Impact of Heat Stress on Gene Expression in the Hypothalamic–Pituitary–Ovarian Axis of Hu Sheep
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Experimental Diets
2.2. Sample Collection
2.3. Serum Biochemical Level Analysis
2.4. RNA Extraction, cDNA Library Construction, and Sequencing
2.5. Quality Control and Transcriptome Assembly
2.6. Gene Expression Quantification and Differential Expression Analysis
2.7. GO and KEGG Gene Enrichment, Functional Analysis, and Gene Interaction Analysis
2.8. Protein–Protein Interaction (PPI) Network Analysis
2.9. RT-qPCR Validation of RNA-Seq Data
2.10. Statistical Analysis
3. Results
3.1. The Effects of Heat Stress on Estrous Behavior in Hu Sheep
3.2. Effects of Heat Stress on Serum Concentrations of FSH, LH, E2, and P4 in Hu Sheep
3.3. RNA-Seq Data Quality and Gene Expression Analysis
3.4. Identification and Analysis of Differentially Expressed Genes in the Hypothalamic Tissue of Hu Sheep
3.5. Identification and Analysis of Differentially Expressed Genes in the Pituitary Tissue of Hu Sheep
3.6. Identification and Analysis of Differentially Expressed Genes in the Ovarian Tissue of Hu Sheep
3.7. Clustering Analysis of Differentially Expressed Genes in the Hypothalamic–Pituitary–Ovarian (HPO) Axis
3.8. RT-qPCR Validation of circRNAs
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
HS | Heat stress |
FSH | Follicle-stimulating hormone |
LH | Luteinizing hormone |
E2 | Estradiol |
P4 | Progesterone |
HPO | Hypothalamic–pituitary–ovarian |
SYN3 | Synapsin III |
RPH3A | Rabphilin 3A |
IGFBP2 | Insulin-like Growth Factor Binding Protein 2 |
ISG15 | Interferon-Stimulated Gene 15 |
ALDH1A2 | Aldehyde Dehydrogenase 1 Family Member A2 |
C1QB | Complement C1q B Chain |
BUB1 | BUB1 Mitotic Checkpoint Serine/Threonine Kinase |
References
- Paula, A.G.-R.; Surinder, S.C.; Minh, H.; Narelle, F.; Frank, R.D.; Robyn, D.W. Effects of heat stress on animal physiology, metabolism, and meat quality: A review. Meat Sci. 2019, 162, 108025. [Google Scholar] [CrossRef]
- Shirley, A.K.; Thomson, P.C.; Chlingaryan, A.; Clark, C.E.F. Review: Ruminant heat-stress terminology. Animal 2024, 18, 101267. [Google Scholar] [CrossRef] [PubMed]
- Daniela, L.; Giulietta, M.; Alon, A.; Marcella, G.; Francesco, T. Effect of extended heat stress in dairy cows on productive and behavioral traits. Animal 2024, 18, 101089. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Yuan, L.; Li, F.; Zhang, X.; Tian, H.; Ma, Z.; Zhang, D.; Zhang, Y.; Zhao, Y.; Huang, K.; et al. Whole-genome resequencing of Hu sheep identifies candidate genes associated with agronomic traits. J. Genet. Genom. 2024, 51, 866–876. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Xie, R.; Fang, L.; Xiang, R.; Yuan, Z.; Liu, Y.; Wang, L. Analysis of 206 whole-genome resequencing reveals selection signatures associated with breed-specific traits in Hu sheep. Evol. Appl. 2024, 17, e13697. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Zhang, Y.; Wei, Y.; Zou, J.; Yang, B.; Wang, Q.; Lu, J.; Lu, J.; Zheng, Z.; Huang, Y.; et al. Effect of heat stress on growth performance, carcase characteristics, meat quality and rumenmuscle axis of Hu sheep. Ital. J. Anim. Sci. 2024, 23, 87–100. [Google Scholar] [CrossRef]
- van Wettere, W.H.E.J.; Kind, K.L.; Gatford, K.L.; Swinbourne, A.M.; Leu, S.T.; Hayman, P.T.; Kelly, J.M.; Weaver, A.C.; Kleemann, D.O.; Walker, S.K. Review of the impact of heat stress on reproductive performance of sheep. J. Anim. Sci. Biotechnol. 2021, 12, 26. [Google Scholar] [CrossRef] [PubMed]
