Dietary Hemp (Cannabis sativa L.) Products Enhance Egg Yolk Omega-3 Fatty Acids and Color Without Compromising Laying-Hen Performance: A Meta-Analysis
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Literature Search and Study Selection
- (i)
- The conducted experiments evaluated the effects of hemp products on laying hens.
- (ii)
- Be published in English.
- (iii)
- Report at least one relevant outcome measure, including hen-day production, egg mass, feed conversion ratio (FCR), feed intake (FI), egg weight (EW), albumen weight (AW), yolk cholesterol (YC), yolk weight (YW), shell weight (SW), Haugh unit (HU), eggshell thickness (EST), yolk color (lightness (L*), redness (a*), and yellowness (b*)), or yolk fatty acid profiles.
- (iv)
- Provide mean values, sample sizes (number of birds per treatment group), and a measure of variability, either in numerical or graphical form.
2.2. Data Extraction
2.3. Data Analysis
2.4. Heterogeneity Assessment
2.5. Subgroup and Meta-Regression Analyses
2.6. Publication Bias Assessment
3. Results
3.1. Study Characteristics
3.2. Laying-Hen Performance
3.3. Egg Quality
Variable | NC | Estimate (SMD) | Lower Bound | Upper Bound | Std. Error | p-Value | τ2 | Q | Het. p-Value | I2 |
---|---|---|---|---|---|---|---|---|---|---|
EW | 33 | 0.24 | −0.13 | 0.61 | 0.189 | 0.203 | 0.882 | 178.058 | <0.001 | 82.028 |
AW | 17 | 0.139 | −0.181 | 0.459 | 0.163 | 0.395 | 0.203 | 31.159 | 0.013 | 48.65 |
YW | 19 | 0.126 | −0.213 | 0.465 | 0.173 | 0.466 | 0.296 | 41.348 | 0.001 | 56.467 |
YC | 9 | −0.947 | −2.475 | 0.581 | 0.779 | 0.224 | 3.375 | 73.985 | <0.001 | 89.187 |
HU | 11 | 0.36 | −0.093 | 0.814 | 0.231 | 0.12 | 0.303 | 21.041 | 0.021 | 52.474 |
SW | 16 | 0.008 | −0.454 | 0.47 | 0.236 | 0.972 | 0.641 | 67.378 | <0.001 | 77.738 |
EST | 21 | −0.376 | −0.934 | 0.182 | 0.285 | 0.187 | 1.409 | 160.697 | <0.001 | 87.554 |
L* | 9 | −1.449 | −3.644 | 0.746 | 1.12 | 0.196 | 10.627 | 195.928 | <0.001 | 95.917 |
a* | 15 | 4.396 | 2.459 | 6.334 | 0.989 | <0.001 | 11.405 | 345.784 | <0.001 | 95.951 |
b* | 15 | 4.452 | 2.745 | 6.158 | 0.871 | <0.001 | 8.793 | 300.803 | <0.001 | 95.346 |
3.4. Egg Yolk Fatty Acid Profiles
Variable | NC | Estimate (SMD) | Lower Bound | Upper Bound | Std. Error | p-Value | τ2 | Q | Het. p-Value | I2 |
---|---|---|---|---|---|---|---|---|---|---|
C12:0 | 13 | 1.112 | −0.371 | 2.596 | 0.757 | 0.142 | 5.05 | 115.407 | <0.001 | 91.335 |
C14:0 | 37 | −0.905 | −1.36 | −0.45 | 0.232 | <0.001 | 1.509 | 190.081 | <0.001 | 81.061 |
C16:0 | 48 | −1.588 | −2.08 | −1.097 | 0.251 | <0.001 | 2.287 | 356.074 | <0.001 | 86.801 |
C16:1 | 46 | −1.373 | −1.881 | −0.865 | 0.259 | <0.001 | 2.399 | 363.798 | <0.001 | 87.631 |
C18:0 | 48 | 0.607 | 0.118 | 1.096 | 0.25 | 0.015 | 2.338 | 368.46 | <0.001 | 87.244 |
C18:1 | 48 | −1.905 | −2.373 | −1.437 | 0.239 | <0.001 | 2.045 | 311.562 | <0.001 | 84.915 |
C18:2 | 48 | 1.305 | 0.846 | 1.765 | 0.235 | <0.001 | 1.886 | 328.457 | <0.001 | 85.691 |
