Genetic Variability Related Behavioral Plasticity in Pikeperch (Sander lucioperca L.) Fingerlings
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Approval
2.2. Experimental Animals
2.3. DNA Extraction and Microsatellite Analysis
2.4. Statistical Analysis
3. Results
3.1. Genetic Diversity
3.2. Genetic Structure
3.3. Genetic Selection
3.4. Individual Heterozygosity Calculated with Neutral Markers and Behavioural Plasticity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
POLS | Pace-of-Life Syndrome |
RAS | Recirculating Aquaculture Systems |
HFC | Heterozygosity-Fitness Correlations |
PF | Pellet Feeder |
NPF | Pellet Non-Feeder |
References
- Price, E.O. Behavioral development in animals undergoing domestication. Appl. Anim. Behav. Sci. 1999, 65, 245–271. [Google Scholar] [CrossRef]
- Bertossa, R.C. Morphology and Behaviour: Functional Links in Development and Evolution. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2011, 366, 2056–2068. [Google Scholar] [CrossRef]
- Lorenzen, K.; Beveridge, M.C.M.; Mangel, M. Cultured Fish: Integrative Biology and Management of Domestication and Interactions with Wild Fish. Biol. Rev. 2012, 87, 639–660. [Google Scholar] [CrossRef]
- Réale, D.; Garant, D.; Humphries, M.M.; Bergeron, P.; Careau, V.; Montiglio, P.O. Personality and the Emergence of the Pace-of-Life Syndrome Concept at the Population Level. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2010, 365, 4051–4063. [Google Scholar] [CrossRef]
- Sih, A.; Del Giudice, M. Linking Behavioural Syndromes and Cognition: A Behavioural Ecology Perspective. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2012, 367, 2762–2772. [Google Scholar] [CrossRef]
- Jolles, J.W.; Briggs, H.D.; Araya-Ajoy, Y.G.; Boogert, N.J. Personality, plasticity and predictability in sticklebacks: Bold fish are less plastic and more predictable than shy fish. Anim. Behav. 2019, 154, 193–202. [Google Scholar] [CrossRef]
- FAO. Sander lucioperca. Cultured Aquatic Species Information Programme. Text by Zakęś, Z. In Fisheries and Aquaculture; FAO: Rome, Italy, 2025; Available online: https://www.fao.org/fishery/en/culturedspecies/sander_lucioperca/en (accessed on 27 June 2025).
- Colchen, T.; Dias, A.; Gisbert, E.; Fontaine, P.; Pasquet, A. The onset of piscivory in a freshwater fish species: Analysis of behavioural and physiological traits. J. Fish. Biol. 2020, 96, 1463–1474. [Google Scholar] [CrossRef]
- Specziár, A. Size-Dependent Prey Selection in Piscivorous Pikeperch Sander lucioperca and Volga Pikeperch Sander volgensis Shaped by Bimodal Prey Size Distribution. J. Fish. Biol. 2011, 79, 1895–1917. [Google Scholar] [CrossRef] [PubMed]
- Benedek, I.; Molnár, T. Size preference of live fish prey in the pellet-consuming pikeperch. Appl. Sci. 2023, 13, 2259. [Google Scholar] [CrossRef]
- Molnár, T.; Urbányi, B.; Benedek, I. Impact of exploration behavior, aptitude for pellet consumption, and the predation practice on the performance in consecutive live prey foraging tests in a piscivorous species. Anim. Cogn. 2023, 26, 973–984. [Google Scholar] [CrossRef]
