Pre-Transport Salt Baths Mitigate Physiological Stress and Tissue Damage in Channel Catfish (Ictalurus punctatus) Fingerlings: Evidence from Multi-Biomarker Assessment and Histopathology
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Experimental Design
2.3. Sample Collection and Processing
2.4. Water Quality and Survival Rates
2.5. Serum and Organ Physicochemical Indices
2.6. IBR Indices
2.7. Tissue Sectioning
2.8. Statistical Analysis
3. Results
3.1. Water Quality and Survival Rates
3.2. Serum Physiological and Biochemical Indicators
3.3. Liver Antioxidant Activity
3.4. IBR Indices
3.5. Organological Structure
4. Discussion
4.1. Effects of Salt Treatment on Water Quality and Survival Rates for Juvenile Fish Transportation
4.2. Effects of Salt Treatment on Serum Physiology and Biochemistry for Juvenile Fish Transportation
4.3. Effects of Salt Treatment on the Antioxidant Activity in the Liver of Juvenile Fish Transportation
4.4. Effects of Salt Treatment on the IBR Index of Juvenile Fish Transportation
4.5. Effects of Salt Treatment on the Organizational Morphology of Juvenile Fish Transportation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. The State of World Fisheries and Aquaculture 2024—Blue Transformation in Action; FAO: Rome, Italy, 2024. [Google Scholar]
- Ababouch, L.; Nguyen, K.A.T.; Castro De Souza, M.; Fernandez Polanco, J. Value chains and market access for aquaculture products. J. World Aquac. Soc. 2023, 54, 527–553. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, Y.; Liu, Y.; Adányi, N.; Zhang, X. Effects of waterless live transportation on survivability, physiological responses and flesh quality in Chinese farmed sturgeon (Acipenser schrenckii). Aquaculture 2020, 518, 734834. [Google Scholar] [CrossRef]
- Ninan, G. Fish Processing and Value Addition—A Global Scenario; ICAR-Central Institute of Fisheries Technology: Cochin, India, 2018. [Google Scholar]
- Fantini-Hoag, L.; Hanson, T.; Kubitza, F.; Povh, J.A.; Corrêa Filho, R.A.C.; Chappell, J. Growth performance and economic analysis of hybrid Catfish (Channel Catfish Ictalurus punctatus♀ × Blue Catfish, I. furcatus♂) and Channel Catfish (I. punctatus) produced in floating In-Pond Raceway System. Aquacult. Rep. 2022, 23, 101065. [Google Scholar] [CrossRef]
- Zhu, X.; Liu, Y.; Xu, N.; Ai, X.; Yang, Y. Molecular characterization and expression analysis of IL-10 and IL-6 in channel catfish (Ictalurus punctatus). Pathogens 2023, 12, 886. [Google Scholar] [CrossRef]
- Zheng, T.; Song, Z.; Qiang, J.; Tao, Y.; Zhu, H.; Ma, J.; Xu, P. Transport stress induces skin innate immunity response in hybrid yellow catfish (Tachysurus fulvidraco♀ × P. vachellii♂) through TLR/NLR signaling pathways and regulation of mucus secretion. Front. Immunol. 2021, 12, 740359. [Google Scholar] [CrossRef]
- Bai, C.; Qi, X.; Wang, Z.; Wang, J.; Qiu, L.; Li, H.; Zu, X.; Li, H.; Xiong, G.; Liao, T. Effect of density stress on the physiological, biochemical, and immunological parameters of juvenile Pelteobagrus fulvidraco during simulated transportation. Aquacult. Rep. 2024, 34, 101911. [Google Scholar] [CrossRef]
- Dawood, M.A.; Koshio, S.; Esteban, M.Á. Beneficial roles of feed additives as immunostimulants in aquaculture: A review. Rev. Aquacult. 2018, 10, 950–974. [Google Scholar] [CrossRef]
- Barton, B.A. Stress in fishes: A diversity of responses with particular reference to changes in circulating corticosteroids. Integr. Comp. Biol. 2002, 42, 517–525. [Google Scholar] [CrossRef]