C18:3n3 | 48 | 5.595 | 4.724 | 6.466 | 0.444 | <0.001 | 6.891 | 448.988 | <0.001 | 89.532 |
C18:3n6 | 37 | 2.178 | 1.594 | 2.763 | 0.298 | <0.001 | 2.488 | 259.954 | <0.001 | 86.151 |
C20:4n6 | 33 | −1.071 | −1.558 | −0.584 | 0.248 | <0.001 | 1.62 | 192.58 | <0.001 | 83.384 |
C20:5n3 | 38 | 4.573 | 3.829 | 5.317 | 0.38 | <0.001 | 3.851 | 262.648 | <0.001 | 86.293 |
C22:5n3 | 25 | 2.553 | 1.918 | 3.189 | 0.324 | <0.001 | 2.102 | 150.699 | <0.001 | 84.074 |
C22:6n3 | 41 | 3.894 | 3.23 | 4.557 | 0.339 | <0.001 | 3.674 | 302.581 | <0.001 | 86.78 |
∑ n-3 | 35 | 5.132 | 4.294 | 5.97 | 0.428 | <0.001 | 4.779 | 245.575 | <0.001 | 86.155 |
∑ n-6 | 30 | 1.068 | 0.386 | 1.75 | 0.348 | 0.002 | 2.603 | 243.662 | <0.001 | 88.098 |
∑ SFA | 28 | −0.363 | −0.764 | 0.037 | 0.204 | 0.076 | 0.851 | 112.27 | <0.001 | 75.951 |
∑ MUFA | 31 | −2.694 | −3.425 | −1.962 | 0.373 | <0.001 | 3.051 | 224.53 | <0.001 | 86.639 |
∑ PUFA | 25 | 3.121 | 1.796 | 4.445 | 0.676 | <0.001 | 8.083 | 376.35 | <0.001 | 93.623 |
3.5. Subgroup Analysis
Variable | Moderators | Subgroup | NC | Estimate (SMD) | Lower Bound | Upper Bound | Std. Error | p-Value |
---|---|---|---|---|---|---|---|---|
Hen day | Hemp products | HS | 14 | −0.135 | −0.623 | 0.353 | 0.249 | 0.588 |
HC | 11 | −0.352 | −0.78 | 0.076 | 0.218 | 0.107 | ||
HO | 9 | 0.249 | −0.31 | 0.808 | 0.285 | 0.383 | ||
Inclusion levels (%) | ≤10 | 25 | −0.006 | −0.362 | 0.35 | 0.181 | 0.974 | |
>10 | 12 | −0.508 | −0.996 | −0.019 | 0.249 | 0.042 | ||
Hen age (wks) | ≤25 | 23 | −0.279 | −0.547 | −0.011 | 0.137 | 0.042 | |
>25 | 14 | 0.153 | −0.522 | 0.829 | 0.345 | 0.656 | ||
Feeding duration (wks) | ≤10 | 16 | −0.352 | −0.909 | 0.205 | 0.284 | 0.216 | |
>10 | 21 | −0.072 | −0.393 | 0.249 | 0.164 | 0.66 | ||
Layer strain | Bovan | 8 | −0.487 | −1.002 | 0.029 | 0.263 | 0.064 | |
Lohmann | 20 | −0.308 | −0.715 | 0.099 | 0.208 | 0.138 | ||
Egg weight | Hemp products | HS | 14 | 0.634 | −0.139 | 1.407 | 0.394 | 0.108 |
HC | 8 | −0.047 | −0.537 | 0.443 | 0.25 | 0.851 | ||
HO | 8 | 0.088 | −0.66 | 0.836 | 0.382 | 0.817 | ||
Inclusion levels (%) | ≤10 | 22 | 0.426 | −0.11 | 0.962 | 0.274 | 0.119 | |
>10 | 11 | 0.022 | −0.371 | 0.415 | 0.2 | 0.912 | ||
Hen age (wks) | ≤25 | 23 | −0.08 | −0.308 | 0.149 | 0.117 | 0.495 | |
>25 | 10 | 1.647 | 0.369 | 2.925 | 0.652 | 0.012 | ||
Feeding duration (wks) | ≤10 | 12 | 0.258 | −0.339 | 0.854 | 0.304 | 0.397 | |
>10 | 21 | 0.238 | −0.237 | 0.713 | 0.242 | 0.326 | ||
Layer strain | Bovan | 8 | 0.171 | −0.202 | 0.544 | 0.19 | 0.368 | |
Lohmann | 20 | −0.08 | −0.545 | 0.385 | 0.237 | 0.736 | ||
C22:6n3 DHA | Hemp products | HS | 20 | 4.167 | 2.963 | 5.371 | 0.614 | <0.001 |
HC | 5 | 2.75 | 1.89 | 3.611 | 0.439 | <0.001 | ||
HO | 13 | 4.237 | 3.122 | 5.353 | 0.569 | <0.001 | ||
Inclusion levels (%) | ≤10 | 23 | 3.663 | 2.947 | 4.379 | 0.365 | <0.001 | |
>10 | 18 | 4.475 | 3.151 | 5.798 | 0.675 | <0.001 | ||
Hen age (wks) | ≤25 | 31 | 3.794 | 3.153 | 4.436 | 0.327 | <0.001 | |
