Modulation of Digestive Enzyme Activities and Intestinal γ-Proteobacteria in Gilthead Sea Bream Fed High-Fat Diets Supplemented with HIDROX® Olive Oil Extract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Fish and Experimental Design
2.2. Sampling Procedures and Preparation
2.3. Digestive Enzyme Analysis
2.4. Microbiota from Gut Mucosa
2.5. Statistical Analysis
3. Results
3.1. Digestive Enzyme Activities and Relative Intestinal Length
3.1.1. Effects of Feeding Standard Ration (Ad Libitum) with HF and HT (HF ST Versus HT ST)
3.1.2. Effect of Restriction When Feeding with HF (HF ST Versus HF R)
(A) Pyloric Caeca | HF ST | HT ST | HF R | HT R | ||||
---|---|---|---|---|---|---|---|---|
Post-Feeding | 24 h | 5 h | 24 h | 5 h | 24 h | 5 h | 24 h | 5 h |
TPA (U/mg protein) | 5.1 ± 0.43c | 9.5 ± 0.91b | 4.9 ± 0.43c | 15.5 ± 1.46a | 4.3 ± 0.30c | 7.9 ± 0.78b | 5.8 ± 1.02c | 13.3 ± 1.02a |
90 kDa (%) | 21.3 ± 1.15a | 21.2 ± 1.56ab | 23.8 ± 1.69a | 15.7 ± 1.84bc | 32.7 ± 7.98a | 13.7 ± 1.32c | 15.4 ± 1.64c | 16.1 ± 0.67c |
60 kDa (%) | 41.4 ± 4.76b | 28.8 ± 2.97bc * | 59.7 ± 5.41a | 33.1 ± 6.77 bcd | 32.2 ± 3.17bc | 21.5 ± 1.57d | 36.4 ± 12.22bcd | 26.8 ± 2.37c |
55 kDa (%) | 13.6 ± 0.76bc * | 18.1 ± 0.94a | 14.7 ± 3.41abcd * | 16.9 ± 1.69a | 18.7 ± 3.87ab | 11.8 ± 0.67c | 22.1 ± 5.74a | 8.5 ± 0.35d |
50 kDa (%) | 12.0 ± 2.13c * | 22.2 ± 1.78b * | 1.8 ± 1.31e | 20.8 ± 3.87b * | 4.5 ± 1.56d | 28.2 ± 0.68a * | 10.8 ± 2.60c | 14.1 ± 0.81c |
30 kDa (%) | 5.1 ± 1.72bc * | 4.8 ± 0.84c | 0.0 ± 0.00d | 5.1 ± 1.23c | 4.9 ± 1.88bc | 8.5 ± 0.70b * | 5.0 ± 1.92bcd | 11.7 ± 0.88a * |
25 kDa (%) | 5.2 ± 2.17bcd | 4.3 ± 0.85c | 0.0 ± 0.00d | 6.6 ± 1.65bc | 3.5 ± 1.56cd | 10.2 ± 1.07ab | 7.1 ±2.66abcd * | 12.2 ± 1.34a |
21 kDa (%) | 1.0 ± 0.83c | 0.2 ± 0.13c | 0.0 ± 0.00c | 1.6 ± 1.13bc | 2.8 ± 1.45abc | 4.4 ± 1.29ab | 3.2 ± 1.63abc | 7.0 ± 1.94a |
17 kDa (%) | 0.4 ± 0.44 | 0.5 ± 0.35 | 0.0 ± 0.00 | 0.2 ± 0.18 | 0.6 ± 0.46 | 1.0 ± 0.42 | 0.0 ± 0.00 | 1.8 ± 0.84 |
15 kDa (%) | 0.0 ± 0.00 | 0.0 ± 0.00 | 0.0 ± 0.00 | 0.0 ± 0.00 | 0.3 ± 0.27 | 0.7 ± 0.37 | 0.0 ± 0.00 | 1.7 ± 0.79 |
Trypsin-like (%) | 76.3 ± 5.87bc | 68.1 ± 3.41bc | 98.2 ± 1.31a | 65.7 ± 7.02cd | 83.6 ± 6.61ab | 47.0 ± 2.95e | 74.0 ±7.98bc | 51.5 ± 2.89de |
Chymotrypsin-like (%) | 23.7 ± 5.87cd * | 31.9 ± 3.41cd | 1.8 ± 1.31e | 34.3 ± 7.02bc | 16.4 ± 6.61de | 53.0 ± 2.95a * | 26.0 ± 7.98cd | 48.5 ± 2.89ab |
(B) Proximal Intestine | ||||||||
TPA (U/mg protein) | 4.8 ± 0.6p | 29.9 ± 5.5n * | 10.5 ± 1.10 * | 45.5 ± 4.6m * | 5.9 ± 0.6p * | 34.6 ± 5.6mn * | 5.3 ± 0.7p | 33.1 ± 4.0mn * |
90 kDa (%) | 17.8 ± 3.13 | 16.1 ± 2.61 | 20.1 ± 9.22 | 22.1 ± 1.41 * | 20.2 ± 1.18 | 19.4 ± 0.6 * | 20.0 ± 3.8 | 19.5 ± 0.9 * |
60 kDa (%) | 82.22 ± 3.13m * | 24.2 ± 7.41opq | 79.9 ± 9.22m | 32.9 ± 5.19no | 42.5 ± 6.5n | 23.8 ± 0.75op | 39.4 ± 7.1no | 21.8 ± 0.41q |
55 kDa (%) | 0.0 ± 0.00p | 16.3 ± 2.66mn | 0.0 ± 0.00p | 16.5 ± 2.26mn | 11.5 ± 1.82n | 17.4 ± 0.47m * | 24.7 ± 6.0m | 7.8 ± 0.68o |
50 kDa (%) | 0.0 ± 0.00o | 12.4 ± 2.00mn | 0.0 ± 0.00o | 10.2 ± 2.55n | 11.7 ± 1.74n * | 13.1 ± 0.42n | 9.7 ± 3.7mno | 17.7 ± 1.61m * |
30 kDa (%) | 0.0 ± 0.00o | 10.0 ± 1.72m * | 0.0 ± 0.00o | 5.8 ± 1.66n | 4.4 ± 1.22n | 6.7 ± 0.44n | 6.3 ± 3.3mno | 6.4 ± 0.39n |
25 kDa (%) | 0.0 ± 0.00o | 16.4 ± 2.91m * | 0.0 ± 0.00o | 8.0 ± 2.12n | 5.4 ± 1.79n | 14.5 ± 0.44m * | 0.0 ± 0.00o | 15.5 ± 0.62m |
21 kDa (%) | 0.0 ± 0.00p | 2.6 ± 1.15no * | 0.0 ± 0.00p | 1.0 ± 0.46op | 3.1 ± 1.32mnop | 4.8 ± 0.42n | 0.0 ± 0.00p | 7.0 ± 0.38m |
17 kDa (%) | 0.0 ± 0.00n | 1.1 ± 0.75mn | 0.0 ± 0.00n | 1.0 ± 0.45m | 0.6 ± 0.37mn | 0.0 ± 0.00n | 0.0 ± 0.00n | 1.6 ± 0.55m |
15 kDa (%) | 0.0 ± 0.00n | 0.9 ± 0.54mn | 0.0 ± 0.00n | 2.5 ± 0.81m * | 0.6 ± 0.37mn | 0.1 ± 0.08n | 0.0 ± 0.00n | 2.8 ± 1.00m |
Trypsin-like (%) | 100.0 ± 0.00m * | 56.7 ± 7.75op | 100.0 ± 0.00m | 71.5 ± 7.37no | 74.2 ± 5.79no | 60.7 ±1.08o * | 84.0 ±6.9mn | 49.1 ± 1.00p |
Chymotrypsin-like (%) | 0.0 ± 0.00p | 43.3 ± 7.75mn | 0.0 ± 0.00p | 28.5 ± 7.37no | 25.8 ± 5.79no | 39.3 ± 1.08n | 16.0 ±6.87op | 50.9 ± 1.00m |
3.1.3. HT R- Versus HF R- and HT ST-Fed Gilthead Sea Bream
3.2. Intestinal Microbiota Assessment
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- The State of World Fisheries and Aquaculture 2024; FAO: Rome, Italy, 2024. [CrossRef]
- Aquaculture: Fed and Unfed Production Systems. Available online: https://www.iffo.com/aquaculture-fed-and-unfed-production-systems (accessed on 2 April 2025).