- Galma Boneya, A.; Ozge, O. Effects of heat stress on reproduction and gene expression in sheep. Anim. Reprod. 2025, 22, e20240067. [Google Scholar] [CrossRef] [PubMed]
- Hacer, T.; Veerasamy, S. Stress Factors and Their Effects on Productivity in Sheep. Animals 2023, 13, 2769. [Google Scholar] [CrossRef] [PubMed]
- Sasha, M.; Advaita, P.-P.; Larisa, G.-J. Hypothalamic-Pituitary-Ovarian Axis Disorders Impacting Female Fertility. Biomedicines 2019, 7, 5. [Google Scholar] [CrossRef]
- Zhang, A.; Li, S.; Huang, L.; Jiang, Y.; Chen, Y.; Zhu, S.; Xiong, F.; Luo, Z.; Ou, M.; Ying, J.; et al. Bmal1 regulates female reproduction in mice via the hypothalamic-pituitary-ovarian axis. FASEB J. 2024, 38, e23744. [Google Scholar] [CrossRef] [PubMed]
- Olivia, E.S.; Vickie, R.; Fanny, M.; Luisina, O.; Xiang, Z.; Micka, C.B.; Daniel, J.B.; Bruce, D.M. Steroidogenic Factor 1 Regulation of the Hypothalamic-Pituitary-Ovarian Axis of Adult Female Mice. Endocrinology 2022, 163, bqac028. [Google Scholar] [CrossRef]
- Cui, J.; Wu, F.; Yang, X.; Liu, S.; Han, S.; Chen, B. Effects of ammonia on hypothalamic-pituitary-ovarian axis in female rabbits. Ecotoxicol. Environ. Saf. 2021, 227, 112922. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Xie, H.; Pan, P.; Wang, Q.; Yang, B.; Li, Y.; Wei, Y.; Sun, Y.; Wei, Y.; Jiang, Q.; et al. EGCG alleviates heat-stress-induced fat deposition by targeting HSP70 through activation of AMPK-SIRT1-PGC-1α in porcine subcutaneous preadipocytes. Biochem. Pharmacol. 2024, 225, 116250. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Wang, Q.; Wei, C.; Sun, Y.; Li, Y.; Wei, Y.; Jiang, Q.; Huang, Y. EGCG Alleviates Skeletal Muscle Oxidative Damage in Heat-Stressed Pigs via Keap1/PGAM5 Complex-Mediated Mitophagy. J. Agric. Food Chem. 2024, 73, 425–437. [Google Scholar] [CrossRef] [PubMed]
- Haire, A.; Bai, J.; Zhao, X.; Song, Y.; Zhao, G.; Dilixiati, A.; Li, J.; Sun, W.Q.; Wan, P.; Fu, X.; et al. Identifying the heat resistant genes by multi-tissue transcriptome sequencing analysis in Turpan Black sheep. Theriogenology 2021, 179, 78–86. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.; Mesalam, A.; Heo, Y.S.; Lee, S.-H.; Nabi, G.; Kong, I.-K. Heat Stress as a Barrier to Successful Reproduction and Potential Alleviation Strategies in Cattle. Animals 2023, 13, 2359. [Google Scholar] [CrossRef] [PubMed]
- de Aguiar, L.H.; Hyde, K.A.; Pedroza, G.H.; Denicol, A.C. Heat stress impairs in vitro development of preantral follicles of cattle. Anim. Reprod. Sci. 2020, 213, 106277. [Google Scholar] [CrossRef] [PubMed]
- Lemal, P.; May, K.; König, S.; Schroyen, M.; Gengler, N. Invited review: From heat stress to disease-Immune response and candidate genes involved in cattle thermotolerance. J. Dairy Sci. 2023, 106, 4471–4488. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Kong, L.; Deng, M.; Lian, Z.; Han, Y.; Sun, B.; Guo, Y.; Liu, G.; Liu, D. Heat Stress-Responsive Transcriptome Analysis in the Liver Tissue of Hu Sheep. Genes 2019, 10, 395. [Google Scholar] [CrossRef] [PubMed]
- Ciliberti, M.; Caroprese, M.; Albenzio, M. Climate resilience in small ruminant and immune system: An old alliance in the new sustainability context. Small Rumin. Res. 2022, 210, 106662. [Google Scholar] [CrossRef]
- NY/T 3469-2019; Code of Practice for Slaughter of Livestock and Poultry—Sheep. Ministry of Agriculture and Rural Affairs of the People’s Republic of China: Beijing, China, 2019. Available online: http://down.foodmate.net/standard/yulan.php?itemid=64117 (accessed on 15 May 2024).
