Effects of Feather-Pecking Phenotype on Physiological and Neurobiological Characteristics and Gut Microbiota Profile of Goslings
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design and Feeding Management
2.2. Body Weight, Feather Scoring, and Sample Collection
2.3. Analysis of Serum Biochemical Indicators by ELISA
2.4. 16S rRNA Gene Sequencing and Bioinformatics Analysis of Cecal Microbiota
2.5. Quantitative Real-Time PCR (RT-qPCR)
2.6. Statistical Analyses
3. Results
3.1. Comparative Analysis of Feather Condition, Growth Performance, Gizzard Contents, and Cecal Morphology
3.2. Comparison of Serum Antioxidant Capacity and Physiological Stress
3.3. Comparison of Serum 5-HT and DA Levels
3.4. Comparison of 5-HT Metabolism-Related Gene Expression Differences
3.5. Diversity of Gut Microbiota in Goslings with Different Pecking Phenotypes
3.6. Linear Discriminant Analysis and Effect Size Analysis
3.7. Integration of Random Forest Analysis and PICRUSt2-Based Functional Prediction
3.8. Association Analysis of the Gut Microbiota–Antioxidant Indicators–Hormones Axis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jensen, A.B.; Palme, R.; Forkman, B. Effect of Brooders on Feather Pecking and Cannibalism in Domestic Fowl (Gallus Gallus Domesticus). Appl. Anim. Behav. Sci. 2006, 99, 287–300. [Google Scholar] [CrossRef]
- Yan, X.; Wang, C.; Li, Y.; Lin, Y.; Wu, Y.; Wang, Y. The Glutamatergic System Regulates Feather Pecking Behaviors in Laying Hens Through the Gut–Brain Axis. Animals 2025, 15, 1297. [Google Scholar] [CrossRef] [PubMed]
- Kops, M.S.; De Haas, E.N.; Rodenburg, T.B.; Ellen, E.D.; Korte-Bouws, G.A.H.; Olivier, B.; Güntürkün, O.; Bolhuis, J.E.; Korte, S.M. Effects of Feather Pecking Phenotype (Severe Feather Peckers, Victims and Non-Peckers) on Serotonergic and Dopaminergic Activity in Four Brain Areas of Laying Hens (Gallus Gallus Domesticus). Physiol. Behav. 2013, 120, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Kjaer, J.B.; Vestergaard, K.S. Development of Feather Pecking in Relation to Light Intensity. Appl. Anim. Behav. Sci. 1999, 62, 243–254. [Google Scholar] [CrossRef]
- Rodenburg, T.B.; Van Krimpen, M.M.; De Jong, I.C.; De Haas, E.N.; Kops, M.S.; Riedstra, B.J.; Nordquist, R.E.; Wagenaar, J.P.; Bestman, M.; Nicol, C.J. The Prevention and Control of Feather Pecking in Laying Hens: Identifying the Underlying Principles. World’s Poult. Sci. J. 2013, 69, 361–374. [Google Scholar] [CrossRef]
- Bilcik, B.; Keeling, L.J. Changes in Feather Condition in Relation to Feather Pecking and Aggressive Behaviour in Laying Hens. Br. Poult. Sci. 1999, 40, 444–451. [Google Scholar] [CrossRef] [PubMed]
- Zepp, M.; Louton, H.; Erhard, M.; Schmidt, P.; Helmer, F.; Schwarzer, A. The Influence of Stocking Density and Enrichment on the Occurrence of Feather Pecking and Aggressive Pecking Behavior in Laying Hen Chicks. J. Vet. Behav. 2018, 24, 9–18. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, J.; Wang, X.; Wang, R.; Zhang, H.; Zhang, R.; Bao, J. The Inflammatory Immunity and Gut Microbiota Are Associated with Fear Response Differences in Laying Hens. Poult. Sci. 2024, 103, 103816. [Google Scholar] [CrossRef] [PubMed]