- Mitra, A. Thought of Alternate Aquafeed: Conundrum in Aquaculture Sustainability? Proc. Zool. Soc. 2021, 74, 1–18. [Google Scholar] [CrossRef]
- Napier, J.A.; Haslam, R.P.; Olsen, R.-E.; Tocher, D.R.; Betancor, M.B. Agriculture Can Help Aquaculture Become Greener. Nat. Food 2020, 1, 680–683. [Google Scholar] [CrossRef] [PubMed]
- Cardinaletti, G.; Messina, M.; Bruno, M.; Tulli, F.; Poli, B.M.; Giorgi, G.; Chini-Zittelli, G.; Tredici, M.; Tibaldi, E. Effects of Graded Levels of a Blend of Tisochrysis Lutea and Tetraselmis Suecica Dried Biomass on Growth and Muscle Tissue Composition of European Sea Bass (Dicentrarchus labrax) Fed Diets Low in Fish Meal and Oil. Aquaculture 2018, 485, 173–182. [Google Scholar] [CrossRef]
- Tibaldi, E.; Hakim, Y.; Uni, Z.; Tulli, F.; de Francesco, M.; Luzzana, U.; Harpaz, S. Effects of the Partial Substitution of Dietary Fish Meal by Differently Processed Soybean Meals on Growth Performance, Nutrient Digestibility and Activity of Intestinal Brush Border Enzymes in the European Sea Bass (Dicentrarchus labrax). Aquaculture 2006, 261, 182–193. [Google Scholar] [CrossRef]
- Medale, F.; Le Boucher, R.; Panserat, S. Plant Based Diets for Farmed Fish. Inra Prod. Anim. 2013, 26, 303–315. [Google Scholar]
- Krogdahl, Å.; Penn, M.; Thorsen, J.; Refstie, S.; Bakke, A.M. Important Antinutrients in Plant Feedstuffs for Aquaculture: An Update on Recent Findings Regarding Responses in Salmonids. Aquac. Res. 2010, 41, 333–344. [Google Scholar] [CrossRef]
- Bruce, T.J.; Neiger, R.D.; Brown, M.L. Gut Histology, Immunology and the Intestinal Microbiota of Rainbow Trout, Oncorhynchus Mykiss (Walbaum), Fed Process Variants of Soybean Meal. Aquac. Res. 2018, 49, 492–504. [Google Scholar] [CrossRef]
- Turchini, G.M.; Francis, D.S.; Du, Z.Y.; Olsen, R.E.; Ringø, E.; Tocher, D.R. The Lipids. In Fish Nutrition; Elsevier: Amsterdam, The Netherlands, 2022; pp. 303–467. ISBN 9780128195871. [Google Scholar]
- Vergara, J.M.; Robaina, L.; Izquierdo, M.; De, M.; Higuera, L. Protein Sparing Effect of Lipids in Diets for Fingerlings of Gilthead Sea Bream. Fish. Sci. 1996, 62, 624–628. [Google Scholar] [CrossRef]
- Li, X.; Jiang, Y.; Liu, W.; Ge, X. Protein-Sparing Effect of Dietary Lipid in Practical Diets for Blunt Snout Bream (Megalobrama amblycephala) Fingerlings: Effects on Digestive and Metabolic Responses. Fish Physiol. Biochem. 2012, 38, 529–541. [Google Scholar] [CrossRef] [PubMed]
- Thirunavukkarasar, R.; Kumar, P.; Sardar, P.; Sahu, N.P.; Harikrishna, V.; Singha, K.P.; Shamna, N.; Jacob, J.; Krishna, G. Protein-Sparing Effect of Dietary Lipid: Changes in Growth, Nutrient Utilization, Digestion and IGF-I and IGFBP-I Expression of Genetically Improved Farmed Tilapia (GIFT), Reared in Inland Ground Saline Water. Anim. Feed. Sci. Technol. 2022, 284, 115150. [Google Scholar] [CrossRef]
- Won, E.T.; Borski, R.J. Endocrine Regulation of Compensatory Growth in Fis. Front. Endocrinol. 2013, 4, 74. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.; Nicieza, A.; Wootton, R.J. Compensatory Growth in Fishes: A Response to Growth Depression. Fish Fish. 2003, 4, 147–190. [Google Scholar] [CrossRef]
- Py, C.; Elizondo-González, R.; Peña-Rodríguez, A. Compensatory Growth: Fitness Cost in Farmed Fish and Crustaceans. Rev. Aquac. 2022, 14, 1389–1417. [Google Scholar] [CrossRef]
- Surai, P.F. Polyphenol Compounds in the Chicken/Animal Diet: From the Past to the Future. J. Anim. Physiol. Anim. Nutr. 2014, 98, 19–31. [Google Scholar] [CrossRef] [PubMed]
- Kamboh, A.A. Flavonoids: Health Promoting Phytochemicals for Animal Production-a Review. J. Anim. Health Prod. 2015, 3, 6–13. [Google Scholar] [CrossRef]
- Kasapidou, E.; Sossidou, E.; Mitlianga, P. Fruit and Vegetable Co-Products as Functional Feed Ingredients in Farm Animal Nutrition for Improved Product Quality. Agriculture 2015, 5, 1020–1034. [Google Scholar] [CrossRef]
- Abdel-Tawwab, M. Feed Supplementation to Freshwater Fish: Experimental Approaches; LAP Lambert Academic Publishing: Saarbrücken, Germany, 2016; ISBN 3659580678. [Google Scholar]
- Patra, A.K.; Salah, A.; Aschenbach, J.R. Modulation of Gastrointestinal Barrier and Nutrient Transport Function in Farm Animals by Natural Plant Bioactive Compounds—A Comprehensive Review. Crit. Rev. Food Sci. Nutr. 2019, 59, 3237–3266. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.M.; Mat, K.; Ishigaki, G.; Akashi, R. A Review of Okara (Soybean Curd Residue) Utilization as Animal Feed: Nutritive Value and Animal Performance Aspects. Anim. Sci. J. 2021, 92, e13594. [Google Scholar] [CrossRef] [PubMed]