- Nanas, I.; Dovolou, E.; Psimadas, D.; Dadouli, K.; Chouzouris, T.-M.; Satra, M.; Georgoulias, P.; Amiridis, G.S. Age, gestational and heat stress effects on ghrelin secretion in dairy cattle. Theriogenology 2021, 176, 82–93. [Google Scholar] [CrossRef] [PubMed]
- Josias Steve, A.; Alassan Seidou, A.; Abou Adam, B.; Hilaire Sorébou, S.W.; Cham Donald, A.A.; Brice Gérard, C.A.; Erick Bertrand, V.A.; Ibrahim Traoré, A. Impact of heat stress on reproductive performances in dairy goats under tropical sub-humid environment. Heliyon 2022, 8, e08971. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Cai, H.; Guo, X.; Aierken, A.; Hua, J.; Ma, B.; Peng, S. Melatonin alleviates heat stress-induced testicular damage in dairy goats by inhibiting the PI3K/AKT signaling pathway. Stress Biol. 2023, 2, 47. [Google Scholar] [CrossRef] [PubMed]
- Wolfenson, D.; Roth, Z.; Meidan, R. Impaired reproduction in heat-stressed cattle: Basic and applied aspects. Anim. Reprod. Sci. 2000, 60–61, 535–547. [Google Scholar] [CrossRef] [PubMed]
- Silva, P.; Hooper, H.; Manica, E.; Merighe, G.; Oliveira, S.; Traldi, A.; Negrão, J. Heat stress affects the expression of key genes in the placenta, placental characteristics, and efficiency of Saanen goats and the survival and growth of their kids. J. Dairy Sci. 2021, 104, 4970–4979. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Li, C.; Zhang, H.; Zhang, P.; Shahzad, M.; Du, W.; Zhao, X. Heat-Stress Impacts on Developing Bovine Oocytes: Unraveling Epigenetic Changes, Oxidative Stress, and Developmental Resilience. Int. J. Mol. Sci. 2024, 25, 4808. [Google Scholar] [CrossRef] [PubMed]
- Menta, P.; Machado, V.; Piñeiro, J.; Thatcher, W.; Santos, J.; Vieira-Neto, A. Heat stress during the transition period is associated with impaired production, reproduction, and survival in dairy cows. J. Dairy Sci. 2022, 105, 4474–4489. [Google Scholar] [CrossRef] [PubMed]
- Leng, D.; Zeng, B.; Wang, T.; Chen, B.-L.; Li, D.-Y.; Li, Z.-J. Single nucleus/cell RNA-seq of the chicken hypothalamic-pituitary-ovarian axis offers new insights into the molecular regulatory mechanisms of ovarian development. Zool. Res. 2024, 45, 1088–1107. [Google Scholar] [CrossRef] [PubMed]
- Dado-Senn, B.; Ouellet, V.; Lantigua, V.; Van Os, J.; Laporta, J. Methods for detecting heat stress in hutch-housed dairy calves in a continental climate. J. Dairy Sci. 2022, 106, 1039–1050. [Google Scholar] [CrossRef] [PubMed]
- López-Gatius, F.; Hunter, R.H.F. Local cooling of the ovary and its implications for heat stress effects on reproduction. Theriogenology 2020, 149, 98–103. [Google Scholar] [CrossRef] [PubMed]
- da Silva, W.C.; da Silva, J.A.R.; Camargo-Júnior, R.N.C.; da Silva, É.B.R.; dos Santos, M.R.P.; Viana, R.B.; e Silva, A.G.M.; da Silva, C.M.G.; Lourenço-Júnior, J.d.B. Animal welfare and effects of per-female stress on male and cattle reproduction—A review. Front. Vet. Sci. 2023, 10, 1083469. [Google Scholar] [CrossRef] [PubMed]