- Marrero, M.G.; Dado-Senn, B.; Field, S.L.; Yang, G.; Driver, J.P.; Laporta, J. Chronic Heat Stress Delays Immune System Development and Alters Serotonin Signaling in Pre-Weaned Dairy Calves. PLoS ONE 2021, 16, e0252474. [Google Scholar] [CrossRef] [PubMed]
- Sedlačková, M.; Bilčík, B.; Košťál, Ľ. Feather Pecking in Laying Hens: Environmental and Endogenous Factors. Acta Vet. Brno 2004, 73, 521–531. [Google Scholar] [CrossRef]
- Wysocki, M.; Bessei, W.; Kjaer, J.B.; Bennewitz, J. Genetic and Physiological Factors Influencing Feather Pecking in Chickens. World’s Poult. Sci. J. 2010, 66, 659–672. [Google Scholar] [CrossRef]
- Goodson, J.L. The Vertebrate Social Behavior Network: Evolutionary Themes and Variations. Horm. Behav. 2005, 48, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Kuenzel, W.J. Research Advances Made in the Avian Brain and Their Relevance to Poultry Scientists. Poult. Sci. 2014, 93, 2945–2952. [Google Scholar] [CrossRef] [PubMed]
- Comai, S.; Tau, M.; Gobbi, G. The Psychopharmacology of Aggressive Behavior: A Translational Approach: Part 1: Neurobiology. J. Clin. Psychopharmacol. 2012, 32, 83–94. [Google Scholar] [CrossRef] [PubMed]
- Gwak, M.-G.; Chang, S.-Y. Gut-Brain Connection: Microbiome, Gut Barrier, and Environmental Sensors. Immune Netw. 2021, 21, e20. [Google Scholar] [CrossRef] [PubMed]
- Barton, J.R.; Londregan, A.K.; Alexander, T.D.; Entezari, A.A.; Covarrubias, M.; Waldman, S.A. Enteroendocrine Cell Regulation of the Gut-Brain Axis. Front. Neurosci. 2023, 17, 1272955. [Google Scholar] [CrossRef] [PubMed]
- De Haas, E.N.; Van Der Eijk, J.A.J. Where in the Serotonergic System Does It Go Wrong? Unravelling the Route by Which the Serotonergic System Affects Feather Pecking in Chickens. Neurosci. Biobehav. Rev. 2018, 95, 170–188. [Google Scholar] [CrossRef] [PubMed]
- Van Der Eijk, J.A.J.; De Vries, H.; Kjaer, J.B.; Naguib, M.; Kemp, B.; Smidt, H.; Rodenburg, T.B.; Lammers, A. Differences in Gut Microbiota Composition of Laying Hen Lines Divergently Selected on Feather Pecking. Poult. Sci. 2019, 98, 7009–7021. [Google Scholar] [CrossRef] [PubMed]
- van Hierden, Y.M.; de Boer, S.F.; Koolhaas, J.M.; Korte, S.M. The Control of Feather Pecking by Serotonin. Behav. Neurosci. 2004, 118, 575–583. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Hao, E.; Yue, Q.; Liu, M.; Wang, D.; Chen, Y.; Shi, L.; Zeng, D.; Zhao, G.; Chen, H. Malfunctioned Inflammatory Response and Serotonin Metabolism at the Microbiota-Gut-Brain Axis Drive Feather Pecking Behavior in Laying Hens. Poult. Sci. 2023, 102, 102686. [Google Scholar] [CrossRef] [PubMed]
- Yarandi, S.S.; Peterson, D.A.; Treisman, G.J.; Moran, T.H.; Pasricha, P.J. Modulatory Effects of Gut Microbiota on the Central Nervous System: How Gut Could Play a Role in Neuropsychiatric Health and Diseases. J. Neurogastroenterol. Motil. 2016, 22, 201–212. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Johnson, T.A.; Zhang, H.; Cheng, H.-W. The Microbiota–Gut–Brain Axis: Gut Microbiota Modulates Conspecific Aggression in Diversely Selected Laying Hens. Microorganisms 2022, 10, 1081. [Google Scholar] [CrossRef] [PubMed]
- Dicks, L.M.T. Gut Bacteria and Neurotransmitters. Microorganisms 2022, 10, 1838. [Google Scholar] [CrossRef] [PubMed]
- Tan, H.-E. The Microbiota-Gut-Brain Axis in Stress and Depression. Front. Neurosci. 2023, 17, 1151478. [Google Scholar] [CrossRef] [PubMed]