- Makkar, H.P.S.; Francis, G.; Becker, K. Bioactivity of Phytochemicals in Some Lesser-Known Plants and Their Effects and Potential Applications in Livestock and Aquaculture Production Systems. Animal 2007, 1, 1371–1391. [Google Scholar] [CrossRef] [PubMed]
- Jahazi, M.A.; Hoseinifar, S.H.; Jafari, V.; Hajimoradloo, A.; Van Doan, H.; Paolucci, M. Dietary Supplementation of Polyphenols Positively Affects the Innate Immune Response, Oxidative Status, and Growth Performance of Common Carp, Cyprinus carpio L. Aquaculture 2020, 517, 734709. [Google Scholar] [CrossRef]
- Huang, Q.; Liu, X.; Zhao, G.; Hu, T.; Wang, Y. Potential and Challenges of Tannins as an Alternative to In-Feed Antibiotics for Farm Animal Production. Anim. Nutr. 2018, 4, 137–150. [Google Scholar] [CrossRef] [PubMed]
- Kamini, N.R.; Thirunavukarasu, K. Utilization of Olive Oil and Its By-Products for Industrial Applications. In Olive Oil Health; CABI: Wallingford, UK, 2011; p. 25. [Google Scholar] [CrossRef]
- Derendorf, H. Pharmacokinetics of Natural Compounds. Planta Med. 2012, 78, IL41. [Google Scholar] [CrossRef]
- Centrone, M.; Ranieri, M.; Di Mise, A.; D’Agostino, M.; Venneri, M.; Valenti, G.; Tamma, G. Health Benefits of Olive Oil and By-Products and Possible Innovative Applications for Industrial Processes. Funct. Foods Health Dis. 2021, 11, 295–309. [Google Scholar] [CrossRef]
- Corona, G.; Spencer, J.P.E.; Dessì, M.A. Extra Virgin Olive Oil Phenolics: Absorption, Metabolism, and Biological Activities in the GI Tract. Toxicol. Ind. Health 2009, 25, 285–293. [Google Scholar] [CrossRef] [PubMed]
- Gavahian, M.; Mousavi Khaneghah, A.; Lorenzo, J.M.; Munekata, P.E.S.; Garcia-Mantrana, I.; Collado, M.C.; Meléndez-Martínez, A.J.; Barba, F.J. Health Benefits of Olive Oil and Its Components: Impacts on Gut Microbiota Antioxidant Activities, and Prevention of Noncommunicable Diseases. Trends Food Sci. Technol. 2019, 88, 220–227. [Google Scholar] [CrossRef]
- Banerjee, G.; Ray, A.K. Bacterial Symbiosis in the Fish Gut and Its Role in Health and Metabolism. Symbiosis 2017, 72, 1–11. [Google Scholar] [CrossRef]
- Hidalgo, M.; Prieto, I.; Abriouel, H.; Cobo, A.; Benomar, N.; Gálvez, A.; Martínez-Cañamero, M. Effect of Virgin and Refined Olive Oil Consumption on Gut Microbiota. Comparison to Butter. Food Res. Int. 2014, 64, 553–559. [Google Scholar] [CrossRef] [PubMed]
- De Wit, N.; Derrien, M.; Bosch-Vermeulen, H.; Oosterink, E.; Keshtkar, S.; Duval, C.; De Vogel-Van Den Bosch, J.; Kleerebezem, M.; Müller, M.; Van Der Meer, R. Saturated Fat Stimulates Obesity and Hepatic Steatosis and Affects Gut Microbiota Composition by an Enhanced Overflow of Dietary Fat to the Distal Intestine. Am. J. Physiol. Gastrointest. Liver Physiol. 2012, 303, 589–599. [Google Scholar] [CrossRef] [PubMed]
- Sakavitsi, M.E.; Breynaert, A.; Nikou, T.; Lauwers, S.; Pieters, L.; Hermans, N.; Halabalaki, M. Availability and Metabolic Fate of Olive Phenolic Alcohols Hydroxytyrosol and Tyrosol in the Human GI Tract Simulated by the In Vitro GIDM–Colon Model. Metabolites 2022, 12, 391. [Google Scholar] [CrossRef] [PubMed]
- López De Las Hazas, M.C.; Piñol, C.; Macià, A.; Motilva, M.J. Hydroxytyrosol and the Colonic Metabolites Derived from Virgin Olive Oil Intake Induce Cell Cycle Arrest and Apoptosis in Colon Cancer Cells. J. Agric. Food Chem. 2017, 65, 6467–6476. [Google Scholar] [CrossRef] [PubMed]
- Sokooti, R.; Chelemal Dezfoulnejad, M.; Javaheri Baboli, M. Effects of Olive Leaf Extract (Olea europaea Leecino) on Growth, Haematological Parameters, Immune System and Carcass Composition in Common Carp (Cyprinus carpio). Aquac. Res. 2021, 52, 2415–2423. [Google Scholar] [CrossRef]
- Abdel-Razek, A.G.; Noah Badr, A.; Shehata, M.G. Characterization of Olive Oil By-Products: Antioxidant Activity, Its Ability to Reduce Aflatoxigenic Fungi Hazard and Its Aflatoxins. Annu. Res. Rev. Biol. 2017, 14, 1–14. [Google Scholar] [CrossRef]
- Baba, E.; Acar, Ü.; Yılmaz, S.; Zemheri, F.; Ergün, S. Dietary Olive Leaf (Olea europea L.) Extract Alters Some Immune Gene Expression Levels and Disease Resistance to Yersinia Ruckeri Infection in Rainbow Trout Oncorhynchus Mykiss. Fish Shellfish Immunol. 2018, 79, 28–33. [Google Scholar] [CrossRef] [PubMed]
- Zemheri-Navruz, F.; Acar, Ü.; Yılmaz, S. Dietary Supplementation of Olive Leaf Extract Enhances Growth Performance, Digestive Enzyme Activity and Growth Related Genes Expression in Common Carp Cyprinus Carpio. Gen. Comp. Endocrinol. 2020, 296, 113541. [Google Scholar] [CrossRef] [PubMed]