- Phillips, C. The welfare risks and impacts of heat stress on sheep shipped from Australia to the Middle East. Vet. J. 2016, 218, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Stefanska, B.; Sobolewska, P.; Fievez, V.; Pruszynska-Oszmałek, E.; Purwin, C.; Nowak, W. The effect of heat stress on performance, fertility, and adipokines involved in regulating systemic immune response during lipolysis of early lactating dairy cows. J. Dairy Sci. 2023, 107, 2111–2128. [Google Scholar] [CrossRef] [PubMed]
- Luhan, T.Z.; Dilan, G.; Krystal, M.; Molly, B.; Daniel, E.H.; Francesca, E.D.; Elnur, B. The Effects of Heat Stress on the Ovary, Follicles and Oocytes: A Systematic Review. bioRxiv 2024. [Google Scholar] [CrossRef] [PubMed]
- Dennis, Y.; Isabel, G.; Anke, D.; Petra Clara, A. Climate change and pregnancy complications: From hormones to the immune response. Front. Endocrinol. 2023, 14, 1149284. [Google Scholar] [CrossRef] [PubMed]
- Han, J.-H.; Karki, R.; Malireddi, R.K.S.; Mall, R.; Sarkar, R.; Sharma, B.R.; Klein, J.; Berns, H.; Pisharath, H.; Pruett-Miller, S.M.; et al. NINJ1 mediates inflammatory cell death, PANoptosis, and lethality during infection conditions and heat stress. Nat. Commun. 2024, 15, 1739. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Pan, P.; Xie, H.; Wei, C.; Wang, Q.; Yang, B.; Sun, Y.; Li, Y.; Luo, Y.; Song, Y.; et al. Resveratrol improves meat quality traits by activating the lncRNAs-KEAP1-NRF2 axis in pigs. Meat Sci. 2023, 209, 109411. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, F.M.; Notaro, U.S.; Huber, E.; Recce, S.; Ortega, H.H.; Signorini, M.L.; Rey, F.; Salvetti, N.R.; Juengel, J. Association between heat stress during intrauterine development and the expression and regulation of ovarian steroid hormone receptors in adult Holstein cows. Reprod. Fertil. Dev. 2022, 34, 1003–1022. [Google Scholar] [CrossRef] [PubMed]
- Sonam, R.; Sushil, K.J.; Melvin, L.D. Cell Death and the p53 Enigma During Mammalian Embryonic Development. Stem Cells 2022, 40, 227–238. [Google Scholar] [CrossRef]
- Song, A.; Zhang, S.; Zhao, X.; Wu, S.; Qi, X.; Gao, S.; Qi, J.; Li, P.; Tan, J. Exosomes derived from menstrual blood stromal cells ameliorated premature ovarian insufficiency and granulosa cell apoptosis by regulating SMAD3/AKT/MDM2/P53 pathway via delivery of thrombospondin-1. Biomed. Pharmacother. 2023, 166, 115319. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Zhu, H.; Ren, J.; Wu, H.-Y.; Yu, J.-E.; Jin, L.-Y.; Pang, H.-Y.; Pan, H.-T.; Luo, S.-S.; Yan, J.; et al. Follicle-stimulating hormone orchestrates glucose-stimulated insulin secretion of pancreatic islets. Nat. Commun. 2023, 14, 6991. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Gao, L.; Zhang, X.; Weng, Y.; Du, Y.; Sun, Y.-L.; Wei, H.; Hao, T.; Chen, Y.; Liang, X.; et al. Theophylline derivatives promote primordial follicle activation via cAMP-PI3K/Akt pathway and ameliorate fertility deficits in naturally aged mice. Int. J. Biol. Sci. 2024, 20, 5312–5329. [Google Scholar] [CrossRef] [PubMed]