- Homer, B.; Judd, J.; Mohammadi Dehcheshmeh, M.; Ebrahimie, E.; Trott, D.J. Gut Microbiota and Behavioural Issues in Production, Performance, and Companion Animals: A Systematic Review. Animals 2023, 13, 1458. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.-H.; Shim, J.-O. Gut Microbiota Affects Brain Development and Behavior. Clin. Exp. Pediatr. 2023, 66, 274–280. [Google Scholar] [CrossRef] [PubMed]
- Miller, B.J.; Buckley, P.; Seabolt, W.; Mellor, A.; Kirkpatrick, B. Meta-Analysis of Cytokine Alterations in Schizophrenia: Clinical Status and Antipsychotic Effects. Biol. Psychiatry 2011, 70, 663–671. [Google Scholar] [CrossRef] [PubMed]
- Zheng, P.; Zeng, B.; Liu, M.; Chen, J.; Pan, J.; Han, Y.; Liu, Y.; Cheng, K.; Zhou, C.; Wang, H.; et al. The Gut Microbiome from Patients with Schizophrenia Modulates the Glutamate-Glutamine-GABA Cycle and Schizophrenia-Relevant Behaviors in Mice. Sci. Adv. 2019, 5, eaau8317. [Google Scholar] [CrossRef] [PubMed]
- Hasebe, K.; Kendig, M.D.; Morris, M.J. Mechanisms Underlying the Cognitive and Behavioural Effects of Maternal Obesity. Nutrients 2021, 13, 240. [Google Scholar] [CrossRef] [PubMed]
- Münger, E.; Montiel-Castro, A.J.; Langhans, W.; Pacheco-López, G. Reciprocal Interactions Between Gut Microbiota and Host Social Behavior. Front. Integr. Neurosci. 2018, 12, 21. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Li, Y.; Wang, H.; Li, M.; Rong, J.; Liao, X.; Wu, Y.; Wang, Y. Differences in Peripheral and Central Metabolites and Gut Microbiome of Laying Hens with Different Feather-Pecking Phenotypes. Front. Microbiol. 2023, 14, 1132866. [Google Scholar] [CrossRef] [PubMed]
- Kops, M.S.; Kjaer, J.B.; Güntürkün, O.; Westphal, K.G.C.; Korte-Bouws, G.A.H.; Olivier, B.; Korte, S.M.; Bolhuis, J.E. Brain monoamine levels and behaviour of young and adult chickens genetically selected on feather pecking. Behav. Brain. Res. 2017, 327, 11–20. [Google Scholar] [CrossRef] [PubMed]
- García-Cabrerizo, R.; Carbia, C.; O Riordan, K.J.; Schellekens, H.; Cryan, J.F. Microbiota-Gut-Brain Axis as a Regulator of Reward Processes. J. Neurochem. 2021, 157, 1495–1524. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Wang, G.; Gu, W.; Cao, Z.; Zhang, Y.; Zhang, Y.; Xu, Q.; Chen, G.; Chen, Y. Analysis of Risk Factors of Feather Pecking Injurious Behavior in Experimentally Raised Yangzhou Goslings in China. Animals 2025, 15, 616. [Google Scholar] [CrossRef] [PubMed]
- Gilani, A.-M.; Knowles, T.G.; Nicol, C.J. The Effect of Rearing Environment on Feather Pecking in Young and Adult Laying Hens. Appl. Anim. Behav. Sci. 2013, 148, 54–63. [Google Scholar] [CrossRef]
- Tahamtani, F.M.; Forkman, B.; Hinrichsen, L.K.; Riber, A.B. Both Feather Peckers and Victims Are More Asymmetrical than Control Hens. Appl. Anim. Behav. Sci. 2017, 195, 67–71. [Google Scholar] [CrossRef]
- Surai, P.F.; Kochish, I.I.; Fisinin, V.I. Glutathione Peroxidases in Poultry Biology: Part 1. Classification and Mechanisms of Action. World’s Poult. Sci. J. 2018, 74, 185–198. [Google Scholar] [CrossRef]
- Doroshow, J.H. Glutathione Peroxidase and Oxidative Stress. Toxicol. Lett. 1995, 82–83, 395–398. [Google Scholar] [CrossRef] [PubMed]