- Halliwell, B. Are Polyphenols Antioxidants or Pro-Oxidants? What Do We Learn from Cell Culture and In Vivo Studies? Arch. Biochem. Biophys. 2008, 476, 107–112. [Google Scholar] [CrossRef] [PubMed]
- Nasopoulou, C.; Zabetakis, I. Benefits of Fish Oil Replacement by Plant Originated Oils in Compounded Fish Feeds. A Review. Lwt 2012, 47, 217–224. [Google Scholar] [CrossRef]
- Al-Asgah, N.A.; Younis, E.M.; Abdel-Warith, A.A.; El-Khaldy, A.A.; Ali, A.; Al-Asgah, N.A.; Ali, A. Effect of Feeding Olive Waste on Growth Performance and Muscle Composition of Nile Tilapia (Oreochromis niloticus). Int. J. Agric. Biol. 2011, 13, 239–244. [Google Scholar]
- Hazreen-Nita, M.K.; Abdul Kari, Z.; Mat, K.; Rusli, N.D.; Mohamad Sukri, S.A.; Che Harun, H.; Lee, S.W.; Rahman, M.M.; Norazmi-Lokman, N.H.; Nur-Nazifah, M.; et al. Olive Oil By-Products in Aquafeeds: Opportunities and Challenges. Aquac. Rep. 2022, 22. [Google Scholar] [CrossRef]
- Gisbert, E.; Andree, K.B.; Quintela, J.C.; Calduch-Giner, J.A.; Ipharraguerre, I.R.; Pérez-Sánchez, J. Olive Oil Bioactive Compounds Increase Body Weight, and Improve Gut Health and Integrity in Gilthead Sea Bream (Sparus aurata). Br. J. Nutr. 2017, 117, 351–363. [Google Scholar] [CrossRef] [PubMed]
- Rong, J.; Han, Y.; Zha, S.; Tang, Y.; Shi, W.; Guan, X.; Du, X.; He, M.; Liu, G. Triterpene-Enriched Olive Extract as an Immunopotentiator in Black Sea Bream (Acanthopagrus schlegelii). J. Ocean Univ. China 2020, 19, 428–438. [Google Scholar] [CrossRef]
- Lutfi, E.; Babin, P.J.; Gutiérrez, J.; Capilla, E.; Navarro, I. Caffeic Acid and Hydroxytyrosol Have Anti-Obesogenic Properties in Zebrafish and Rainbow Trout Models. PLoS ONE 2017, 12, e0178833. [Google Scholar] [CrossRef] [PubMed]
- Hassen, W.; Hassen, B.; Werhani, R.; Hidri, Y.; Jedidi, N.; Hassen, A. Processes of Valorization and Management of Olive By-Products: The Pomace and Olive Mill Wastewater. In Springer Water; Springer Nature: Berlin/Heidelberg, Germany, 2023; pp. 1–25. [Google Scholar]
- Zhao, Z.; Zhao, F.; Cairang, Z.; Zhou, Z.; Du, Q.; Wang, J.; Zhao, F.; Wang, Q.; Li, Z.; Zhang, X. Role of Dietary Tea Polyphenols on Growth Performance and Gut Health Benefits in Juvenile Hybrid Sturgeon (Acipenser baerii ♀ × A. schrenckii ♂). Fish Shellfish Immunol. 2023, 139, 108911. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Zhao, L.P.; Shen, Y.Q. A Systematic Review of Advances in Intestinal Microflora of Fish. Fish Physiol. Biochem. 2021, 47, 2041–2053. [Google Scholar] [CrossRef] [PubMed]
- Ikeda-Ohtsubo, W.; Brugman, S.; Warden, C.H.; Rebel, J.M.J.; Folkerts, G.; Pieterse, C.M.J. How Can We Define “Optimal Microbiota?”: A Comparative Review of Structure and Functions of Microbiota of Animals, Fish, and Plants in Agriculture. Front. Nutr. 2018, 5, 90. [Google Scholar] [PubMed]
- Kim, P.S.; Shin, N.-R.; Lee, J.-B.; Kim, M.-S.; Whon, T.W.; Hyun, D.-W.; Yun, J.-H.; Jung, M.-J.; Kim, J.Y.; Bae, J.-W. Host Habitat Is the Major Determinant of the Gut Microbiome of Fish. Microbiome 2021, 9, 166. [Google Scholar] [CrossRef] [PubMed]
- Naya-Català, F.; do Vale Pereira, G.; Piazzon, M.C.; Fernandes, A.M.; Calduch-Giner, J.A.; Sitjà-Bobadilla, A.; Conceição, L.E.C.; Pérez-Sánchez, J. Cross-Talk Between Intestinal Microbiota and Host Gene Expression in Gilthead Sea Bream (Sparus aurata) Juveniles: Insights in Fish Feeds for Increased Circularity and Resource Utilization. Front. Physiol. 2021, 12, 748265. [Google Scholar] [CrossRef] [PubMed]
- Piazzon, M.C.; Naya-Català, F.; Perera, E.; Palenzuela, O.; Sitjà-Bobadilla, A.; Pérez-Sánchez, J. Genetic Selection for Growth Drives Differences in Intestinal Microbiota Composition and Parasite Disease Resistance in Gilthead Sea Bream. Microbiome 2020, 8, 168. [Google Scholar] [CrossRef] [PubMed]
- Karlsen, C.; Tzimorotas, D.; Robertsen, E.M.; Kirste, K.H.; Bogevik, A.S.; Rud, I. Feed Microbiome: Confounding Factor Affecting Fish Gut Microbiome Studies. ISME Commun. 2022, 2, 14. [Google Scholar] [CrossRef] [PubMed]
- Luan, Y.; Li, M.; Zhou, W.; Yao, Y.; Yang, Y.; Zhang, Z.; Ringø, E.; Erik Olsen, R.; Liu Clarke, J.; Xie, S.; et al. The Fish Microbiota: Research Progress and Potential Applications. Engineering 2023, 29, 137–146. [Google Scholar] [CrossRef]
- Nikouli, E.; Kormas, K.A.; Jin, Y.; Olsen, Y.; Bakke, I.; Vadstein, O. Dietary Lipid Effects on Gut Microbiota of First Feeding Atlantic Salmon (Salmo salar L.). Front. Mar. Sci. 2021, 8, 665576. [Google Scholar] [CrossRef]