- Varney, M.J.; Benovic, J.L. The Role of G Protein-Coupled Receptors and Receptor Kinases in Pancreatic β-Cell Function and Diabetes. Pharmacol. Rev. 2024, 76, 267–299. [Google Scholar] [CrossRef] [PubMed]
- Bédécarrats, G.Y.; Hanlon, C.; Tsutsui, K. Gonadotropin Inhibitory Hormone and Its Receptor: Potential Key to the Integration and Coordination of Metabolic Status and Reproduction. Front. Endocrinol. 2022, 12, 781543. [Google Scholar] [CrossRef] [PubMed]
- Inaba, H.; Li, H.; Kawatake-Kuno, A.; Dewa, K.-I.; Nagai, J.; Oishi, N.; Murai, T.; Uchida, S. GPCR-mediated calcium and cAMP signaling determines psychosocial stress susceptibility and resiliency. Sci. Adv. 2023, 9, eade5397. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.P.; Habibi, H.R.; Yu, Y.; Moussavi, M.; Grey, C.L.; Pemberton, J.G. Calcium and other signalling pathways in neuroendocrine regulation of somatotroph functions. Cell Calcium 2011, 51, 240–252. [Google Scholar] [CrossRef] [PubMed]
- Simmons, S.C.; Flerlage, W.J.; Langlois, L.D.; Shepard, R.D.; Bouslog, C.; Thomas, E.H.; Gouty, K.M.; Sanderson, J.L.; Gouty, S.; Cox, B.M.; et al. AKAP150-anchored PKA regulates synaptic transmission and plasticity, neuronal excitability and CRF neuromodulation in the mouse lateral habenula. Commun. Biol. 2024, 7, 345. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Devereaux, M.W.; Liu, C.; Sokol, R.J. LRH-1 agonist DLPC through STAT6 promotes macrophage polarization and prevents parenteral nutrition-associated cholestasis in mice. Hepatology 2023, 79, 986–1004. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Wang, X.; Gao, H.; Yuan, S. Motile cilia: Key developmental and functional roles in reproductive systems. Andrology 2025. [Google Scholar] [CrossRef] [PubMed]
- Crofton, E.J.; O’BUckley, T.K.; Bohnsack, J.P.; Morrow, A.L.; Herman, M.A. Divergent Population-Specific Effects of Chronic Ethanol Exposure on Excitability and Inhibitory Transmission in Male and Female Rat Central Amygdala. J. Neurosci. 2023, 43, 7056–7068. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhang, X.; Ji, R.; Ji, Y.; Wu, Y.; Ding, X.; Shang, Z.; Liu, X.; Li, W.; Guo, J.; et al. Lama2 And Samsn1 Mediate the Effects of Brn4 on Hippocampal Neural Stem Cell Proliferation and Differentiation. Stem Cells Int. 2023, 2023, 7284986. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Dan, W.; Que, T.; Wei, Y.; Liu, B.; Wang, Z.; Zhang, Y.; Wang, Y.; Liu, T.; Zhuang, Y.; et al. CDC20-Mediated Selective Autophagy Degradation of PBRM1 Affects Immunotherapy for Renal Cell Carcinoma. Adv. Sci. 2024, 12, e2412967. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Zhang, Y.; Lu, X.; Ding, H.; Han, B.; Song, X.; Miao, H.; Cui, X.; Wei, S.; Liu, W.; et al. CDC20 regulates the cell proliferation and radiosensitivity of P53 mutant HCC cells through the Bcl-2/Bax pathway. Int. J. Biol. Sci. 2021, 17, 3608–3621. [Google Scholar] [CrossRef] [PubMed]
- Rizo, J. Molecular Mechanisms Underlying Neurotransmitter Release. Annu. Rev. Biophys. 2022, 51, 377–408. [Google Scholar] [CrossRef] [PubMed]
