Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = manica flexoria

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1140 KB  
Article
Does Low-Field MRI Tenography Improve the Detection of Naturally Occurring Manica Flexoria Tears in Horses?
by Anton D. Aßmann, José Suàrez Sànchez-Andrade, David Argüelles and Andrea S. Bischofberger
Animals 2025, 15(15), 2250; https://doi.org/10.3390/ani15152250 - 31 Jul 2025
Viewed by 824
Abstract
Diagnosing digital flexor tendon sheath (DFTS) pathologies, particularly manica flexoria (MF) tears, can be challenging with standard imaging modalities. Standing low-field MRI tenography (MRIt) may improve the detection rate of MF tears. This study aimed to compare ultrasonography, contrast radiography, pre-contrast MRI, and [...] Read more.
Diagnosing digital flexor tendon sheath (DFTS) pathologies, particularly manica flexoria (MF) tears, can be challenging with standard imaging modalities. Standing low-field MRI tenography (MRIt) may improve the detection rate of MF tears. This study aimed to compare ultrasonography, contrast radiography, pre-contrast MRI, and MRIt to detect naturally occurring MF lesions in horses undergoing tenoscopy. Ten horses with a positive DFTS block, which underwent contrast radiography, ultrasonography, MRI, MRIt, and tenoscopy were included. Two radiologists evaluated the images and recorded whether an MF lesion was present and determined the lesion side. Sensitivity and specificity were calculated for each modality using tenoscopy as a reference. MRIt and contrast radiography detected MF lesions with the same frequency, both showing 71% sensitivity and 100% specificity. Pre-contrast MRI and ultrasonography detected MF lesions with a lower sensitivity (57%); however, the MRI (100%) demonstrated a higher specificity than ultrasonography (33%). Adding contrast in MRI changed the sensitivity from (4/7 lesions) 57% to (5/7 lesions) 71%, with a constant high specificity (100%). MRIt diagnoses MF tears with a similar sensitivity to contrast radiography, with the same specificity, but with the added benefit of lesion laterality detection. The combined advantages of the anatomical detail of the T1 sequence and the post-contrast hyperintense appearance of the fluid may help diagnose MF tears and identify intact MFs. However, this needs to be substantiated in a larger number of cases. Full article
Show Figures

Figure 1

12 pages, 5231 KB  
Article
Does Direct MRI Tenography Improve the Diagnostic Performance of Low-Field MRI to Identify Artificially Created Soft-Tissue Lesions within the Equine Cadaveric Digital Flexor Tendon Sheath?
by Anton Aßmann, Stefanie Ohlerth, Silvana Hartmann, Paul Torgerson and Andrea Bischofberger
Animals 2023, 13(24), 3772; https://doi.org/10.3390/ani13243772 - 7 Dec 2023
Cited by 6 | Viewed by 2649
Abstract
Tenosynovitis of the digital flexor tendon sheath (DFTS) is diagnosed using ultrasonography and contrast tenography. Nevertheless, making a precise preoperative diagnosis is challenging. This study aimed to determine and compare the sensitivity and specificity of low-field MRI and MRI tenography (MRIt) to detect [...] Read more.
Tenosynovitis of the digital flexor tendon sheath (DFTS) is diagnosed using ultrasonography and contrast tenography. Nevertheless, making a precise preoperative diagnosis is challenging. This study aimed to determine and compare the sensitivity and specificity of low-field MRI and MRI tenography (MRIt) to detect artificially created soft-tissue lesions in the DFTS. In 21 DFTSs, 118 lesions were made tenoscopically in the superficial digital flexor tendon (SDFT), deep digital flexor tendon (DDFT), manica flexoria (MF) and proximal scutum. MRI and MRI, following intrathecal gadolinium administration (MRIt), were performed. The sensitivity and specificity of MRI and MRIt were calculated and compared. Proximal scutum lesions were less frequently identified by MRI (Sensitivity 38%, specificity 96%) compared to MRIt (Sensitivity: 50%, p = 0.80; specificity: 96%, p = 1). This was similar for SDFT lesions (Sensitivity: 39% versus 54%, p = 0.72; specificity: 93% versus 96%, p = 1). MRI detected DDFT lesions (sensitivity 34%; specificity 100%) better than MRIt (sensitivity 32%, p = 0.77; specificity 98%, p = 1). This was similar for MF lesions (MRI sensitivity 61%; specificity 100% vs. MRIt sensitivity 50%, p = 0.68; specificity 96%, p = 1). Lesion size was significantly associated with MRI or MRIt diagnosis (p = 0.001). The intrathecal administration of gadolinium did not significantly improve the ability of low-field MRI to diagnose artificial DFTS tendon lesions. Small lesion length was a significant discriminating factor for lesion detection. MRI and MRIt specificity were high, thus being helpful in diagnosing an intact structure. Full article
(This article belongs to the Special Issue Diagnostic Imaging of Equines)
Show Figures

Figure 1

Back to TopTop