- Zhu, H.; Qiang, J.; He, J.; Tao, Y.; Bao, J.; Xu, P. Physiological Parameters and Gut Microbiome Associated with Different Dietary Lipid Levels in Hybrid Yellow Catfish (Tachysurus Fulvidraco♀× Pseudobagrus Vachellii♂). Comp. Biochem. Physiol. Part D Genom. Proteom. 2021, 37, 100777. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.-L.; Li, M.; Sheng, Y.; Tan, F.; Chen, L.; Cann, I.; Du, Z.-Y. Citrobacter Species Increase Energy Harvest by Modulating Intestinal Microbiota in Fish: Nondominant Species Play Important Functions. mSystems 2020, 5, e00303-20. [Google Scholar] [CrossRef] [PubMed]
- Xavier, R.; Severino, R.; Silva, S.M. Signatures of Dysbiosis in Fish Microbiomes in the Context of Aquaculture. Rev. Aquac. 2024, 16, 706–731. [Google Scholar] [CrossRef]
- Balbuena-Pecino, S.; Montblanch, M.; Rosell-Moll, E.; González-Fernández, V.; García-Meilán, I.; Fontanillas, R.; Gallardo, Á.; Gutiérrez, J.; Capilla, E.; Navarro, I. Impact of Hydroxytyrosol-Rich Extract Supplementation in a High-Fat Diet on Gilthead Sea Bream (Sparus aurata) Lipid Metabolism. Antioxidants 2024, 13, 403. [Google Scholar] [CrossRef] [PubMed]
- Balbuena-Pecino, S.; Montblanch, M.; García-Meilán, I.; Fontanillas, R.; Gallardo, Á.; Gutiérrez, J.; Navarro, I.; Capilla, E. Hydroxytyrosol-Rich Extract from Olive Juice as an Additive in Gilthead Sea Bream Juveniles Fed a High-Fat Diet: Regulation of Somatic Growth. Front. Physiol. 2022, 13, 966175. [Google Scholar] [CrossRef] [PubMed]
- Santigosa, E.; García-Meilán, I.; Valentín, J.M.; Navarro, I.; Pérez-Sánchez, J.; Gallardo, M.Á. Plant Oils’ Inclusion in High Fish Meal-Substituted Diets: Effect on Digestion and Nutrient Absorption in Gilthead Sea Bream (Sparus aurata L.). Aquac. Res. 2011, 42, 962–974. [Google Scholar] [CrossRef]
- Garciacarreno, F.L.; Dimes, L.E.; Haard, N.F. Substrate-Gel Electrophoresis for Composition and Molecular Weight of Proteinases or Proteinaceous Proteinase Inhibitors. Anal. Biochem. 1993, 214, 65–69. [Google Scholar] [CrossRef] [PubMed]
- Moyano, F.J.; Díaz, M.; Alarcón, F.J.; Sarasquete, M.C. Characterization of Digestive Enzyme Activity during Larval Development of Gilthead Seabream (Sparus aurata). Fish Physiol. Biochem. 1996, 15, 121–130. [Google Scholar] [CrossRef] [PubMed]
- Castro, C.; Couto, A.; Diógenes, A.F.; Corraze, G.; Panserat, S.; Serra, C.R.; Oliva-Teles, A. Vegetable Oil and Carbohydrate-Rich Diets Marginally Affected Intestine Histomorphology, Digestive Enzymes Activities, and Gut Microbiota of Gilthead Sea Bream Juveniles. Fish Physiol. Biochem. 2019, 45, 681–695. [Google Scholar] [CrossRef] [PubMed]
- Hartman, A.L.; Lough, D.M.; Barupal, D.K.; Fiehn, O.; Fishbein, T.; Zasloff, M.; Eisen, J.A. Human Gut Microbiome Adopts an Alternative State Following Small Bowel Transplantation. Proc. Natl. Acad. Sci. USA 2009, 106, 17187–17192. [Google Scholar] [CrossRef] [PubMed]
- Haakensen, M.; Dobson, C.M.; Deneer, H.; Ziola, B. Real-Time PCR Detection of Bacteria Belonging to the Firmicutes Phylum. Int. J. Food Microbiol. 2008, 125, 236–241. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; Cao, J.; Dai, W.; Qiu, Q.; Xiong, J. Quantitative PCR Analysis of Gut Disease-Discriminatory Phyla for Determining Shrimp Disease Incidence. Appl. Environ. Microbiol. 2018, 84, e01387-18. [Google Scholar] [CrossRef] [PubMed]
- Pfaffl, M.W. A New Mathematical Model for Relative Quantification in Real-Time RT-PCR. Nucleic Acids Res. 2001, 29, e45. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.C.; Han, M.H.; Pak, M.N.; Sin, J.I.; Ri, K.C.; Pak, S.S.; Ri, J.H.; Pak, C.J.; Won, K.Y. Effect of Dietary Pinus Densiflora Bark Extract on Nutrient Utilization and Intestinal Health in Weaned Piglets. Livest. Sci. 2022, 263, 105014. [Google Scholar] [CrossRef]
- Marković, A.K.; Torić, J.; Barbarić, M.; Brala, C.J. Hydroxytyrosol, Tyrosol and Derivatives and Their Potential Effects on Human Health. Molecules 2019, 24, 2001. [Google Scholar] [CrossRef] [PubMed]
- Tuck, K.L.; Hayball, P.J. Reviews: Current topics Major Phenolic Compounds in Olive Oil: Metabolism and Health Effects. J. Nutr. Biochem. 2002, 13, 636–644. [Google Scholar] [CrossRef] [PubMed]
- Waqas, M.; Salman, M.; Sahrif, M.S. Application of Polyphenolic Compounds in Animal Nutrition and Their Promising Effects. J. Anim. Feed. Sci. 2023, 32, 233–256. [Google Scholar] [CrossRef]
- Wang, F.; Chen, J.; Yin, Y.; Yang, M.; Xiao, Y.; Cheng, Y.; Yin, L.; Fu, C. The Effects of Dietary Ellagic Acid Supplementation on Growth Performance, Immune Response, Antioxidant Activity, Digestive Enzyme Activities, and Intestinal Functions in Yellow-Feathered Broilers. J. Anim. Sci. 2022, 100, skac301. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Wu, X.Y.; Zhou, X.Q.; Feng, L.; Liu, Y.; Jiang, W.D.; Wu, P.; Zhao, Y. Effects of Dietary Curcumin Supplementation on Growth Performance, Intestinal Digestive Enzyme Activities and Antioxidant Capacity of Crucian Carp Carassius Auratus. Aquaculture 2016, 463, 174–180. [Google Scholar] [CrossRef]