- Molnár, T.; Hancz, C.; Molnár, M.; Horn, P. The effects of diet and stocking density on the growth and behaviour of pond pre-reared pikeperch under intensive conditions. J. Appl. Ichthyol. 2004, 20, 105–109. [Google Scholar] [CrossRef]
- Molnár, T.; Csuvár, A.; Benedek, I.; Molnár, M.; Kabai, P. Domestication Affects Exploratory Behaviour of Pikeperch (Sander lucioperca L.) during the Transition to Pelleted Food. PLoS ONE 2018, 13, e0196118. [Google Scholar] [CrossRef]
- Symonová, R.; Jůza, T.; Tesfaye, M.; Brabec, M.; Bartoň, D.; Blabolil, P.; Draštík, V.; Kočvara, L.; Muška, M.; Prchalová, M.; et al. Transition to Piscivory Seen Through Brain Transcriptomics in a Juvenile Percid Fish: Complex Interplay of Differential Gene Transcription, Alternative Splicing, and ncRNA Activity. J. Exp. Zool. Ecol. Integr. Physiol. 2025, 343, 257–277. [Google Scholar] [CrossRef]
- Chapman, J.R.; Nakagawa, S.; Coltman, D.W.; Slate, J.; Sheldon, B.C. A Quantitative Review of Heterozygosity-Fitness Correlations in Animal Populations. Mol. Ecol. 2009, 18, 2746–2765. [Google Scholar] [CrossRef]
- Mitrus, C.; Mitrus, J.; Rutkowski, R. Individual Heterozygosity Influences Arrival Times and Mating Success of Male Red-Breasted Flycatchers Ficedula Parva. Zool. Stud. 2020, 59, e12. [Google Scholar] [CrossRef] [PubMed]
- Tsaparis, D.; Lecocq, T.; Kyriakis, D.; Oikonomaki, K.; Fontaine, P.; Tsigenopoulos, C.S. Assessing Genetic Variation in Wild and Domesticated Pikeperch Populations: Implications for Conservation and Fish Farming. Animals 2022, 12, 1178. [Google Scholar] [CrossRef]
- Kánainé Sipos, D.; Kovács, G.; Buza, E.; Csenki-Bakos, K.; Ősz, Á.; Ljubobratović, U.; Cserveni-Szücs, R.; Bercsényi, M.; Lehoczky, I.; Urbányi, B.; et al. Comparative genetic analysis of natural and farmed populations of pike-perch (Sander lucioperca). Aquac. Int. 2019, 27, 991–1007. [Google Scholar] [CrossRef]
- Molnár, T.; Benedek, I.; Kovács, B.; Zsolnai, A.; Lehoczky, I. Genetic Consequences of Pond Production of a Pikeperch (Sander lucioperca L.) Stock with Natural Origin: The Effects of Changed Selection Pressure and Reduced Population Size. PeerJ 2020, 8, e8745. [Google Scholar] [CrossRef] [PubMed]
- De Los Ríos-Pérez, L.; Druet, T.; Goldammer, T.; Wittenburg, D. Analysis of Autozygosity Using Whole-Genome Sequence Data of Full-Sib Families in Pikeperch (Sander lucioperca). Front. Genet. 2022, 12, 786934. [Google Scholar] [CrossRef]
- Bódis, M.; Kucska, B.; Bercsényi, M. The effect of different diets on the growth and mortality of juvenile pikeperch (Sander lucioperca) in the transition from live food to formulated feed. Aquac. Int. 2007, 15, 83–90. [Google Scholar] [CrossRef]
- Policar, T.; Stejskal, V.; Kristan, J.; Podhorec, P.; Svinger, V.; Blaha, M. The effect of fish size and stocking density on the weaning success of pond-cultured pikeperch Sander lucioperca L. juveniles. Aquac. Int. 2013, 21, 869–882. [Google Scholar] [CrossRef]