- Azambuja, C.R.; Mattiazzi, J.; Riffel, A.P.K.; Finamor, I.A.; de Oliveira Garcia, L.; Heldwein, C.G.; Heinzmann, B.M.; Baldisserotto, B.; Pavanato, M.A.; Llesuy, S.F. Effect of the essential oil of Lippia alba on oxidative stress parameters in silver catfish (Rhamdia quelen) subjected to transport. Aquaculture 2011, 319, 156–161. [Google Scholar] [CrossRef]
- Becker, A.G.; Parodi, T.V.; Heldwein, C.G.; Zeppenfeld, C.C.; Heinzmann, B.M.; Baldisserotto, B. Transportation of silver catfish, Rhamdia quelen, in water with eugenol and the essential oil of Lippia alba. Fish Physiol. Biochem. 2012, 38, 789–796. [Google Scholar] [CrossRef]
- Becker, A.G.; Parodi, T.V.; Zeppenfeld, C.C.; Salbego, J.; Cunha, M.A.; Heldwein, C.G.; Loro, V.L.; Heinzmann, B.M.; Baldisserotto, B. Pre-sedation and transport of Rhamdia quelen in water containing essential oil of Lippia alba: Metabolic and physiological responses. Fish Physiol. Biochem. 2016, 42, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Salbego, J.; Becker, A.G.; Gonçalves, J.F.; Menezes, C.C.; Heldwein, C.G.; Spanevello, R.M.; Loro, V.L.; Schetinger, M.R.C.; Morsch, V.M.; Heinzmann, B.M. The essential oil from Lippia alba induces biochemical stress in the silver catfish (Rhamdia quelen) after transportation. Neotrop. Ichthyol. 2014, 12, 811–818. [Google Scholar] [CrossRef]
- Allameh, S.K.; Yusoff, F.M.; Ringø, E.; Daud, H.M.; Saad, C.R.; Ideris, A. Effects of dietary mono-and multiprobiotic strains on growth performance, gut bacteria and body composition of J avanese carp (Puntius gonionotus, B leeker 1850). Aquacult. Nutr. 2016, 22, 367–373. [Google Scholar] [CrossRef]
- Hu, X.; Ma, W.; Zhang, D.; Tian, Z.; Yang, Y.; Huang, Y.; Hong, Y. Application of Natural Antioxidants as Feed Additives in Aquaculture: A Review. Biology 2025, 14, 87. [Google Scholar] [CrossRef]
- Liu, H.P.; Wen, B.; Chen, Z.Z.; Gao, J.Z.; Liu, Y.; Zhang, Y.C.; Wang, Z.X.; Peng, Y. Effects of dietary vitamin C and vitamin E on the growth, antioxidant defence and digestive enzyme activities of juvenile discus fish (Symphysodon haraldi). Aquacult. Nutr. 2019, 25, 176–183. [Google Scholar] [CrossRef]
- Liu, A.; Dumas, A.; Hernandez, J.M.; Santigosa, E. Vitamin nutrition in shrimp aquaculture: A review focusing on the last decade. Aquaculture 2024, 578, 740004. [Google Scholar] [CrossRef]
- Stocker, S.D.; Kinsman, B.J.; Farquhar, W.B.; Gyarmati, G.; Peti-Peterdi, J.; Sved, A.F. Physiological mechanisms of dietary salt sensing in the brain, kidney, and gastrointestinal tract. Hypertension 2024, 81, 447–455. [Google Scholar] [CrossRef]
- Marunaka, Y. Hormonal and osmotic regulation of NaCl transport in renal distal nephron epithelium. Jpn. J. Physiol. 1997, 47, 499–511. [Google Scholar] [CrossRef]
- Gao, S.; Liu, Y.; Zhang, L.; Tan, Y.; Li, B.; Hong, H.; Luo, Y. Sodium chloride-induced oxidation of bighead carp (Aristichthys nobilis) fillets: The role of mitochondria and underlying mechanisms. Food Res. Int. 2022, 152, 110915. [Google Scholar] [CrossRef]
- Tavares Dias, M. Toxicity, physiological, histopathological, handling, growth and antiparasitic effects of the sodium chloride (salt) in the freshwater fish aquaculture. Aquac. Res. 2022, 53, 715–734. [Google Scholar] [CrossRef]