- Bacchetta, C.; Rossi, A.S.; Cian, R.E.; Drago, S.R.; Cazenave, J. Dietary β-Carotene Improves Growth Performance and Antioxidant Status of Juvenile Piaractus Mesopotamicus. Aquac. Nutr. 2019, 25, 761–769. [Google Scholar] [CrossRef]
- Assar, D.H.; Ragab, A.E.; Abdelsatar, E.; Salah, A.S.; Salem, S.M.R.; Hendam, B.M.; Al Jaouni, S.; Al Wakeel, R.A.; AbdEl-Kader, M.F.; Elbialy, Z.I. Dietary Olive Leaf Extract Differentially Modulates Antioxidant Defense of Normal and Aeromonas Hydrophila-Infected Common Carp (Cyprinus carpio) via Keap1/Nrf2 Pathway Signaling: A Phytochemical and Biological Link. Animals 2023, 13, 2229. [Google Scholar] [CrossRef] [PubMed]
- Sicuro, B.; Badino, P.; Daprà, F.; Gai, F.; Galloni, M.; Odore, R.; Palmegiano, G.B.; Macchi, E. Physiological Effects of Natural Olive Oil Antioxidants Utilization in Rainbow Trout (Onchorynchus mykiss) Feeding. Aquac. Int. 2010, 18, 415–431. [Google Scholar] [CrossRef]
- García-Meilán, I.; Ordóñez-Grande, B.; Gallardo, M.A. Meal Timing Affects Protein-Sparing Effect by Carbohydrates in Sea Bream: Effects on Digestive and Absorptive Processes. Aquaculture 2014, 434, 121–128. [Google Scholar] [CrossRef]
- García-Meilán, I.; Ordóñez-Grande, B.; Machahua, C.; Buenestado, S.; Fontanillas, R.; Gallardo, M.A. Effects of Dietary Protein-to-Lipid Ratio on Digestive and Absorptive Processes in Sea Bass Fingerlings. Aquaculture 2016, 463, 163–173. [Google Scholar] [CrossRef]
- García-Meilán, I.; Ordóñez-Grande, B.; Valentín, J.M.; Fontanillas, R.; Gallardo, Á. High Dietary Carbohydrate Inclusion by Both Protein and Lipid Replacement in Gilthead Sea Bream. Changes in Digestive and Absorptive Processes. Aquaculture 2020, 520, 734977. [Google Scholar] [CrossRef]
- Ruiz, A.; Andree, K.B.; Sanahuja, I.; Holhorea, P.G.; Calduch-Giner, J.; Morais, S.; Pastor, J.J.; Pérez-Sánchez, J.; Gisbert, E. Bile Salt Dietary Supplementation Promotes Growth and Reduces Body Adiposity in Gilthead Seabream (Sparus aurata). Aquaculture 2023, 566, 739203. [Google Scholar] [CrossRef]
- Romano, N.; Kumar, V.; Yang, G.; Kajbaf, K.; Rubio, M.B.; Overturf, K.; Brezas, A.; Hardy, R. Bile Acid Metabolism in Fish: Disturbances Caused by Fishmeal Alternatives and Some Mitigating Effects from Dietary Bile Inclusions. Rev. Aquac. 2020, 12, 1792–1817. [Google Scholar] [CrossRef]
- Li, Y.; Wang, S.; Hu, Y.; Cheng, J.; Cheng, X.; Cheng, P.; Cui, Z. Dietary Bile Acid Supplementation Reveals Beneficial Effects on Intestinal Healthy Status of Tongue Sole (Cynoglossus semiliaevis). Fish Shellfish Immunol. 2021, 116, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Yin, P.; Xie, S.; Zhuang, Z.; He, X.; Tang, X.; Tian, L.; Liu, Y.; Niu, J. Dietary Supplementation of Bile Acid Attenuate Adverse Effects of High-Fat Diet on Growth Performance, Antioxidant Ability, Lipid Accumulation and Intestinal Health in Juvenile Largemouth Bass (Micropterus salmoides). Aquaculture 2021, 531, 735864. [Google Scholar] [CrossRef]
- Ding, T.; Xu, N.; Liu, Y.; Du, J.; Xiang, X.; Xu, D.; Liu, Q.; Yin, Z.; Li, J.; Mai, K.; et al. Effect of Dietary Bile Acid (BA) on the Growth Performance, Body Composition, Antioxidant Responses and Expression of Lipid Metabolism-Related Genes of Juvenile Large Yellow Croaker (Larimichthys crocea) Fed High-Lipid Diets. Aquaculture 2020, 518, 734768. [Google Scholar] [CrossRef]
- Yago, M.D.; Martinez-Burgos, M.A.; Audi, N.; Mañas, M.; Martinez-Victoria, E. Influence of Olive Oil on Pancreatic, Biliary, and Gastric Secretion: Role of Gastrointestinal Peptides. In Olives and Olive Oil in Health and Disease Prevention; Elsevier: Amsterdam, The Netherlands, 2020; pp. 557–568. ISBN 9780128195284. [Google Scholar]
- Mansour, A.T.; El-Feky, M.M.M.; El-Beltagi, H.S.; Sallam, A.E. Synergism of Dietary Co-Supplementation with Lutein and Bile Salts Improved the Growth Performance, Carotenoid Content, Antioxidant Capacity, Lipid Metabolism, and Lipase Activity of the Marbled Spinefoot Rabbitfish, Siganus Rivulatus. Animals 2020, 10, 1643. [Google Scholar] [CrossRef] [PubMed]
- Kortner, T.M.; Penn, M.H.; Bjrkhem, I.; Måsøval, K.; Krogdahl, Å. Bile Components and Lecithin Supplemented to Plant Based Diets Do Not Diminish Diet Related Intestinal Inflammation in Atlantic Salmon. BMC Vet. Res. 2016, 12, 190. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Kong, F. Effects of Tea Polyphenols and Different Teas on Pancreatic α-Amylase Activity in Vitro. LWT-Food Sci. Technol. 2016, 66, 232–238. [Google Scholar] [CrossRef]