- Kohlmann, K.; Kersten, P. Isolation and characterization of nine microsatellite loci from the pike-perch, Sander lucioperca (Linnaeus, 1758). Mol. Ecol. Resour. 2008, 8, 1085–1087. [Google Scholar] [CrossRef]
- Wirth, T.; Saint-Laurent, R.; Bernatchez, L. Isolation and characterization of microsatellite loci in the walleye (Stizostedion vitreum), and cross-species amplification within the family Percidae. Mol. Ecol. 1999, 8, 1960–1962. [Google Scholar] [CrossRef] [PubMed]
- Leclerc, D.; Wirth, T.; Bernatchez, L. Isolation and characterization of microsatellite loci in the yellow perch (Perca flavescens), and cross- species amplification within the family Percidae. Mol. Ecol. 2000, 9, 995–997. [Google Scholar] [CrossRef]
- Dubut, V.; Grenier, R.; Meglécz, E.; Chappaz, R.; Costedoat, C.; Danancher, D.; Descloux, S.; Malausa, T.; Martin, J.F.; Pech, N.; et al. Development of 55 novel polymorphic microsatellite loci for the critically endangered Zingel asper L. (Actinopterygii: Perciformes: Percidae) and cross-species amplification in five other percids. Eur. J. Wildl. Res. 2010, 56, 931–938. [Google Scholar] [CrossRef]
- Van Oosterhout, C.; Hutchinson, W.F.; Wills, D.P.M.; Shipley, P. Micro-checker: Software for identifying and correcting gen-otyping errors in microsatellite data. Mol. Ecol. Notes 2004, 4, 535–538. [Google Scholar] [CrossRef]
- Peakall, R.; Smouse, P.E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research—An update. Bioinformatics 2012, 28, 2537–2539. [Google Scholar] [CrossRef] [PubMed]
- Kalinowski, S.T. hp-rare 1.0: A computer program for performing rarefaction on measures of allelic richness. Mol. Ecol. Notes 2005, 5, 187–189. [Google Scholar] [CrossRef]
- IBM Corp. IBM SPSS Statistics for Windows (Version 27.0) [Computer Software]; IBM Corp: Armonk, NY, USA, 2020. [Google Scholar]
- Blanchet, S.; Bernatchez, L.; Dodson, J.J. Does Interspecific Competition Influence Relationships between Heterozygosity and Fitness-Related Behaviors in Juvenile Atlantic Salmon (Salmo salar)? Behav. Ecol. Sociobiol. 2009, 63, 605–615. [Google Scholar] [CrossRef]
- Pritchard, J.K.; Stephens, M.; Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 2000, 155, 945–959. [Google Scholar] [CrossRef]
- Falush, D.; Stephens, M.; Pritchard, J.K. Inference of population structure using multilocus genotype data: Linked loci and correlated allele frequencies. Genetics 2003, 164, 1567–1587. [Google Scholar] [CrossRef]
- Li, Y.L.; Liu, J.X. StructureSelector: A web based software to select and visualize the optimal number of clusters using multiple methods. Mol. Ecol. Resour. 2018, 18, 176–177. [Google Scholar] [CrossRef]
- Evanno, G.; Regnaut, S.; Goudet, J. Detecting the number of clusters of individuals using the software structure: A simulation study. Mol. Ecol. 2005, 14, 2611–2620. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef]
- Jombart, T. Adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 2008, 24, 1403–1405. [Google Scholar] [CrossRef]