>25 | 10 | 4.707 | 2.844 | 6.569 | 0.95 | <0.001 | ||
Feeding duration (wks) | ≤10 | 16 | 3.076 | 2.141 | 4.01 | 0.477 | <0.001 | |
>10 | 25 | 4.329 | 3.425 | 5.233 | 0.461 | <0.001 | ||
Layer strain | Bovan | 13 | 4.347 | 3.878 | 4.815 | 0.239 | <0.001 | |
Lohmann | 19 | 3.977 | 2.966 | 4.988 | 0.516 | <0.001 |
3.6. Meta-Regression and Publication Bias
4. Discussion
4.1. Impact on Laying-Hen Performance and Egg Quality
4.2. Enrichment of Yolk Fatty Acid Profile
4.3. Novel Contributions of This Meta-Analysis
4.4. Critical Appraisal and Publication Bias
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lanzoni, D.; Skrivanova, E.; Pinotti, L.; Rebucci, R.; Baldi, A.; Giromini, C. Review: Nutritional Aspects of Hemp-Based Products and Their Effects on Health and Performance of Monogastric Animals. Animal 2024, 18, 101058. [Google Scholar] [CrossRef] [PubMed]
- Kamle, M.; Mahato, D.K.; Sharma, B.; Gupta, A.; Shah, A.K.; Mahmud, M.M.C.; Agrawal, S.; Singh, J.; Rasane, P.; Shukla, A.C.; et al. Nutraceutical Potential, Phytochemistry of Hemp Seed (Cannabis sativa L.) and Its Application in Food and Feed: A Review. Food Chem. Adv. 2024, 4, 100671. [Google Scholar] [CrossRef]
- Mohamed, N.; House, J.D. Safety and Efficacy of Hemp-Derived Products in Animal Feeds—A Narrative Review. Can J. Anim. Sci. 2024, 104, 390–410. [Google Scholar] [CrossRef]
- Kapoor, B.; Kapoor, D.; Gautam, S.; Singh, R.; Bhardwaj, S. Dietary Polyunsaturated Fatty Acids (PUFAs): Uses and Potential Health Benefits. Curr. Nutr. Rep. 2021, 10, 232–242. [Google Scholar] [CrossRef]
- Goldberg, E.M.; Gakhar, N.; Ryland, D.; Aliani, M.; Gibson, R.A.; House, J.D. Fatty Acid Profile and Sensory Characteristics of Table Eggs from Laying Hens Fed Hempseed and Hempseed Oil. J. Food Sci. 2012, 77, S153–S160. [Google Scholar] [CrossRef] [PubMed]
- Jing, M.; Zhao, S.; House, J.D. Performance and Tissue Fatty Acid Profile of Broiler Chickens and Laying Hens Fed Hemp Oil and HempOmegaTM. Poult. Sci. 2017, 96, 1809–1819. [Google Scholar] [CrossRef]
- Kanbur, G.; Göçmen, R.; Cufadar, Y. A Comparative Study on the Effects of Hemp Seed Oil versus Four Different UFA-Rich Seed Oils’ Dietary Supplementation on Egg Production Performance, Egg Quality, and Yolk Fatty Acids in Laying Hens. Trop. Anim. Health Prod. 2023, 55, 6. [Google Scholar] [CrossRef]
- Öztürk, E.; Darmawan, A.; Özlü, Ş.; Abacı, S.H. Effects of Dietary Local Hemp Seed Meal as Soybean Meal Alternative on Productive Performance, Egg Quality and Yolk Fatty Acid Composition of Laying Hens. Arch. Anim. Nutr. 2024, 78, 178–191. [Google Scholar] [CrossRef]
- Taaifi, Y.; Belhaj, K.; Mansouri, F.; Rbah, Y.; Elbouanani, N.; Melhaoui, R.; Ben Moumen, A.; Azeroual, E.; Serghini-Caid, H.; Elamrani, A. Impact of Cannabis Seed Incorporation in Layer Diet on Productive Performance and Egg Quality Traits. Scientifica 2023, 2023, 5565825. [Google Scholar] [CrossRef]