- Sun, L.; Wang, Y.; Miao, M. Inhibition of α-Amylase by Polyphenolic Compounds: Substrate Digestion, Binding Interactions and Nutritional Intervention. Trends Food Sci. Technol. 2020, 104, 190–207. [Google Scholar] [CrossRef]
- Hadrich, F.; Bouallagui, Z.; Junkyu, H.; Isoda, H.; Sayadi, S. The α-Glucosidase and α-Amylase Enzyme Inhibitory of Hydroxytyrosol and Oleuropein. J. Oleo Sci. 2015, 64, 835–843. [Google Scholar] [CrossRef] [PubMed]
- Collado-González, J.; Grosso, C.; Valentão, P.; Andrade, P.B.; Ferreres, F.; Durand, T.; Guy, A.; Galano, J.M.; Torrecillas, A.; Gil-Izquierdo, Á. Inhibition of α-Glucosidase and α-Amylase by Spanish Extra Virgin Olive Oils: The Involvement of Bioactive Compounds Other than Oleuropein and Hydroxytyrosol. Food Chem. 2017, 235, 298–307. [Google Scholar] [CrossRef] [PubMed]
- Loizzo, M.R.; Di Lecce, G.; Boselli, E.; Menichini, F.; Frega, N.G. Inhibitory Activity of Phenolic Compounds from Extra Virgin Olive Oils on the Enzymes Involved in Diabetes, Obesity and Hypertension. J. Food Biochem. 2011, 35, 381–399. [Google Scholar] [CrossRef]
- Figueiredo-González, M.; Reboredo-Rodríguez, P.; González-Barreiro, C.; Carrasco-Pancorbo, A.; Cancho-Grande, B.; Simal-Gándara, J. The Involvement of Phenolic-Rich Extracts from Galician Autochthonous Extra-Virgin Olive Oils against the α-Glucosidase and α-Amylase Inhibition. Food Res. Int. 2019, 116, 447–454. [Google Scholar] [CrossRef] [PubMed]
- Figueiredo-González, M.; Reboredo-Rodríguez, P.; González-Barreiro, C.; Simal-Gándara, J.; Valentão, P.; Carrasco-Pancorbo, A.; Andrade, P.B.; Cancho-Grande, B. Evaluation of the Neuroprotective and Antidiabetic Potential of Phenol-Rich Extracts from Virgin Olive Oils by in Vitro Assays. Food Res. Int. 2018, 106, 558–567. [Google Scholar] [CrossRef] [PubMed]
- García-Meilán, I.; Valentín, J.M.; Fontanillas, R.; Gallardo, M.A. Different Protein to Energy Ratio Diets for Gilthead Sea Bream (Sparus aurata): Effects on Digestive and Absorptive Processes. Aquaculture 2013, 412–413, 1–7. [Google Scholar] [CrossRef]
- Hand, K.V.; Bruen, C.M.; O’Halloran, F.; Giblin, L.; Green, B.D. Acute and Chronic Effects of Dietary Fatty Acids on Cholecystokinin Expression, Storage and Secretion in Enteroendocrine STC-1 Cells. Mol. Nutr. Food Res. 2010, 54, S93–S103. [Google Scholar] [CrossRef] [PubMed]
- Feltrin, K.L.; Little, T.J.; Meyer, J.H.; Horowitz, M.; Rades, T.; Wishart, J.; Feinle-Bisset, C. Comparative Effects of Intraduodenal Infusions of Lauric and Oleic Acids on Antropyloroduodenal Motility, Plasma Cholecystokinin and Peptide YY, Appetite, and Energy Intake in Healthy Men. Am. J. Clin. Nutr. 2008, 87, 1181–1187. [Google Scholar] [CrossRef] [PubMed]
- Midhun, S.J.; Arun, D.; Edatt, L.; Sruthi, M.V.; Thushara, V.V.; Oommen, O.V.; Sameer Kumar, V.B.; Divya, L. Modulation of Digestive Enzymes, GH, IGF-1 and IGF-2 Genes in the Teleost, Tilapia (Oreochromis Mossambicus) by Dietary Curcumin. Aquac. Int. 2016, 24, 1277–1286. [Google Scholar] [CrossRef]
- Fountoulaki, E.; Alexis, M.N.; Nengas, I.; Venou, B. Effect of Diet Composition on Nutrient Digestibility and Digestive Enzyme Levels of Gilthead Sea Bream (Sparus aurata L.). Aquac. Res. 2005, 36, 1243–1251. [Google Scholar] [CrossRef]
- Murashita, K.; Fukada, H.; Rønnestad, I.; Kurokawa, T.; Masumoto, T. Nutrient Control of Release of Pancreatic Enzymes in Yellowtail (Seriola quinqueradiata): Involvement of CCK and PY in the Regulatory Loop. Comp. Biochem. Physiol.-A Mol. Integr. Physiol. 2008, 150, 438–443. [Google Scholar] [CrossRef] [PubMed]
- García-Meilán, I.; Fontanillas, R.; Gutiérrez, J.; Capilla, E.; Navarro, I.; Gallardo, Á. Effects of Dietary Vegetable Oil Mixtures Including Soybean Oil on Intestinal Oxidative Stress in Gilthead Sea Bream (Sparus aurata). Animals 2023, 13, 1069. [Google Scholar] [CrossRef] [PubMed]
- García-Meilán, I.; Fontanillas, R.; Gutiérrez, J.; Capilla, E.; Navarro, I.; Gallardo, Á. Oxidative Status of the Pyloric Caeca and Proximal Intestine in Gilthead Sea Bream Fed Diets Including Different Vegetable Oil Blends from Palm, Rapeseed and Linseed. Fishes 2024, 9, 228. [Google Scholar] [CrossRef]
- Comperatore, C.A.; Stephan, F.K. Entrainment of Duodenal Activity to Periodic Feeding. J. Biol. Rhythm. 1987, 2, 227–242. [Google Scholar] [CrossRef] [PubMed]
- Guillaume, J.; Choubert, G. Digestive Physiology and Nutrient Digestibility in Fishes. In Nutrition and Feeding of Fish and Crustaceans; Guillaume, J., Ed.; Springer Praxis: Chichester, UK, 2001. [Google Scholar]
