Phenotypic Variation Patterns in Oecomys catherinae (Rodentia: Sigmodontinae): Craniodental Morphometric Analysis and Its Relationship with Latitudinal Variation in the Atlantic Forest and Cerrado Biomes
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling and Specimens Localities
2.2. Age Classification and Morphometric Measurements
2.3. Data Analysis
3. Results
3.1. Sexual Dimorphism
3.2. Comparison Between Biome Populations
3.3. Latitude Effect
3.4. Oecomys catherinae Craniodental Morphometric Comparison Between Atlantic Forest and Cerrado Biomes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MN | Museu Nacional |
UFRJ | Universidade Federal do Rio de Janeiro |
COLMASTO | Coleção Integrada de Mamíferos Reservatórios Silvestres |
IOC | Instituto Oswaldo Cruz |
FIOCRUZ | Fundação Oswaldo Cruz |
LBCE | Laboratório de Biologia e Controle da Esquistossomose |
CRB | Cibele Rodrigues Bonvicino |
BA | Bahia |
GO | Goiás |
MG | Minas Gerais |
MS | Mato Grosso do Sul |
RJ | Rio de Janeiro |
SP | São Paulo |
TO | Tocantins |
DF | Distrito Federal |
M3 | Third Molar |
M1 | First Molar |
LN | Length of Nasals |
LR | Length of Rostrum |
BN | Breadth of Nasals |
BR | Breadth of Rostrum |
LIB | Least Interorbital Breadth |
ZB | Zygomatic Breadth |
BB | Breadth of Braincase |
BIF | Breadth of the Incisive Foramina |
BPL | Bony Palate Length |
BBP | Breadth across Bony Palate |
BOC | Breadth of the Occipital Condyles |
LD | Length of Diastema |
BZP | Breadth of the Zygomatic Plate |
BH | Braincase Height |
ONL | Occipitonasal Length |
CIL | Condylo-Incisive Length |
LLD | Lower Length of Diastema |
CLLM | Coronal Length of Lower Molars |
MH | Mandibular Height |
LM1-3 | Coronal Length of Maxillary Toothrow |
WM1 | Width of the First Upper Molar (M1) |
SD | Standard Deviation |
PERMANOVA | Permutational Multivariate Analysis of Variance |
DAPC | Discriminant Analysis of Principal Components |
db-RDA | Distance-Based Redundancy Analysis |
MANOVA | Multivariate Analysis of Variance |
CAP1 | First Canonical Axis |
References
- Patton, J.L.; da Silva, M.N.F.; Malcolm, J.R. Mammals of the Rio Juruá and the evolutionary and ecological diversification of Amazonia. Bull. Am. Mus. Nat. Hist. 2000, 244, 1–306. [Google Scholar] [CrossRef]
- Carleton, M.D.; Musser, G.G. Order Rodentia. In Mammals of South America: Volume 2—Rodents; Patton, J.L., Pardiñas, U.F.J., D’Elía, G., Eds.; University of Chicago Press: Chicago, IL, USA, 2015; pp. 393–417. [Google Scholar]
- Hershkovitz, P. Mice, land bridges, and Latin American faunal interchange. In Ectoparasites of Panama; Wenzel, R.L., Tipton, V.J., Eds.; Field Museum of Natural History: Chicago, IL, USA, 1960; pp. 725–751. [Google Scholar]
- Pardiñas, U.F.J.; Teta, P.; Salazar-Bravo, J. A new species of arboreal rat, Genus Oecomys (Rodentia: Cricetidae) from Chaco. J. Mammal. 2016, 97, 1177–1196. [Google Scholar] [CrossRef]
- Saldanha, J.; Rossi, R.V. Integrative Analysis Supports a New Species of the Oecomys catherinae Complex (Rodentia: Cricetidae) from Amazonia. J. Mammal. 2021, 102, 69–89. [Google Scholar] [CrossRef]
- Weksler, M. Phylogenetic Relationships of Oryzomyine Rodents (Muroidea: Sigmodontinae): Separate and combined analyses of morphological and molecular data. Bull. Am. Mus. Nat. Hist. 2006, 296, 1–149. [Google Scholar] [CrossRef]