- Excoffier, L.; Lischer, H.E. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 2010, 10, 564–567. [Google Scholar] [CrossRef]
- Foll, M.; Gaggiotti, O. A Genome-Scan Method to Identify Selected Loci Appropriate for Both Dominant and Codominant Markers: A Bayesian Perspective. Genetics 2008, 180, 977–993. [Google Scholar] [CrossRef] [PubMed]
- Kauer, M.O.; Dieringer, D.; Schlotterer, C. A microsatellite variability screen for positive selection associated with the ‘out of Africa’ habitat expansion of Drosophila melanogaster. Genetics 2003, 165, 1137–1148. [Google Scholar] [CrossRef] [PubMed]
- Christie, M.R.; Marine, M.L.; French, R.A.; Blouin, M.S. Genetic Adaptation to Captivity Can Occur in a Single Generation. Proc. Natl. Acad. Sci. USA 2012, 109, 238–242. [Google Scholar] [CrossRef]
- Christie, M.R.; Marine, M.L.; Fox, S.E.; French, R.A.; Blouin, M.S. A Single Generation of Domestication Heritably Alters the Expression of Hundreds of Genes. Nat. Commun. 2016, 7, 10676. [Google Scholar] [CrossRef]
- Hansson, B.; Westerberg, L. On the Correlation between Heterozygosity and Fitness in Natural Populations. Mol. Ecol. 2002, 11, 2467–2474. [Google Scholar] [CrossRef]
- Hammock, E.A.; Young, L.J. Microsatellite instability generates diversity in brain and sociobehavioral traits. Science 2005, 308, 1630–1634. [Google Scholar] [CrossRef]
- Hammock, E.A.D.; Lim, M.M.; Nair, H.P.; Young, L.J. Association of Vasopressin 1a Receptor Levels with a Regulatory Microsatellite and Behavior. Genes. Brain Behav. 2005, 4, 289–301. [Google Scholar] [CrossRef]
- Tiira, K.; Laurila, A.; Peuhkuri, N.; Piironen, J.; Ranta, E.; Primmer, C.R. Aggressiveness Is Associated with Genetic Diversity in Landlocked Salmon (Salmo salar). Mol. Ecol. 2003, 12, 2399–2407. [Google Scholar] [CrossRef]
- Laine, V.N.; Herczeg, G.; Shikano, T.; Primmer, C.R. Heterozygosity-Behaviour Correlations in Nine-Spined Stickleback (Pungitius pungitius) Populations: Contrasting Effects at Random and Functional Loci. Mol. Ecol. 2012, 21, 4872–4884. [Google Scholar] [CrossRef]
- Ellison, A.; De Leaniz, C.G.; Consuegra, S. Inbred and furious: Negative association between aggression and genetic diversity in highly inbred fish. Mol. Ecol. 2013, 22, 2292–2300. [Google Scholar] [CrossRef]
- Tiira, K.; Laurila, A.; Enberg, K.; Piironen, J.; Aikio, S.; Ranta, E.; Primmer, C.R. Do Dominants Have Higher Heterozygosity? Social Status and Genetic Variation in Brown Trout, Salmo trutta. Behav. Ecol. Sociobiol. 2006, 59, 657–665. [Google Scholar] [CrossRef]
- Vilhunen, S.; Tiira, K.; Laurila, A.; Hirvonen, H. The Bold and the Variable: Fish with High Heterozygosity Act Recklessly in the Vicinity of Predators. Ethology 2008, 114, 7–15. [Google Scholar] [CrossRef]
- Wright, D.; Nakamichi, R.; Krause, J.; Butlin, R.K. QTL analysis of behavioral and morphological differentiation between wild and laboratory zebrafish (Danio rerio). Behav. Genet. 2006, 36, 271–284. [Google Scholar] [CrossRef] [PubMed]