- de Haan, J.B.; Bladier, C.; Griffiths, P.; Kelner, M.; O’Shea, R.D.; Cheung, N.S.; Bronson, R.T.; Silvestro, M.J.; Wild, S.; Zheng, S.S.; et al. Mice with a Homozygous Null Mutation for the Most Abundant Glutathione Peroxidase, Gpx1, Show Increased Susceptibility to the Oxidative Stress-Inducing Agents Paraquat and Hydrogen Peroxide. J. Biol. Chem. 1998, 273, 22528–22536. [Google Scholar] [CrossRef] [PubMed]
- Cichoski, A.J.; Rotta, R.B.; Scheuermann, G.; Cunha Junior, A.; Barin, J.S. Investigation of Glutathione Peroxidase Activity in Chicken Meat under Different Experimental Conditions. Food Sci. Technol. 2012, 32, 661–667. [Google Scholar] [CrossRef]
- Bai, X.; Fermandez, E.; Gould, G.; Strong, R. Homozygous Deletion of Glutathione Peroxidase 1 and Aldehyde Dehydrogenase 1a1 Genes Is Not Associated with Schizophrenia-Like Behavior in Mice. J. Biochem. Pharmacol. Res. 2013, 1, 228–235. [Google Scholar] [PubMed]
- Korte, S.M.; Prins, J.; Van den Bergh, F.S.; Oosting, R.S.; Dupree, R.; Korte-Bouws, G.A.H.; Westphal, K.G.C.; Olivier, B.; Denys, D.A.; Garland, A.; et al. The 5-HT1A/1B-Receptor Agonist Eltoprazine Increases Both Catecholamine Release in the Prefrontal Cortex and Dopamine Release in the Nucleus Accumbens and Decreases Motivation for Reward and “Waiting” Impulsivity, but Increases “Stopping” Impulsivity. Eur. J. Pharmacol. 2017, 794, 257–269. [Google Scholar] [CrossRef] [PubMed]
- de Haas, E.N.; Kops, M.S.; Bolhuis, J.E.; Groothuis, T.G.G.; Ellen, E.D.; Rodenburg, T.B. The Relation between Fearfulness in Young and Stress-Response in Adult Laying Hens, on Individual and Group Level. Physiol. Behav. 2012, 107, 433–439. [Google Scholar] [CrossRef] [PubMed]
- De Deurwaerdère, P.; Di Giovanni, G. Serotonergic Modulation of the Activity of Mesencephalic Dopaminergic Systems: Therapeutic Implications. Prog. Neurobiol. 2017, 151, 175–236. [Google Scholar] [CrossRef] [PubMed]
- Borda-Molina, D.; Iffland, H.; Schmid, M.; Müller, R.; Schad, S.; Seifert, J.; Tetens, J.; Bessei, W.; Bennewitz, J.; Camarinha-Silva, A. Gut Microbial Composition and Predicted Functions Are Not Associated with Feather Pecking and Antagonistic Behavior in Laying Hens. Life 2021, 11, 235. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Ling, Z.; Zhang, Y.; Mao, H.; Ma, Z.; Yin, Y.; Wang, W.; Tang, W.; Tan, Z.; Shi, J.; et al. Altered Fecal Microbiota Composition in Patients with Major Depressive Disorder. Brain Behav. Immun. 2015, 48, 186–194. [Google Scholar] [CrossRef] [PubMed]
- Rychlik, I. Composition and Function of Chicken Gut Microbiota. Animals 2020, 10, 103. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Wang, H.; Chen, X.; Zhang, Y.; Zhang, H.; Xie, P. Gut Microbiota and Its Metabolites in Depression: From Pathogenesis to Treatment. EBioMedicine 2023, 90, 104527. [Google Scholar] [CrossRef] [PubMed]
- Cai, K.; Cao, X.-Y.; Chen, F.; Zhu, Y.; Sun, D.-D.; Cheng, H.-B.; Duan, J.-A.; Su, S.-L. Xianlian Jiedu Decoction Alleviates Colorectal Cancer by Regulating Metabolic Profiles, Intestinal Microbiota and Metabolites. Phytomedicine 2024, 128, 155385. [Google Scholar] [CrossRef] [PubMed]
- Zafar, H.; Saier, M.H. Gut Bacteroides Species in Health and Disease. Gut Microbes 2021, 13, 1848158. [Google Scholar] [CrossRef] [PubMed]