- Rocha, R.G.; Fonseca, C.; Zhou, Z.; Leite, Y.L.R.; Costa, L.P. Taxonomic and conservation status of the elusive Oecomys cleberi (Rodentia: Sigmodontinae) from Central Brazil. Mamm. Biol. 2012, 77, 414–419. [Google Scholar] [CrossRef]
- Suárez-Villota, E.Y.; Carmignotto, A.P.; Brandão, M.V.; Percequillo, A.R.; Silva, M.J.J. Systematics of the Genus Oecomys (Sigmodontinae: Oryzomyini): Molecular phylogenetic, cytogenetic and morphological approaches reveal cryptic species. Zool. J. Linn. Soc. 2018, 184, 182–210. [Google Scholar] [CrossRef]
- Thomas, O. New Species of Oecomys and Marmosa from Amazonia. J. Nat. Hist. 1909, 3, 378–380. [Google Scholar] [CrossRef]
- Asfora, P.H.; Palma, A.R.T.; Astúa, D.; Geise, L. Distribution of Oecomys catherinae Thomas, 1909 in Northeastern Brazil with karyotypical and morphometrical notes. Biota Neotrop. 2011, 11, 415–424. [Google Scholar] [CrossRef]
- Feijó, A.; Nunes, H.; Langguth, A. Mamíferos da Reserva Biológica Guaribas, Paraíba, Brasil. Rev. Nord. Biol. 2016, 24, 57–74. [Google Scholar]
- Percequillo, A.R.; Bonvicino, C.R.; Araujo, A.C.; Bezerra, A.M.R.; Delciellos, A.C.; Machado, A.F.; Miranda, C.L.; Silva, C.R.; de Abreu, E.F., Jr.; Chiquito, E.A.; et al. Oecomys catherinae Thomas, 1909. Sistema de Avaliação do Risco de Extinção da Biodiversidade (SALVE); Instituto Chico Mendes de Conservação da Biodiversidade: Brasília, Brazil, 2024. Available online: https://salve.icmbio.gov.br (accessed on 26 June 2025).
- Gross, E.A.; Swenberg, J.A.; Fields, S.; Popp, J.A. Comparative morphometry of the nasal cavity in rats and mice. J. Anat. 1982, 135, 83. [Google Scholar]
- García, F.J.; Sánchez-González, E. Morfometría geométrica craneal en tres especies de roedores arborícolas neotropicales. Therya 2013, 4, 157–178. [Google Scholar] [CrossRef]
- Pigliucci, M. Evolution of Phenotypic Plasticity: Where are we going now? Trends Ecol. Evol. 2005, 20, 481–486. [Google Scholar] [CrossRef]
- Myers, N.; Mittermeier, R.A.; Mittermeier, C.G.; Da Fonseca, G.A.; Kent, J. Biodiversity hotspots for conservation priorities. Nature 2000, 403, 853–858. [Google Scholar] [CrossRef]
- Oliveira-Filho, A.T.; Fontes, M.A.L. Patterns of floristic differentiation among Atlantic Forests in Southeastern Brazil and the influence of climate. Biotropica 2000, 32, 793–810. [Google Scholar] [CrossRef]
- Joly, C.A.; Metzger, J.P.; Tabarelli, M. Experiences from the Brazilian Atlantic Forest: Ecological findings and conservation initiatives. New Phytol. 2014, 204, 459–473. [Google Scholar] [CrossRef]
- Eiten, G. The cerrado vegetation of Brazil. Bot. Rev. 1972, 38, 201–341. [Google Scholar] [CrossRef]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; Gonçalves, J.L.M.; Sparovek, G. Köppen’s climate classification map for Brazil. Meteorol. Z. 2013, 22, 711–728. [Google Scholar] [CrossRef]
- Voss, R.S. An Introduction to the Neotropical Muroid Rodent Genus Zygodontomys. Bull. Am. Mus. Nat. Hist. 1991, 210, 1–113. [Google Scholar]
- Voss, R.S. Systematics and Ecology of Ichthyomyine Rodents (Muroidea): Patterns of morphological evolution in a small adaptive radiation. Bull. Am. Mus. Nat. Hist. 1988, 188, 259–493. [Google Scholar]
- Carleton, M.D.; Musser, G.G. Systematic studies of Oryzomyine rodents (Muridae, Sigmodontinae)—Definition and distribution of Oligoryzomys vegetus (Bangs, 1902). Am. Mus. Novit. 1995, 108, 338–369. [Google Scholar]