- Buller, N.B. Aquatic Animal Species and Organism Relationship. In Bacteria from Fish and Other Aquatic Animals: A Practical Identification Manual; CABI: Wallingford, UK, 2014; pp. 1–424. [Google Scholar] [CrossRef]
- Sullam, K.E.; Essinger, S.D.; Lozupone, C.A.; O’connor, M.P.; Rosen, G.L.; Knight, R.O.B.; Kilham, S.S.; Russell, J.A. Environmental and Ecological Factors That Shape the Gut Bacterial Communities of Fish: A Meta-Analysis. Mol. Ecol. 2012, 21, 3363–3378. [Google Scholar] [CrossRef] [PubMed]
- Mekuchi, M.; Asakura, T.; Sakata, K.; Yamaguchi, T.; Teruya, K.; Kikuchi, J. Intestinal Microbiota Composition Is Altered According to Nutritional Biorhythms in the Leopard Coral Grouper (Plectropomus leopardus). PLoS ONE 2018, 13, e0197256. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Shi, H.; He, Q.; Lin, F.; Wang, Q.; Xiao, S.; Dai, Y.; Zhang, Y.; Yang, H.; Zhao, H. Effect of Starvation and Refeeding on Growth, Gut Microbiota and Non-Specific Immunity in Hybrid Grouper (Epinephelus Fuscoguttatus♀ × E. Lanceolatus♂). Fish Shellfish Immunol. 2020, 97, 182–193. [Google Scholar] [CrossRef] [PubMed]
- Tran, N.T.; Xiong, F.; Hao, Y.T.; Zhang, J.; Wu, S.G.; Wang, G.T. Starvation Influences the Microbiota Assembly and Expression of Immunity-Related Genes in the Intestine of Grass Carp (Ctenopharyngodon idellus). Aquaculture 2018, 489, 121–129. [Google Scholar] [CrossRef]
- Ruiz, A.; Andree, K.B.; Furones, D.; Holhorea, P.G.; Calduch-Giner, J.; Viñas, M.; Pérez-Sánchez, J.; Gisbert, E. Modulation of Gut Microbiota and Intestinal Immune Response in Gilthead Seabream (Sparus aurata) by Dietary Bile Salt Supplementation. Front. Microbiol. 2023, 14, 1123716. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Wang, N.; Ma, Y.; Wen, D. Hydroxytyrosol Improves Obesity and Insulin Resistance by Modulating Gut Microbiota in High-Fat Diet-Induced Obese Mice. Front. Microbiol. 2019, 10, 390. [Google Scholar] [CrossRef] [PubMed]
HF | HT | |
---|---|---|
Ingredients (%) | ||
Corn gluten | 3.80 | 3.80 |
Wheat gluten | 20.00 | 20.00 |
Fava beans | 8.00 | 8.00 |
Soya concentrate | 25.00 | 25.00 |
Fish meal | 15.00 | 15.00 |
Fish oil | 9.98 | 9.98 |
Rapeseed oil | 10.14 | 10.14 |
Yttrium premix | 0.10 | 0.10 |
Phosphate | 1.04 | 1.04 |
Vitamin mineral premix | 0.44 | 0.44 |
Wheat | 6.50 | 4.85 |
HIDROX® | 0 | 1.66 |
Composition (%) | ||
Dry matter | 93.0 | 93.0 |
Moisture | 7.0 | 7.0 |
Crude protein | 46.8 | 46.7 |
Crude fat | 24.0 | 24.2 |
Ash | 5.4 | 5.6 |
Crude fiber | 1.9 | 1.8 |
Starch | 8.8 | 7.8 |
Total Bacteria (AN: 65 °C) | F: ACT CCT ACG GGA GGC AGC AGT R: ATT ACC GCG GCT GCT GGC |
γ-Proteobacteria (AN: 54 °C) | F: GCT CGT GTT GTG AAA TGT TGG R: CGT AAG GGC CAT GAT GAC TTG |
Actinobacteria (AN: 54 °C) | F: TAC GGC CGC AAG GCT A R: TCR TCC CCA CCT TCC TCC G |
Firmicutes (AN: 52 °C) | F: CTG ATG GAG CAA CGC CGC GT R: ACA CYT AGY ACT CAT CGT TT |
Enterobacteriaceae (AN: 60 °C) | R: ATG GCT GTC GTC AGC TCG T F: CCT ACT TCT TTT GCA ACC CAC T |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Meilán, I.; Balbuena-Pecino, S.; Montblanch, M.; Ramos-Romero, S.; Fontanillas, R.; Gutiérrez, J.; Capilla, E.; Navarro, I.; Gallardo, Á. Modulation of Digestive Enzyme Activities and Intestinal γ-Proteobacteria in Gilthead Sea Bream Fed High-Fat Diets Supplemented with HIDROX® Olive Oil Extract. Animals 2025, 15, 2102. https://doi.org/10.3390/ani15142102
García-Meilán I, Balbuena-Pecino S, Montblanch M, Ramos-Romero S, Fontanillas R, Gutiérrez J, Capilla E, Navarro I, Gallardo Á. Modulation of Digestive Enzyme Activities and Intestinal γ-Proteobacteria in Gilthead Sea Bream Fed High-Fat Diets Supplemented with HIDROX® Olive Oil Extract. Animals. 2025; 15(14):2102. https://doi.org/10.3390/ani15142102
Chicago/Turabian StyleGarcía-Meilán, Irene, Sara Balbuena-Pecino, Manel Montblanch, Sara Ramos-Romero, Ramón Fontanillas, Joaquim Gutiérrez, Encarnación Capilla, Isabel Navarro, and Ángeles Gallardo. 2025. "Modulation of Digestive Enzyme Activities and Intestinal γ-Proteobacteria in Gilthead Sea Bream Fed High-Fat Diets Supplemented with HIDROX® Olive Oil Extract" Animals 15, no. 14: 2102. https://doi.org/10.3390/ani15142102
APA StyleGarcía-Meilán, I., Balbuena-Pecino, S., Montblanch, M., Ramos-Romero, S., Fontanillas, R., Gutiérrez, J., Capilla, E., Navarro, I., & Gallardo, Á. (2025). Modulation of Digestive Enzyme Activities and Intestinal γ-Proteobacteria in Gilthead Sea Bream Fed High-Fat Diets Supplemented with HIDROX® Olive Oil Extract. Animals, 15(14), 2102. https://doi.org/10.3390/ani15142102