- Kozak, A.; Kasperek, K.; Zięba, G.; Rozempolska-Rucińska, I. Variability of Laying Hen Behaviour Depending on the Breed. Asian-Australas J. Anim. Sci. 2019, 32, 1062–1068. [Google Scholar] [CrossRef]
- Weeks, C.A.; Lambton, S.L.; Williams, A.G. Implications for Welfare, Productivity and Sustainability of the Variation in Reported Levels of Mortality for Laying Hen Flocks Kept in Different Housing Systems: A Meta-Analysis of Ten Studies. PLoS ONE 2016, 11, e0146394. [Google Scholar] [CrossRef] [PubMed]
- Holt, P.S.; Davies, R.H.; Dewulf, J.; Gast, R.K.; Huwe, J.K.; Jones, D.R.; Waltman, D.; Willian, K.R. The Impact of Different Housing Systems on Egg Safety and Quality. Poult. Sci. 2011, 90, 251–262. [Google Scholar] [CrossRef] [PubMed]
- Sauvant, D.; Schmidely, P.; Daudin, J.J.; St-Pierre, N.R. Meta-Analyses of Experimental Data in Animal Nutrition. Animal 2008, 2, 1203–1214. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, 71. [Google Scholar]
- Wallace, B.C.; Lajeunesse, M.J.; Dietz, G.; Dahabreh, I.J.; Trikalinos, T.A.; Schmid, C.H.; Gurevitch, J. OpenMEE: Intuitive, Open-Source Software for Meta-Analysis in Ecology and Evolutionary Biology. Methods Ecol. Evol. 2017, 8, 941–947. [Google Scholar] [CrossRef]
- DerSimonian, R.; Laird, N. Meta-Analysis in Clinical Trials Revisited. Contemp. Clin. Trials 2015, 45, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Koricheva, J.; Gurevitch, J.; Mengersen, K. Handbook of Meta-Analysis in Ecology and Evolution; Princeton University Press: Princeton, NJ, USA, 2013; ISBN 0691137293. [Google Scholar]
- Palupi, E.; Jayanegara, A.; Ploeger, A.; Kahl, J. Comparison of Nutritional Quality between Conventional and Organic Dairy Products: A Meta-Analysis. J. Sci. Food Agric. 2012, 92, 2774–2781. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring Inconsistency in Meta-Analyses Testing for Heterogeneity. BMJ 2003, 327, 557–560. [Google Scholar] [CrossRef]
- Borenstein, M.; Hedges, L.V.; Higgins, J.P.T.; Rothstein, H.R. Introduction to Meta-Analysis; John Wiley and Sons: Hoboken, NJ, USA, 2021; ISBN 1119558387. [Google Scholar]
- Albarki, H.R.; Kusuma, R.I.; Daulai, M.S.; Suntara, C.; Iwai, C.B.; Jayanegara, A.; Cherdthong, A. Effects of Rumen-Protected Fat on Rumen Fermentation Products, Meat Characteristics, Cattle Performance, and Milk Quality: A Meta-Analysis. Anim. Feed Sci. Technol. 2024, 318, 116137. [Google Scholar] [CrossRef]
- Ogbuewu, I.P.; Okoro, V.M.; Mbajiorgu, C.A. Probiotic-Yeast Improves Performance Indicators in Broiler Chickens: Evidence from Meta-Analysis. Appl. Ecol. Environ. Res. 2020, 18, 2823–2843. [Google Scholar] [CrossRef]
- Yano, A.A.; Astuti, D.; Respati, A.N.; Ningsih, N.; Triswanto; Purnamayanti, L.; Gao, M.; Rahman, M.A.; Abdel-Moneim, A.M.E.; Elsadek, M.F.; et al. A Meta-Analysis to Study the Effects and Relationships of Various Selenium Sources and Forms on Production Performance, Antioxidant Status and Egg Quality of Laying Hens. J. Sci. Food Agric. 2025, 105, 8. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, M.S. The File-Drawer Problem Revisited: A General Weighted Method for Calculating Fail-Safe Numbers in Meta-Analysis. Evolution 2005, 59, 464–468. [Google Scholar] [CrossRef]