- Anderson, M.J. A New Method for Non-Parametric Multivariate Analysis of Variance. Austral Ecol. 2001, 26, 32–46. [Google Scholar]
- Jombart, T.; Devillard, S.; Balloux, F. Discriminant Analysis of Principal Components. BMC Genet. 2010, 11, 94. [Google Scholar] [CrossRef]
- Jombart, T.; Collins, C. A Tutorial for Discriminant Analysis of Principal Components (DAPC) Using Adegenet 2.0.0; Imperial College: London, UK, 2015. [Google Scholar]
- Legendre, P.; Anderson, M.J. Distance-Based Redundancy Analysis: Testing multispecies responses in multifactorial ecological experiments. Ecol. Monogr. 1999, 69, 1–24. [Google Scholar] [CrossRef]
- Neter, J.; Kutner, M.H.; Nachtsheim, C.J.; Wasserman, W. Applied Linear Statistical Models, 4th ed.; McGraw-Hill: New York, NY, USA, 1996. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024. [Google Scholar]
- Jombart, T. adegenet: A R Package for the Multivariate Analysis of Genetic Markers. Bioinformatics 2008, 24, 1403–1405. [Google Scholar] [CrossRef]
- Oksanen, J.; Blanchet, F.G.; Kindt, R.; Legendre, P.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; Stevens, M.H.H.; Wagner, H. vegan: Community Ecology Package, R package version 2.6-4; R Foundation for Statistical Computing: Vienna, Austria, 2024. [Google Scholar]
- Zar, J.H. Biostatistical Analysis, 5th ed.; Pearson: London, UK, 2010. [Google Scholar]
- Carleton, M.D.; Emmons, L.H.; Musser, G.G. A new species of the rodent genus Oecomys (Cricetidae: Sigmodontinae: Oryzomyini) from eastern Bolivia, with emended definitions of O. concolor (Wagner) and O. mamorae (Thomas). Am. Mus. Novit. 2009, 3661, 1–32. [Google Scholar] [CrossRef]
- Rosa, C.C.; Flores, T.; Pieczarka, J.C.; Rossi, R.V.; Sampaio, M.I.C.; Rissino, J.D.; Nagamachi, C.Y. Genetic and morphological variability in South American rodent Oecomys (Sigmodontinae, Rodentia): Evidence for a complex of species. J. Genet. 2012, 91, 265–277. [Google Scholar] [CrossRef]
- Samuels, J.X.; Van Valkenburgh, B. Skeletal Indicators of locomotor adaptations in living and extinct rodents. J. Morphol. 2008, 269, 1387–1411. [Google Scholar] [CrossRef]
- Lailvaux, S.P.; Irschick, D.J. A functional perspective on sexual selection: Insights and future prospects. Anim. Behav. 2006, 72, 263–273. [Google Scholar] [CrossRef]
- Prado, J.R.; Percequillo, A.R.; Pirani, R.M.; Thomaz, A.T. Phenotypic and genomic differences between biomes of the South America marsh rat, Holochilus brasiliensis. Biol. J. Linn. Soc. 2022, 135, 98–116. [Google Scholar] [CrossRef]
- Stumpp, R.; Fuzessy, L.; Paglia, A.P. Environmental drivers acting on rodent rapid morphological change. J. Mamm. Evol. 2018, 25, 131–140. [Google Scholar] [CrossRef]
- Pianka, E.R. Latitudinal gradients in species diversity: A review of concepts. Am. Nat. 1966, 100, 33–46. [Google Scholar] [CrossRef]
- Panteleev, P.A. On the character of geographical variation of rodents in Central Europe. Fol. Zool. 1985, 34, 33–41. [Google Scholar]
- Mittelbach, G.G.; Schemske, D.W.; Cornell, H.V.; Allen, A.P.; Brown, J.M.; Bush, M.B.; Harrison, S.P.; Hurlbert, A.H.; Knowlton, N.; Lessios, H.A.; et al. Evolution and the latitudinal diversity gradient: Speciation, extinction and biogeography. Ecol. Lett. 2007, 10, 315–331. [Google Scholar] [CrossRef]
- Pigot, A.L.; Trisos, C.H.; Tobias, J.A. Functional traits reveal the expansion and packing of ecological niche space underlying an elevational diversity gradient in passerine birds. Proc. R. Soc. B 2016, 283, 20152013. [Google Scholar] [CrossRef]