- Lan, Z.; Sun, F.; Chen, C.; Niu, L.; Shi, J.; Zhang, W. CircPRDM5 inhibits the proliferation, migration, invasion, and glucose metabolism of gastric cancer cells by reducing GCNT4 expression in a miR-485-3p-dependent manner. Kaohsiung J. Med. Sci. 2024, 40, 231–243. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-J.; Guo, X.; Liu, M.-L.; Yu, Y.-Y.; Cui, Y.-H.; Shen, X.-Z.; Liu, T.-S.; Liang, L. Interaction between glycolysis–cholesterol synthesis axis and tumor microenvironment reveal that gamma-glutamyl hydrolase suppresses glycolysis in colon cancer. Front. Immunol. 2022, 13, 979521. [Google Scholar] [CrossRef] [PubMed]
- Elena, F.; Diego, S.; Elisa, Z.; Maria, I.; Marta, B.; Luca, P.; Chiara, P.; Andrea, P.; Alessandro, P.; Elena, M.; et al. Rabphilin-3A as a novel target to reverse α-synuclein-induced synaptic loss in Parkinson’s disease. Pharmacol. Res. 2022, 183, 106375. [Google Scholar] [CrossRef]
- Burgdorf, J.S.; Yoon, S.; Dos Santos, M.; Lammert, C.R.; Moskal, J.R.; Penzes, P. An IGFBP2-derived peptide promotes neuroplasticity and rescues deficits in a mouse model of Phelan-McDermid syndrome. Mol. Psychiatry 2022, 28, 1101–1111. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Li, J.; Yan, H.; Huang, J.; Wang, F.; Liu, T.; Zeng, L.; Zhou, F. ISGylation in Innate Antiviral Immunity and Pathogen Defense Responses: A Review. Front. Cell Dev. Biol. 2021, 9, 788410. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.; Zhou, X.; Zhang, J.; Xu, W.; Liu, Y.; Wang, X.; Hu, Y.; Xu, R.; Li, X. The therapeutic potential of Apigenin in amyotrophic lateral sclerosis through ALDH1A2/Nrf2/ARE signaling. Mol. Med. 2024, 30, 206. [Google Scholar] [CrossRef] [PubMed]
- Ji, L.; Guo, W. Single-cell RNA sequencing highlights the roles of C1QB and NKG7 in the pancreatic islet immune microenvironment in type 1 diabetes mellitus. Pharmacol. Res. 2022, 187, 106588. [Google Scholar] [CrossRef] [PubMed]
- Davies, T.; Hardwick, K.G. Cell-cycle control: Timing is everything for the Plk1-Bub1 partnership. Curr. Biol. 2023, 33, R447–R449. [Google Scholar] [CrossRef] [PubMed]
Ingredients (%) | Content | Nutrition Level | Content |
---|---|---|---|
Soybean meal | 5 | Dry Matter (DM)/% | 58.52 |
Silage corn | 48 | Digestible Energy (DE)/(MJ/Kg) | 15.18 |
Peanut vines | 11 | Crude Protein (CP)/% | 8.88 |
Rice bran | 8.3 | Crude Fat (EE)/% | 1.54 |
Dried cassava distillers’ grains | 7.7 | Crude Fiber (CF)/% | 8.98 |
Premix 1 | 20 | Crude Ash (Ash)/% | 6.43 |
Total | 100 | Calcium (Ca)/% | 0.28 |
Total Phosphorus (TP)/% | 0.19 |
Items | Con Group (n = 6) | HS Group (n = 6) |
---|---|---|
THI | 69.36 ± 1.9 b | 91.54 ± 0.93 a |
Duration of estrus (h) | 34.67 ± 0.67 a | 32.22 ± 0.77 b |
Estrous cycle (d) | 16.37 ± 0.42 b | 17.85 ± 0.65 a |
Items | Con Group (n = 6) | HS Group (n = 6) |
---|---|---|
FSH (mIU/mL) | 13.07 ± 1.30 a | 10.46 ± 1.19 b |
LH (mIU/mL) | 30.21 ± 5.06 a | 24.69 ± 3.09 b |
E2 (pg/mL) | 213.20 ± 20.81 a | 166.27 ± 11.58 b |
P4 (ng/mL) | 26.61 ± 2.08 a | 20.24 ± 2.36 b |
E2/P4 | 8.10 ± 1.59 a | 8.27 ± 0.76 a |