- Gakhar, N.; Goldberg, E.; Jing, M.; Gibson, R.; House, J.D. Effect of Feeding Hemp Seed and Hemp Seed Oil on Laying Hen Performance and Egg Yolk Fatty Acid Content: Evidence of Their Safety and Efficacy for Laying Hen Diets. Poult. Sci. 2012, 91, 701–711. [Google Scholar] [CrossRef] [PubMed]
- Konca, Y.; Yuksel, T.; Yalcin, H.; Beyzi, S.B.; Kaliber, M. Effects of Heat-Treated Hempseed Supplementation on Performance, Egg Quality, Sensory Evaluation and Antioxidant Activity of Laying Hens. Br. Poult. Sci. 2019, 60, 39–46. [Google Scholar] [CrossRef]
- Mierliţă, D. Fatty Acids Profile and Oxidative Stability of Eggs from Laying Hens Fed Diets Containing Hemp Seed or Hempseed Cake. S. Afr. J. Anim. Sci. 2019, 49, 311–321. [Google Scholar] [CrossRef]
- Mierlita, D.; Teușdea, A.C.; Matei, M.; Pascal, C.; Simeanu, D.; Pop, I.M. Effect of Dietary Incorporation of Hemp Seeds Alone or with Dried Fruit Pomace on Laying Hens’ Performance and on Lipid Composition and Oxidation Status of Egg Yolks. Animals 2024, 14, 750. [Google Scholar] [CrossRef]
- Neijat, M.; Gakhar, N.; Neufeld, J.; House, J.D. Performance, Egg Quality, and Blood Plasma Chemistry of Laying Hens Fed Hempseed and Hempseed Oil. Poult. Sci. 2014, 93, 2827–2840. [Google Scholar] [CrossRef]
- Neijat, M.; Suh, M.; Neufeld, J.; House, J.D. Increasing Levels of Dietary Hempseed Products Leads to Differential Responses in the Fatty Acid Profiles of Egg Yolk, Liver and Plasma of Laying Hens. Lipids 2016, 51, 615–633. [Google Scholar] [CrossRef]
- Neijat, M.; Suh, M.; Neufeld, J.; House, J.D. Hempseed Products Fed to Hens Effectively Increased N-3 Polyunsaturated Fatty Acids in Total Lipids, Triacylglycerol and Phospholipid of Egg Yolk. Lipids 2016, 51, 601–614. [Google Scholar] [CrossRef]
- Park, S.-O.; Hwangbo, J.; In-Suh, Y.; Park, B.-S. Gamma-Linolenic Acid Egg Production Enriched with Hemp Seed Oil and Evening Primrose Oil in Diet of Laying Hens. J. Environ. Biol. 2014, 35, 635–640. [Google Scholar]
- Raza, T.; Chand, N.; Khan, R.U.; Shahid, M.S.; Abudabos, A.M. Improving the Fatty Acid Profile in Egg Yolk through the Use of Hempseed (Cannabis sativa), Ginger (Zingiber officinale), and Turmeric (Curcuma longa) in the Diet of Hy-Line White Leghorns. Arch. Anim. Breed. 2016, 59, 183–190. [Google Scholar] [CrossRef]
- Shahid, S.; Chand, N.; Khan, R.U.; Suhail, S.M.; Khan, N.A. Alternations in Cholesterol and Fatty Acids Composition in Egg Yolk of Rhode Island Red x Fyoumi Hens Fed with Hemp Seeds (Cannabis sativa L.). J. Chem. 2015, 2015, 362936. [Google Scholar] [CrossRef]
- Silversides, F.G.; Lefrançois, M.R. The Effect of Feeding Hemp Seed Meal to Laying Hens. Br. Poult. Sci. 2005, 46, 231–235. [Google Scholar] [CrossRef] [PubMed]