- Abou Anni, I.S.; Bianchini, A.; Barcarolli, I.F.; Junior, A.S.V.; Robaldo, R.B.; Tesser, M.B.; Sampaio, L.A. Salinity influence on growth, osmoregulation and energy turnover in juvenile pompano Trachinotus marginatus Cuvier 1832. Aquaculture 2016, 455, 63–72. [Google Scholar] [CrossRef]
- Hoseini, S.M.; Majidiyan, N.; Mirghaed, A.T.; Hoseinifar, S.H.; Van Doan, H. Dietary glycine supplementation alleviates transportation-induced stress in common carp, Cyprinus carpio. Aquaculture 2022, 551, 737959. [Google Scholar] [CrossRef]
- Magondu, E.W.; Rasowo, J.; Oyoo-Okoth, E.; Charo-Karisa, H. Evaluation of sodium chloride (NaCl) for potential prophylactic treatment and its short-term toxicity to African catfish Clarias gariepinus (Burchell 1822) yolk-sac and swim-up fry. Aquaculture 2011, 319, 307–310. [Google Scholar] [CrossRef]
- Li, H.H.; Liao, T.; Bai, C.; Qiu, L.; Zu, X.Y.; Li, H.L.; Chen, L.P.; Xiong, G.Q.; Wang, J.G. Effects of pre-transport density and temperature domestication on simulated transport of juvenile Ictalurus punctatus. South China Fish. Sci. 2024, 20, 160–171. [Google Scholar]
- Beliaeff, B.; Burgeot, T. Integrated biomarker response: A useful tool for ecological risk assessment. Environ. Toxicol. Chem. 2002, 21, 1316–1322. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Ye, W.; Tao, Y.; Li, Y.; Lu, S.; Xu, P.; Qiang, J. Transport stress induces oxidative stress and immune response in juvenile largemouth bass (Micropterus salmoides): Analysis of oxidative and immunological parameters and the gut microbiome. Antioxidants 2023, 12, 157. [Google Scholar] [CrossRef]
- Ren, Y.; Men, X.; Yu, Y.; Li, B.; Zhou, Y.; Zhao, C. Effects of transportation stress on antioxidation, immunity capacity and hypoxia tolerance of rainbow trout (Oncorhynchus mykiss). Aquacult. Rep. 2022, 22, 100940. [Google Scholar] [CrossRef]
- Lima, A.F.; Oliveira, H.J.B.D.; Pereira, A.S.; Sakamoto, S.S. Effect of density of fingerling and juvenile pirarucu during transportation on water quality and physiological parameters. Acta Amaz. 2020, 50, 223–231. [Google Scholar] [CrossRef]
- Gomes, L.D.C.; Chagas, E.C.; Brinn, R.P.; Roubach, R.; Coppati, C.E.; Baldisserotto, B. Use of salt during transportation of air breathing pirarucu juveniles (Arapaima gigas) in plastic bags. Aquaculture 2006, 256, 521–528. [Google Scholar] [CrossRef]
- Mirghaed, A.T.; Ghelichpour, M. Effects of anesthesia and salt treatment on stress responses, and immunological and hydromineral characteristics of common carp (Cyprinus carpio, Linnaeus, 1758) subjected to transportation. Aquaculture 2019, 501, 1–6. [Google Scholar] [CrossRef]
- Schelkle, B.; Doetjes, R.; Cable, J. The salt myth revealed: Treatment of gyrodactylid infections on ornamental guppies, Poecilia reticulata. Aquaculture 2011, 311, 74–79. [Google Scholar] [CrossRef]
- Kumar, N.; Singh, A.K.; Kumar, S.; Kumar, T.; Kochewad, S.A.; Thorat, S.T.; Patole, P.B.; Gite, A. Nano-copper enhances thermal efficiency and stimulates gene expression in response to multiple stresses in Pangasianodon hypophthalmus (Striped catfish). Aquaculture 2023, 564, 739059. [Google Scholar] [CrossRef]
- Wang, Q.; Mei, J.; Xie, J. The effects of lemon balm (Melissa officinalis L.) essential oil on the stress response, anti-oxidative ability, and kidney metabolism of sea bass during live transport. Animals 2022, 12, 339. [Google Scholar] [CrossRef] [PubMed]