- Laine, V.N.; Herczeg, G.; Shikano, T.; Vilkki, J.; Merilä, J. QTL Analysis of Behavior in Nine-Spined Sticklebacks (Pungitius pungitius). Behav. Genet. 2014, 44, 77–88. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; He, S.; Lin, M.H.; Zhang, Y.P.; Kuhl, H.; Liang, X.F. Whole-genome resequencing and bisulfite sequencing provide new insights into the feeding habit domestication in mandarin fish (Siniperca chuatsi). Front. Genet. 2023, 13, 1088081. [Google Scholar] [CrossRef] [PubMed]
- Żarski, D.; Le Cam, A.; Nynca, J.; Klopp, C.; Ciesielski, S.; Sarosiek, B.; Montfort, J.; Król, J.; Fontaine, P.; Ciereszko, A.; et al. Domestication modulates the expression of genes involved in neurogenesis in high-quality eggs of Sander lucioperca. Mol. Reprod. Dev. 2020, 87, 934–951. [Google Scholar] [CrossRef] [PubMed]
- Żarski, D.; Le Cam, A.; Frohlich, T.; Kösters, M.; Klopp, C.; Nynca, J.; Ciesielski, S.; Sarosiek, B.; Dryl, K.; Montfort, J.; et al. Neurodevelopment vs. the immune system: Complementary contributions of maternally-inherited gene transcripts and proteins to successful embryonic development in fish. Genomics 2021, 113, 3811–3826. [Google Scholar] [CrossRef] [PubMed]
Locus | GenBank ID | Multiplex PCR | Primer Label and Sequence |
---|---|---|---|
MSL-1 | EF694018 | A | F-NED-TGTTTGTCAGCGTCAAGAGG |
R-TTCCGCTCCAACATATCACA | |||
MSL-3 | EF694020 | A | F-NED-CCGGCATCCATACACCTTAC |
R-CACACCTGTGTCTGCCTAACA | |||
MSL-5 | EF694022 | A | F-PET-CAATCGCTCTGAGGATGTCA |
R-AAGGGTGGGGAAATTATTCG | |||
MSL-6 | EF694023 | A | F-FAM-GTCGTCATCGTCAGCACAGT |
R-ACTACACGGGACGCTGGA | |||
MSL-9 | EF694026 | A | F-VIC-GCATCACTTGCGTCACTTTC |
R-GCAGTCAGTGCTTGAAGTGG | |||
MSL-2 | EF694019 | B | F-PET-TTTTCACACCGTGCATGACT |
R-ACCCTCAGCCTCTGTGTACG | |||
Pfla L8 | AF211833 | B | F-FAM-GCCTTATTGTGTGACTTATCG |
R-GGATCTTTCACTTTTTCTTTCAG | |||
Svi18 | G36964 | B | F-PET-GATCTGTAAACTCCAGCGTG |
R-CTTAAGCTGCTCAGCATCCAGG | |||
Svi4 | G36961 | B | F-PET-ACAAATGCGGGCTGCTGTTC |
R-GATCGCGGCACAGATGTATTG | |||
Svi6 | G36962 | B | F-NED-CATATTATGTAGAGTGCAGACCC |
R-TGAGCTTCACCTCATATTCC | |||
Svi-L7 | AF144740 | B | F-NED-GATGTGCATACATTTACTCC |
R-GCTTTAATCTGCTGAGAAC | |||
PflaL3 | AF211828 | C | F-FAM-GCCGAATGTGATTGAATG |
R-CGCTAAAGCCAACTTAATG | |||
Za138 | HM622317 | C | F-VIC-TTCTTTATACAAGAGGAATAGTTGCAG |
R-TTTTTGTGATTGTGCTATTTTAAAGG | |||
Za199 | HM622334 | C | F-NED-CCTTCCCCTCAAAAGCATGT |
R-AGGAAATGGAAAGGGAATGC | |||
SviL8 | AF144741 | C | F-PET-GCTTATACGTCGTTCTTATG |
R-ATGGAGAAGCAAGTTGAG | |||
Pfla-L9 | AF211834 | D | F-PET-GTTAGTGTGAAAGAAGCATCTGC |
R-TGGGAAATGTGGTCAGCGGC | |||
Za038 | HM622298 | D | F-FAM-TGAATCGCTGCTCTTTCTCA |
R-TATGCAATTACATCGGAGCG | |||
Za144 | HM622319 | D | F-VIC-GCCCACAATAGCACCGTAAT |
R-TTTGTGAATGTGAGTGAGAGTCAG |
N | uHe | Ho | FIS | NA | Ne | AR | ARP | |
---|---|---|---|---|---|---|---|---|
PNF | 57 | 0.63 ± 0.12 | 0.68 ± 0.16 | −0.085 ± 0.13 | 5.61 ± 1.41 a | 3.00 ± 1.00 | 4.40 ± 0.85 | 0.56 ± 0.54 a |
C | 12 | 0.67 ± 0.12 | 0.67 ± 0.19 | −0.050 ± 0.21 | 4.44 ± 1.09 b | 3.10 ± 1.04 | 4.44 ± 1.09 | 0.12 ± 0.18 b |