Items | Total Reads | GC Content (%) | Q30 (%) | Total Mapped | Multiple Mapped | Unique Mapped |
---|---|---|---|---|---|---|
CH1 | 57,775,932 | 46.20 | 96 | 56,964,559 (98.60%) | 3,778,821 (6.63%) | 53,185,738 (93.37%) |
CH2 | 63,269,708 | 46.05 | 96.06 | 62,056,418 (98.08%) | 3,967,798 (6.39%) | 58,088,620 (93.61%) |
CH3 | 64,539,062 | 46.10 | 96 | 63,441,668 (98.30%) | 3,340,356 (5.27%) | 60,101,312 (94.73%) |
CP1 | 51,070,098 | 45.20 | 95.76 | 50,166,417 (98.23%) | 2,553,151 (5.09%) | 47,613,266 (94.91%) |
CP2 | 54,744,876 | 45.03 | 96.09 | 53,744,246 (98.17%) | 2,882,450 (5.36%) | 50,861,796 (94.64%) |
CP3 | 57,134,276 | 45.00 | 95.78 | 56,147,003 (98.27%) | 2,713,457 (4.83%) | 53,433,546 (95.17%) |
CO1 | 35,823,368 | 47.10 | 95.59 | 34,176,209 (97.32%) | 1,322,043 (3.87%) | 32,854,166 (96.13%) |
CO2 | 46,093,358 | 47.09 | 95.92 | 43,798,054 (96.78%) | 1,695,457 (3.87%) | 42,102,597 (96.13%) |
CO3 | 41,919,740 | 47.04 | 95.38 | 39,918,406 (97.30%) | 1,551,716 (3.89%) | 38,366,690 (96.11%) |
HSH1 | 47,258,932 | 46.30 | 95.98 | 46,584,008 (98.57%) | 2,330,024 (5.00%) | 44,253,984 (95.00%) |
HSH2 | 51,609,568 | 46.25 | 95.95 | 50,761,427 (98.36%) | 2,424,292 (4.78%) | 48,337,135 (95.22%) |
HSH3 | 45,713,232 | 46.30 | 95.87 | 44,890,635 (98.20%) | 2,928,147 (6.52%) | 41,962,488 (93.48%) |
HSP1 | 67,615,950 | 45.60 | 95.94 | 66,528,725 (98.39%) | 2,935,594 (4.41%) | 63,593,131 (95.59%) |
HSP2 | 54,728,132 | 45.02 | 96.42 | 53,781,581 (98.27%) | 2,772,163 (5.15%) | 51,009,418 (94.85%) |
HSP3 | 49,742,860 | 45.80 | 95.9 | 48,857,721 (98.22%) | 2,705,473 (5.54%) | 46,152,248 (94.46%) |
HSO1 | 46,099,642 | 47.18 | 95.72 | 44,053,758 (97.55%) | 1,603,493 (3.64%) | 42,450,265 (96.36%) |
HSO2 | 43,421,104 | 47.00 | 95.54 | 41,442,144 (97.53%) | 1,498,265 (3.62%) | 39,943,879 (96.38%) |
HSO3 | 47,083,458 | 46.94 | 95.52 | 45,000,965 (97.55%) | 1,663,015 (3.70%) | 43,337,950 (96.30%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zou, J.; Wei, L.; Liang, Y.; Zou, J.; Cheng, P.; Mo, Z.; Sun, W.; Wei, Y.; Lu, J.; Li, W.; et al. Impact of Heat Stress on Gene Expression in the Hypothalamic–Pituitary–Ovarian Axis of Hu Sheep. Animals 2025, 15, 2189. https://doi.org/10.3390/ani15152189
Zou J, Wei L, Liang Y, Zou J, Cheng P, Mo Z, Sun W, Wei Y, Lu J, Li W, et al. Impact of Heat Stress on Gene Expression in the Hypothalamic–Pituitary–Ovarian Axis of Hu Sheep. Animals. 2025; 15(15):2189. https://doi.org/10.3390/ani15152189
Chicago/Turabian StyleZou, Jianwei, Lili Wei, Yishan Liang, Juhong Zou, Pengfei Cheng, Zhihua Mo, Wenyue Sun, Yirong Wei, Jun Lu, Wenman Li, and et al. 2025. "Impact of Heat Stress on Gene Expression in the Hypothalamic–Pituitary–Ovarian Axis of Hu Sheep" Animals 15, no. 15: 2189. https://doi.org/10.3390/ani15152189
APA StyleZou, J., Wei, L., Liang, Y., Zou, J., Cheng, P., Mo, Z., Sun, W., Wei, Y., Lu, J., Li, W., Shen, Y., Deng, X., Huang, Y., & Jiang, Q. (2025). Impact of Heat Stress on Gene Expression in the Hypothalamic–Pituitary–Ovarian Axis of Hu Sheep. Animals, 15(15), 2189. https://doi.org/10.3390/ani15152189