- Tamana, S.K.; Tun, H.M.; Konya, T.; Chari, R.S.; Field, C.J.; Guttman, D.S.; Becker, A.B.; Moraes, T.J.; Turvey, S.E.; Subbarao, P.; et al. Bacteroides-Dominant Gut Microbiome of Late Infancy Is Associated with Enhanced Neurodevelopment. Gut Microbes 2021, 13, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Wexler, H.M. Bacteroides: The Good, the Bad, and the Nitty-Gritty. Clin. Microbiol. Rev. 2007, 20, 593–621. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, N.; Emoto, T.; Yamashita, T.; Watanabe, H.; Hayashi, T.; Tabata, T.; Hoshi, N.; Hatano, N.; Ozawa, G.; Sasaki, N.; et al. Bacteroides Vulgatus and Bacteroides Dorei Reduce Gut Microbial Lipopolysaccharide Production and Inhibit Atherosclerosis. Circulation 2018, 138, 2486–2498. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Zheng, P.; Li, Y.; Wu, J.; Tan, X.; Zhou, J.; Sun, Z.; Chen, X.; Zhang, G.; Zhang, H.; et al. Landscapes of Bacterial and Metabolic Signatures and Their Interaction in Major Depressive Disorders. Sci. Adv. 2020, 6, eaba8555. [Google Scholar] [CrossRef] [PubMed]
Behavior Pattern | Definition |
---|---|
Severe feather peckers (SFPs) | Goslings that are forcibly pulling, pecking, or plucking feathers from other birds and have a high frequency of feather pecking |
Victims | Goslings with missing back feathers or even skin damage and scabs |
Non-peckers (NFPs) | Goslings reared in low-density groups with no or very low frequency of pecking |
Score | Feathers | Part |
---|---|---|
5 | Feathers in perfect condition | Chest, legs, back, tail and rump, wings, head, and neck |
4 | Feathers with damage, but no exposed skin areas | |
3 | Exposed area no larger than 3 × 3 cm | |
2 | Exposed area ranging from 3 × 3 cm to 5 × 5 cm | |
1 | Exposed area larger than 5 × 5 cm |
Gene | GenBank Accession | Primer Sequences (50−30) | Size (bp) |
---|---|---|---|
SLC6A4 | XM_013196494.3 | AGGCAACGAGCAATGAGA GCAGGGCAGATTTAGGGT | 299 |
HTR1A | XM_048079550.2 | CTGGAGATCATCGAGGTCC CAAGCGGTGTCACAAAAGG | 257 |
TPH-2 | XM_048065403.2 | CTCACCCTAAACAGATCAA CAGTCACAGTCCACAAAAA | 245 |
GAPDH | XM_067004670.1 | CATGTTCGTGATGGGTGTG CTGGGATAATGTTCTGGGC | 239 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M.; Guo, Y.; Cao, Z.; Xu, Q.; Chen, G.; Chen, Y. Effects of Feather-Pecking Phenotype on Physiological and Neurobiological Characteristics and Gut Microbiota Profile of Goslings. Animals 2025, 15, 2122. https://doi.org/10.3390/ani15142122
Wang M, Guo Y, Cao Z, Xu Q, Chen G, Chen Y. Effects of Feather-Pecking Phenotype on Physiological and Neurobiological Characteristics and Gut Microbiota Profile of Goslings. Animals. 2025; 15(14):2122. https://doi.org/10.3390/ani15142122
Chicago/Turabian StyleWang, Mingfeng, Yujiao Guo, Zhengfeng Cao, Qi Xu, Guohong Chen, and Yang Chen. 2025. "Effects of Feather-Pecking Phenotype on Physiological and Neurobiological Characteristics and Gut Microbiota Profile of Goslings" Animals 15, no. 14: 2122. https://doi.org/10.3390/ani15142122
APA StyleWang, M., Guo, Y., Cao, Z., Xu, Q., Chen, G., & Chen, Y. (2025). Effects of Feather-Pecking Phenotype on Physiological and Neurobiological Characteristics and Gut Microbiota Profile of Goslings. Animals, 15(14), 2122. https://doi.org/10.3390/ani15142122