- Skřivan, M.; Englmaierová, M.; Vít, T.; Skřivanová, E. Hempseed Increases Gamma-Tocopherol in Egg Yolks and the Breaking Strength of Tibias in Laying Hens. PLoS ONE 2019, 14, e0217509. [Google Scholar] [CrossRef]
- Taaifi, Y.; Belhaj, K.; Mansouri, F.; Rbah, Y.; Melhaoui, R.; Houmy, N.; Ben Moumen, A.; Azeroual, E.; Addi, M.; Elamrani, A.; et al. The Effect of Feeding Laying Hens with Nonindustrial Hemp Seed on the Fatty Acid Profile, Cholesterol Level, and Tocopherol Composition of Egg Yolk. Int. J. Food Sci. 2023, 2023, 1360276. [Google Scholar] [CrossRef]
- Halle, I.; Schöne, F. Influence of Rapeseed Cake, Linseed Cake and Hemp Seed Cake on Laying Performance of Hens and Fatty Acid Composition of Egg Yolk. J. Fur Verbraucherschutz Und Lebensmittelsicherheit. 2013, 8, 185–193. [Google Scholar] [CrossRef]
- Mierlita, D.; Daraban, S.; Teușdea, A.C.; Stanciu, A.S. Effect of Dietary Cold-Pressed Hempseed Cake Supplemented with Tomato Waste on Laying Hen Performance and Egg Yolk Lipid Profile and Antioxidant Status Before and After Storage. Animals 2024, 14, 3444. [Google Scholar] [CrossRef]
- Lanzoni, D.; Skřivan, M.; Englmaierová, M.; Petrosillo, E.; Marchetti, L.; Skřivanová, V.; Bontempo, V.; Rebucci, R.; Baldi, A.; Giromini, C. Effects of Dietary Hemp Co-Product Inclusion on Laying Hens Performances and on Egg Nutritional and Functional Profile. Ital. J. Anim. Sci. 2025, 24, 248–265. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Erlbaum: Hillsdale, NJ, USA, 1988. [Google Scholar]
- Swanson, D.; Block, R.; Mousa, S.A. Omega-3 Fatty Acids EPA and DHA: Health Benefits throughout Life. Adv. Nutr. 2012, 3, 1–7. [Google Scholar] [CrossRef]
- Mozaffarian, D.; Wu, J.H.Y. Omega-3 Fatty Acids and Cardiovascular Disease: Effects on Risk Factors, Molecular Pathways, and Clinical Events. J. Am. Coll. Cardiol. 2011, 58, 2047–2067. [Google Scholar] [CrossRef]
- Erhardt, R.; Cardoso, B.R.; Meyer, B.J.; Brownell, S.; O’Connell, S.; Mirzaee, S.; Duckham, R.L.; Macpherson, H. Omega-3 Long-Chain Polyunsaturated Fatty Acids: Are They Beneficial for Physical and Cognitive Functioning in Older Adults? J. Nutr. Health Aging 2021, 25, 454–461. [Google Scholar] [CrossRef] [PubMed]
- Jacques, C.; Levy, E.; Muckle, G.; Jacobson, S.W.; Bastien, C.; Dewailly, É.; Ayotte, P.; Jacobson, J.L.; Saint-Amour, D. Long-Term Effects of Prenatal Omega-3 Fatty Acid Intake on Visual Function in School-Age Children. J. Pediatr. 2011, 158, 83–90.e1. [Google Scholar] [CrossRef] [PubMed]
- Lorente-Cebrián, S.; Costa, A.G.V.; Navas-Carretero, S.; Zabala, M.; Laiglesia, L.M.; Martínez, J.A.; Moreno-Aliaga, M.J. An Update on the Role of Omega-3 Fatty Acids on Inflammatory and Degenerative Diseases. J. Physiol. Biochem. 2015, 71, 341–349. [Google Scholar] [CrossRef]
