashkin, I.V.; Carragher, B.O.; Clarkson, R.B.; Baker, G.J. Magnetic resonance imaging of the equine metacarpophalangeal joint: Three-dimensional reconstruction and anatomic analysis. Vet. Radiol. Ultrasound 1997, 38, 193–199. [Google Scholar] [CrossRef]
- Park, R.D.; Nelson, T.R.; Hoopes, P.J. Magnetic resonance imaging of the normal equine digit and metacarpophalangeal joint. Vet. Radiol. 1987, 28, 105–116. [Google Scholar] [CrossRef]
- Findley, J.A.; Ricci, E.E.; Singer, E.E. An anatomical and histological study of the equine proximal manica flexoria. Vet. Comp. Orthop. Traumatol. 2017, 30, 91–98. [Google Scholar] [CrossRef]
- Tucker, R.L.; Sampson, S.N. Magnetic resonance imaging protocols for the horse. Clin. Tech. Equine Pract. 2007, 6, 2–15. [Google Scholar] [CrossRef]
- Sherlock, C.; Mair, T. Magic angle effect on low field magnetic resonance images in the superficial digital flexor tendon in the equine proximal pastern region. Vet. J. 2016, 217, 126–131. [Google Scholar] [CrossRef]
- Bolen, G.; Audigié, F.; Spriet, M.; Vandenberghe, F.; Busoni, V. Qualitative comparison of 0.27 T, 1.5 T, and 3T magnetic resonance images of the normal equine foot. J. Equine Vet. Sci. 2010, 30, 9–20. [Google Scholar] [CrossRef]
- McKnight, A.L.; Manduca, A.; Felmlee, J.P.; Rossman, P.J.; McGee, K.P.; Ehman, R.L. Motion-correction techniques for standing equine MRI. Vet. Radiol. Ultrasound 2004, 45, 513–519. [Google Scholar] [CrossRef]
- Labens, R.; Schramme, M.C.; Murray, R.C.; Bolas, N. Standing low-field MRI of the equine proximal metacarpal/metatarsal region is considered useful for diagnosing primary bone pathology and makes a positive contribution to case management: A prospective survey study. Vet. Radiol. Ultrasound 2020, 61, 197–205. [Google Scholar] [CrossRef]
- Carrino, J.A.; Morrison, W.B.; Zou, K.H.; Steffen, R.T.; Snearly, W.N.; Murray, P.M. Noncontrast MR imaging and MR arthrography of the ulnar collateral ligament of the elbow: Prospective evaluation of two-dimensional pulse sequences for detection of complete tears. Skelet. Radiol. 2001, 30, 625–632. [Google Scholar] [CrossRef]
- Zanetti, M.; Bräm, J.; Hodler, J. Triangular fibrocartilage and intercarpal ligaments of the wrist: Does MR arthrography improve standard MRI? J. Magn. Reson. Imaging 1997, 7, 590–594. [Google Scholar] [CrossRef]
- Stecco, A.; Brambilla, M.; Puppi, A.M.; Lovisolo, M.; Boldorini, R.; Carriero, A. Shoulder MR arthrography: In vitro determination of optimal gadolinium dilution as a function of field strength. J. Magn. Reson. Imaging 2007, 25, 200–207. [Google Scholar] [CrossRef]
- Andreisek, G.; Froehlich, J.M.; Hodler, J.; Weishaupt, D.; Beutler, V.; Pfirrmann, C.W.; Boesch, C.; Nanz, D. Direct MR arthrography at 1.5 and 3.0 T: Signal dependence on gadolinium and iodine concentrations—Phantom study. Radiology 2008, 247, 706–716. [Google Scholar] [CrossRef]
- Murphy, S.E.; Ballegeer, E.A.; Forrest, L.J.; Schaefer, S.L. Magnetic resonance imaging findings in dogs with confirmed shoulder pathology. Vet. Surg. 2008, 37, 631–638. [Google Scholar] [CrossRef]
- Schaefer, S.L.; Baumel, C.A.; Gerbig, J.R.; Forrest, L.J. Direct magnetic resonance arthrography of the canine shoulder. Vet. Radiol. Ultrasound 2010, 51, 391–396. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aßmann, A.D.; Sànchez-Andrade, J.S.; Argüelles, D.; Bischofberger, A.S. Does Low-Field MRI Tenography Improve the Detection of Naturally Occurring Manica Flexoria Tears in Horses? Animals 2025, 15, 2250. https://doi.org/10.3390/ani15152250
Aßmann AD, Sànchez-Andrade JS, Argüelles D, Bischofberger AS. Does Low-Field MRI Tenography Improve the Detection of Naturally Occurring Manica Flexoria Tears in Horses? Animals. 2025; 15(15):2250. https://doi.org/10.3390/ani15152250
Chicago/Turabian StyleAßmann, Anton D., José Suàrez Sànchez-Andrade, David Argüelles, and Andrea S. Bischofberger. 2025. "Does Low-Field MRI Tenography Improve the Detection of Naturally Occurring Manica Flexoria Tears in Horses?" Animals 15, no. 15: 2250. https://doi.org/10.3390/ani15152250
APA StyleAßmann, A. D., Sànchez-Andrade, J. S., Argüelles, D., & Bischofberger, A. S. (2025). Does Low-Field MRI Tenography Improve the Detection of Naturally Occurring Manica Flexoria Tears in Horses? Animals, 15(15), 2250. https://doi.org/10.3390/ani15152250