- Yousefi, M.; Hoseini, S.M.; Weber, R.A.; Da Silva, E.; Rajabiesterabadi, H.; Arghideh, M.; Delavar, F.H. Alleviation of transportation-induced stress in Nile tilapia, Oreochromis niloticus, using brackish water. Aquacult. Rep. 2022, 27, 101378. [Google Scholar] [CrossRef]
- Boaventura, T.P.; Pedras, P.P.C.; Júlio, G.S.C.; Dos Santos, F.A.C.; Ferreira, A.L.; de Souza E Silva, W.; Luz, R.K. Use of eugenol, benzocaine or salt during the transport of panga, Pangasianodon hypophthalmus (Sauvage, 1878): Effects on water quality, haematology and blood biochemistry. Aquac. Res. 2022, 53, 1395–1403. [Google Scholar] [CrossRef]
- Wang, B.; Wang, Y.; Jia, T.; Feng, J.; Qu, C.; Wu, X.; Yang, X.; Zhang, Q. Changes in physiological responses and immunity of blunt snout bream Megalobrama amblycephala from transport stress. Fish. Physiol. Biochem. 2022, 48, 1183–1192. [Google Scholar] [CrossRef]
- Ciji, A.; Akhtar, M.S. Stress management in aquaculture: A review of dietary interventions. Rev. Aquacult. 2021, 13, 2190–2247. [Google Scholar] [CrossRef]
- Meng, Y.; Li, Y.; Gu, H.; Chen, Z.; Cui, X.; Wang, X. Androgen receptors in corticotropin-releasing hormone neurons mediate the sexual dimorphism in restraint-induced thymic atrophy. Proc. Natl. Acad. Sci. India Sect. B 2025, 12, 107–122. [Google Scholar] [CrossRef]
- Yu, Z.; Zhao, L.; Zhao, J.; Xu, W.; Guo, Z.; Zhang, A.; Li, M. Dietary Taraxacum mongolicum polysaccharide ameliorates the growth, immune response, and antioxidant status in association with NF-κB, Nrf2 and TOR in Jian carp (Cyprinus carpio var. Jian). Aquaculture 2022, 547, 737522. [Google Scholar] [CrossRef]
- Biswal, A.; Srivastava, P.P.; Pal, P.; Gupta, S.; Varghese, T.; Jayant, M. A multi-biomarker approach to evaluate the effect of sodium chloride in alleviating the long-term transportation stress of Labeo rohita fingerlings. Aquaculture 2021, 531, 735979. [Google Scholar] [CrossRef]
- Park, J.; Hong, T.; An, G.; Park, H.; Song, G.; Lim, W. Triadimenol promotes the production of reactive oxygen species and apoptosis with cardiotoxicity and developmental abnormalities in zebrafish. Sci. Total Environ. 2023, 862, 160761. [Google Scholar] [CrossRef]
- Li, X.; Liu, P.; Zhao, Y.; Zhang, L.; Zhang, J. Oxidative stress contributes to cytoskeletal protein degradation of Esox lucius through activation of mitochondrial apoptosis during postmortem storage. Foods 2022, 11, 1308. [Google Scholar] [CrossRef]
- Zeng, X.; Dong, H.; Yang, Y.; Li, T.; Li, C.; Zhang, J. Effects of essential oil of Magnolia denudata on spotted seabass (Lateolabrax maculatus) during simulated live transportation. Aquaculture 2023, 567, 739258. [Google Scholar] [CrossRef]
- Wang, J.; Wang, M.; Li, B.; Guo, H.; Zhu, X.; Zhang, L. The combined effect of acute hypoxic stress and feeding status on the metabolism of yellow catfish (Pelteobagrus fulvidraco). Aquaculture 2022, 560, 738605. [Google Scholar] [CrossRef]
- Wang, J.; Su, B.; Dunham, R.A. Genome-wide identification of catfish antimicrobial peptides: A new perspective to enhance fish disease resistance. Rev. Aquacult. 2022, 14, 2002–2022. [Google Scholar] [CrossRef]
- Culbert, B.M.; Border, S.E.; Fialkowski, R.J.; Bolitho, I.; Dijkstra, P.D. Social status influences relationships between hormones and oxidative stress in a cichlid fish. Horm. Behav. 2023, 152, 105365. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Yang, A.; Cui, W.; Zhang, J.; Niu, A.; Hu, X.; Li, Q. Tracing toxic path of antimony: From bioaccumulation to DNA hypomethylation in zebrafish (Danio rerio). Ecotoxicol. Environ. Saf. 2024, 277, 116351. [Google Scholar] [CrossRef] [PubMed]