- Yom-Tov, Y.; Yom-Tov, S.; Jensen, T.S.; Baagøe, H. No recent temporal changes in body size of three Danish rodents. Acta Theriol. 2012, 57, 59–63. [Google Scholar] [CrossRef]
- Hillenius, W.J. The evolution of nasal turbinates and mammalian endothermy. Paleobiology 1992, 18, 17–29. [Google Scholar] [CrossRef]
- Amarillo-Suárez, A.R.; Stillwell, R.C.; Fox, C.W. Natural selection on body size is mediated by multiple interacting factors: A comparison of beetle populations varying naturally and experimentally in body size. Ecol. Evol. 2011, 1, 1–14. [Google Scholar] [CrossRef]
- Samuels, J.X. Cranial morphology and dietary habits of rodents. Zool. J. Linn. Soc. 2009, 156, 864–888. [Google Scholar] [CrossRef]
- Pinotti, B.T.; Naxara, L.; Pardini, R. Diet and food selection by small mammals in an old-growth Atlantic Forest of south-eastern Brazil. Stud. Neotrop. Fauna Environ. 2011, 46, 1–9. [Google Scholar] [CrossRef]
- Losos, J.B. Convergence, adaptation, and constraint. Evolution 2011, 65, 1827–1840. [Google Scholar] [CrossRef]
- McLean, B.S.; Bell, K.C.; Dunnum, J.L.; Abrahamson, B.; Colella, J.P.; Deardorff, E.R.; Weber, M.M.; Jones, A.K.B.; Salazar-Miralles, F.; Cook, J.A. Natural history collections-based research: Progress, promise, and best practices. J. Mammal. 2016, 97, 287–297. [Google Scholar] [CrossRef]
- Cox, P.G.; Fagan, M.J.; Rayfield, E.J.; Jeffery, N. Finite element modelling of squirrel, guinea pig and rat skulls: Using geometric morphometrics to assess sensitivity. J. Anat. 2011, 219, 696–709. [Google Scholar] [CrossRef]
- Elmer, K.R.; Meyer, A. Adaptation in the age of ecological genomics: Insights from parallelism and convergence. Trends Ecol. Evol. 2011, 26, 298–306. [Google Scholar] [CrossRef]
- Tingley, M.W.; Monahan, W.B.; Beissinger, S.R.; Moritz, C. Birds track their Grinnellian Niche through a century of climate change. Proc. Natl. Acad. Sci. USA 2009, 106, 19637–19643. [Google Scholar] [CrossRef]
Age Classification | Description |
---|---|
Class 1 (juveniles) | M3 incompletely erupted or unworn. |
Class 2 (adults) | M3 fully erupted exhibiting slight-to-moderate wear (some dentine exposed), but with the occlusal surface still tubercular (the paracone raised and prominent) not flat. |
Class 3 (intermediate-stage adults) | M3 well worn and the occlusal surface flat or concave; M1-2 tubercular (the major cusps all separate and prominent); anteroloph of M2 distinct, not fused with paracone. |
Class 4 (advanced-stage adults) | M3 flat or concave; M1-2 with cusps almost worn or quite flat but not below widest part of crown; anteroloph of M2 obliterated, fused with paracone. |
Class 5 (senile adults) | MI-3 all worn flat or concave, below widest part of crowns; most details of occlusal topography obliterated. |
Abb | Measurement | Description |
---|---|---|
BH | Braincase Height | Braincase height maximum vertical extent of the internal cranial region, from the base to the highest point of the skull. |
BB | Breadth of Braincase | Measured at the plane dorsal to the squamosal roots of the zygomatic arches and ventral to the temporal ridges. |
LIB | Least Interorbital Breadth | The least distance across the frontal bones between the orbital fossae. |
BBP | Breadth across Bony Palate | The greatest breadth across the basal part of the palate. |