PF | 65 | 0.59 ± 0.17 | 0.66 ± 0.26 | −0.079 ± 0.23 | 5.50 ± 1.50 ab | 2.78 ± 0.87 | 4.10 ± 0.92 | 0.23 ± 0.30 b |
O | 134 | 0.63 ± 0.14 | 0.67 ± 0.20 | −0.071 ± 0.19 | 5.18 ± 1.42 | 2.96 ± 0.96 | 6.33 ± 1.57 | - |
Locus | Arlequin | BayeScan | LnRH | ||||||
---|---|---|---|---|---|---|---|---|---|
Het | FST | p | Prob | Log10(PO) | q-Value | PNF/PF | PNF/C | PF/C | |
MSL-1 | 0.81 | 0.176 | 0.044 | 0.06 | −1.23 | 0.85 | −0.82 | −0.29 | 1.11 |
MSL-3 | 0.34 | 0.107 | 0.231 | 0.08 | −1.08 | 0.71 | 0.61 | −1.15 | 0.54 |
MSL-5 | 0.81 | 0.031 | 0.113 | 0.06 | −1.17 | 0.81 | −0.18 | −0.90 | 1.08 |
MSL-6 | 0.74 | 0.009 | 0.036 | 0.88 | 0.85 | 0.12 | 0.15 | 0.92 | −1.07 |
MSL-9 | 0.73 | 0.059 | 0.430 | 0.05 | −1.32 | 0.88 | 0.30 | 0.81 | −1.12 |
Msl-2 | 0.63 | 0.205 | 0.057 | 0.05 | −1.29 | 0.87 | −0.24 | −0.86 | 1.10 |
Pfla-L8 | 0.73 | 0.040 | 0.253 | 0.06 | −1.21 | 0.82 | 0.42 | 0.73 | −1.14 |
Svi-18 | 0.63 | 0.060 | 0.499 | 0.04 | −1.38 | 0.89 | 1.00 | −0.01 | −1.00 |
Svi-4 | 0.78 | 0.050 | 0.308 | 0.07 | −1.11 | 0.75 | −0.43 | −0.71 | 1.14 |
Svi-6 | 0.71 | 0.010 | 0.046 | 0.08 | −1.08 | 0.64 | 0.72 | 0.42 | −1.14 |
Svil-L7 | 0.37 | 0.052 | 0.489 | 0.13 | −0.84 | 0.50 | 1.14 | −0.75 | −0.39 |
PflaL3 | 0.57 | 0.033 | 0.272 | 0.07 | −1.12 | 0.78 | −0.52 | −0.63 | 1.15 |
SviL8 | 0.78 | 0.153 | 0.088 | 0.05 | −1.26 | 0.86 | 0.21 | −1.09 | 0.88 |
Za138 | 0.67 | 0.049 | 0.377 | 0.05 | −1.32 | 0.88 | −0.38 | −0.76 | 1.13 |
Za199 | 0.62 | 0.118 | 0.192 | 0.06 | −1.24 | 0.86 | −0.91 | −0.15 | 1.07 |
PflaL9 | 0.67 | 0.085 | 0.346 | 0.06 | −1.22 | 0.84 | −0.43 | −0.71 | 1.14 |
Za038 | 0.68 | 0.088 | 0.335 | 0.04 | −1.36 | 0.89 | 0.49 | −1.15 | 0.66 |
Za144 | 0.85 | 0.090 | 0.356 | 0.04 | −1.33 | 0.89 | 0.55 | −1.15 | 0.61 |
Group | N | Mean | SD | Confidence Interval (95%) | |
---|---|---|---|---|---|
Lower Bound | Upper Bound | ||||
PNF | 57 | 10.07 | 1.22 | 9.74 | 10.39 |
C | 12 | 9.75 | 1.21 | 8.97 | 10.52 |
PF | 65 | 9.46 | 1.32 | 9.13 | 9.78 |
O | 134 | 9.74 | 1.29 | 9.52 | 9.96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benedek, I.; Urbányi, B.; Kovács, B.; Lehoczky, I.; Zsolnai, A.; Molnár, T. Genetic Variability Related Behavioral Plasticity in Pikeperch (Sander lucioperca L.) Fingerlings. Animals 2025, 15, 2229. https://doi.org/10.3390/ani15152229
Benedek I, Urbányi B, Kovács B, Lehoczky I, Zsolnai A, Molnár T. Genetic Variability Related Behavioral Plasticity in Pikeperch (Sander lucioperca L.) Fingerlings. Animals. 2025; 15(15):2229. https://doi.org/10.3390/ani15152229
Chicago/Turabian StyleBenedek, Ildikó, Béla Urbányi, Balázs Kovács, István Lehoczky, Attila Zsolnai, and Tamás Molnár. 2025. "Genetic Variability Related Behavioral Plasticity in Pikeperch (Sander lucioperca L.) Fingerlings" Animals 15, no. 15: 2229. https://doi.org/10.3390/ani15152229
APA StyleBenedek, I., Urbányi, B., Kovács, B., Lehoczky, I., Zsolnai, A., & Molnár, T. (2025). Genetic Variability Related Behavioral Plasticity in Pikeperch (Sander lucioperca L.) Fingerlings. Animals, 15(15), 2229. https://doi.org/10.3390/ani15152229