- Santana, M.S.; Sandrini-Neto, L.; Neto, F.F.; Ribeiro, C.A.O.; Di Domenico, M.; Prodocimo, M.M. Biomarker responses in fish exposed to polycyclic aromatic hydrocarbons (PAHs): Systematic review and meta-analysis. Environ. Pollut. 2018, 242, 449–461. [Google Scholar] [CrossRef]
- Sun, B.; Li, J.; Hu, C.; Giesy, J.P.; Lam, P.K.; Chen, L. Toxicity of perfluorobutanesulfonate on gill functions of marine medaka (Oryzias melastigma): A time course and hypoxia co-exposure study. Sci. Total Environ. 2023, 872, 162297. [Google Scholar] [CrossRef]
- Ghanizadeh-Kazerouni, E.; Wilson, J.M.; Jones, S.; Brauner, C.J. Characteristics of a gill resection–regeneration model in freshwater laboratory-reared Atlantic salmon (Salmo salar). Aquaculture 2024, 579, 740210. [Google Scholar] [CrossRef]
- Zhang, M.M.; Qiao, G.; Li, Q.; Xu, C.; Zhang, K.Q.; Huang, J.T. Effect of body size and environmental factors on underwater oxygen consumption rate and skin characteristics of Onchidium struma. J. Fish. Sci. China 2017, 24, 718–726. [Google Scholar] [CrossRef]
- Fan, J.; Li, G.; Wu, L.; Tao, S.; Wang, W.; Sheng, Z.; Meng, Q. Parenteral glutamine supplementation in combination with enteral nutrition improves intestinal immunity in septic rats. Nutrition 2015, 31, 766–774. [Google Scholar] [CrossRef]
- Mirghaed, A.T.; Yarahmadi, P.; Soltani, M.; Paknejad, H.; Hoseini, S.M. Dietary sodium butyrate (Butirex® C4) supplementation modulates intestinal transcriptomic responses and augments disease resistance of rainbow trout (Oncorhynchus mykiss). Fish. Shellfish. Immun. 2019, 92, 621–628. [Google Scholar] [CrossRef]
- Salazar, A.M.; Aparicio, R.; Clark, R.I.; Rera, M.; Walker, D.W. Intestinal barrier dysfunction: An evolutionarily conserved hallmark of aging. Dis. Models Mech. 2023, 16, 49969. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, G.; Li, H.; Wang, J.; Liao, T.; Qiu, L.; Xiong, G.; Wang, L.; Bai, C.; Zhang, Y. Pre-Transport Salt Baths Mitigate Physiological Stress and Tissue Damage in Channel Catfish (Ictalurus punctatus) Fingerlings: Evidence from Multi-Biomarker Assessment and Histopathology. Animals 2025, 15, 2249. https://doi.org/10.3390/ani15152249
Huang G, Li H, Wang J, Liao T, Qiu L, Xiong G, Wang L, Bai C, Zhang Y. Pre-Transport Salt Baths Mitigate Physiological Stress and Tissue Damage in Channel Catfish (Ictalurus punctatus) Fingerlings: Evidence from Multi-Biomarker Assessment and Histopathology. Animals. 2025; 15(15):2249. https://doi.org/10.3390/ani15152249
Chicago/Turabian StyleHuang, Guowei, Haohua Li, Juguang Wang, Tao Liao, Liang Qiu, Guangquan Xiong, Lan Wang, Chan Bai, and Yu Zhang. 2025. "Pre-Transport Salt Baths Mitigate Physiological Stress and Tissue Damage in Channel Catfish (Ictalurus punctatus) Fingerlings: Evidence from Multi-Biomarker Assessment and Histopathology" Animals 15, no. 15: 2249. https://doi.org/10.3390/ani15152249
APA StyleHuang, G., Li, H., Wang, J., Liao, T., Qiu, L., Xiong, G., Wang, L., Bai, C., & Zhang, Y. (2025). Pre-Transport Salt Baths Mitigate Physiological Stress and Tissue Damage in Channel Catfish (Ictalurus punctatus) Fingerlings: Evidence from Multi-Biomarker Assessment and Histopathology. Animals, 15(15), 2249. https://doi.org/10.3390/ani15152249