BIF | Breadth of the Incisive Foramina | The greatest inside breadth across both incisive foramina. |
WM1 | Width of the First Upper Molar (M1) | Coronal width of first upper molar. |
BN | Breadth of Nasals | The greatest breadth across both nasal bones. |
BR | Breadth of Rostrum | Measured just inside the anteroventral edge of the zygomatic plate. |
LN | Length of Nasals | The greatest length of either nasal bone. |
LR | Length of Rostrum | Longitudinal extent of the anterior or frontal part of the skull, including the facial bone region. |
BZP | Breadth of the Zygomatic Plate | The least distance between anterior and posterior edges of the zy- gomatic plate. |
BOC | Breadth of the Occipital Condyles | The greatest breadth across the dorsal lobes of both occipital condyles. |
LM1-3 | Coronal Length of Maxillary Toothrow | Measured along the alveolar margin from the anterior edge of M1 to the posterior edge of M3. |
LD | Length of Diastema | Measured from the crown of the first maxillary molar to the exposed lesser curvature of the upper incisor on the same side. |
BPL | Bony Palate Length | The linear distance from the posterior margin of the incisive foramen to the anteriormost point of the posterior palatal border. |
CLLM | Coronal Length of Lower Molars | Linear length of the crown of the lower molars (M1–M3). |
LLD | Lower Length of Diastema | Linear distance of the toothless gap between the incisors and molars in the lower dentition. |
MH | Mandibular Height | Maximum vertical extent of the mandible. |
CIL | Condylo-Incisive Length | Measured from the exposed greater curvature of an upper incisor to the articular surface of the occipital condyle on the same side. |
ONL | Occipitonasal Length | Greatest length of skull, from the anteriormost projection of the nasal bones to the posteriormost projection of the occipital bone. |
ZB | Zygomatic Breadth | The greatest breadth across the zygomatic processes of the squamosal bones. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mata, P.S.d.; Cardoso, T.d.S.; Bonvicino, C.R.; Vilela, R.d.V. Phenotypic Variation Patterns in Oecomys catherinae (Rodentia: Sigmodontinae): Craniodental Morphometric Analysis and Its Relationship with Latitudinal Variation in the Atlantic Forest and Cerrado Biomes. Animals 2025, 15, 2200. https://doi.org/10.3390/ani15152200
Mata PSd, Cardoso TdS, Bonvicino CR, Vilela RdV. Phenotypic Variation Patterns in Oecomys catherinae (Rodentia: Sigmodontinae): Craniodental Morphometric Analysis and Its Relationship with Latitudinal Variation in the Atlantic Forest and Cerrado Biomes. Animals. 2025; 15(15):2200. https://doi.org/10.3390/ani15152200
Chicago/Turabian StyleMata, Paola Santos da, Thiago dos Santos Cardoso, Cibele Rodrigues Bonvicino, and Roberto do Val Vilela. 2025. "Phenotypic Variation Patterns in Oecomys catherinae (Rodentia: Sigmodontinae): Craniodental Morphometric Analysis and Its Relationship with Latitudinal Variation in the Atlantic Forest and Cerrado Biomes" Animals 15, no. 15: 2200. https://doi.org/10.3390/ani15152200
APA StyleMata, P. S. d., Cardoso, T. d. S., Bonvicino, C. R., & Vilela, R. d. V. (2025). Phenotypic Variation Patterns in Oecomys catherinae (Rodentia: Sigmodontinae): Craniodental Morphometric Analysis and Its Relationship with Latitudinal Variation in the Atlantic Forest and Cerrado Biomes. Animals, 15(15), 2200. https://doi.org/10.3390/ani15152200