- Saglimbene, V.M.; Wong, G.; van Zwieten, A.; Palmer, S.C.; Ruospo, M.; Natale, P.; Campbell, K.; Teixeira-Pinto, A.; Craig, J.C.; Strippoli, G.F.M. Effects of Omega-3 Polyunsaturated Fatty Acid Intake in Patients with Chronic Kidney Disease: Systematic Review and Meta-Analysis of Randomized Controlled Trials. Clin. Nutr. 2020, 39, 358–368. [Google Scholar] [CrossRef] [PubMed]
No | Country | Hemp Products | Inclusion Levels (%) | Hen Strains | HA | FD | Reference |
---|---|---|---|---|---|---|---|
1 | Canada | HO, HS | HO: 0, 4, 8, 12; HS: 10, 20 | Bovan | 19 | 12 | [25] |
2 | Canada | HO, HS | HO: 0, 4, 8, 12; HS: 10, 20 | Bovan | 19 | 12 | [5] |
3 | Canada | HO | 0, 4, 8 | Lohmann | 19 | 6 | [6] |
4 | Turkey | HO | 0, 3.7 | Leghorn | 42 | 12 | [7] |
5 | Turkey | HS | 0, 15 | Lohmann | 36 | 12 | [26] |
6 | Romania | HS, HC | HS: 0, 8.4; HC: 20.32 | Tetra-SL | 24 | 10 | [27] |
7 | Romania | HS | 0, 8 | Tetra-SL | 35 | 8 | [28] |
8 | Canada | HO, HS | HS: 0, 10, 20, 30 HO: 4.5, 9 | Lohmann | 19 | 12 | [29] |
9 | Canada | HO, HS | HS: 0, 10, 20, 30; HO: 4.5, 9 | Lohmann | 19 | 12 | [30] |
10 | Canada | HO, HS | HS: 0, 10, 20, 30; HO: 4.5, 9 | Lohmann | 19 | 12 | [31] |
11 | Turkey | HC | 0, 4, 8, 12 | Lohmann | 50 | 6 | [8] |
12 | Korea | HO | 0, 1.68 | Hyline | 30 | 5 | [32] |
13 | Pakistan | HS | 0, 25 | Hyline | 30 | 5 | [33] |
14 | Pakistan | HS | 0, 15, 20, 25 | Rhode Island Red | n.a. | 4 | [34] |
15 | Canada | HC | 0, 5, 10, 20 | DeKalb | 42 | 4 | [35] |
16 | Czech | HS | 0, 3, 6, 9 | Lohmann | 52 | 12 | [36] |
17 | Morocco | HS | 0, 10, 20, 30 | Lohmann | 22 | 14 | [9] |
18 | Morocco | HS | 0, 10, 20, 30 | Lohmann | 22 | 14 | [37] |
19 | Germany | HC | 5, 10, 15 | Lohmann | 22 | 24 | [38] |
20 | Romania | HC | 0, 20 | Tetra-SL | 28 | 9 | [39] |
21 | Italia | HCP | 0, 3, 6, 9 | Bovan | 21 | 9 | [40] |
Variable | Observed Significance | Target Significance | Nfs | No. of Study (n) | Nfs > [5(n)+ 10] |
Hen day | 0.016 | 0.05 | 26 | 15 | 85 |
Egg weight | 0.004 | 0.05 | 56 | 13 | 75 |
C22:6n3 | <0.001 | 0.05 | 11,547 | 16 | 90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sopian, Y.; Sivapirunthep, P.; Jayanegara, A.; Chaosap, C. Dietary Hemp (Cannabis sativa L.) Products Enhance Egg Yolk Omega-3 Fatty Acids and Color Without Compromising Laying-Hen Performance: A Meta-Analysis. Animals 2025, 15, 2062. https://doi.org/10.3390/ani15142062
Sopian Y, Sivapirunthep P, Jayanegara A, Chaosap C. Dietary Hemp (Cannabis sativa L.) Products Enhance Egg Yolk Omega-3 Fatty Acids and Color Without Compromising Laying-Hen Performance: A Meta-Analysis. Animals. 2025; 15(14):2062. https://doi.org/10.3390/ani15142062
Chicago/Turabian StyleSopian, Yusup, Panneepa Sivapirunthep, Anuraga Jayanegara, and Chanporn Chaosap. 2025. "Dietary Hemp (Cannabis sativa L.) Products Enhance Egg Yolk Omega-3 Fatty Acids and Color Without Compromising Laying-Hen Performance: A Meta-Analysis" Animals 15, no. 14: 2062. https://doi.org/10.3390/ani15142062
APA StyleSopian, Y., Sivapirunthep, P., Jayanegara, A., & Chaosap, C. (2025). Dietary Hemp (Cannabis sativa L.) Products Enhance Egg Yolk Omega-3 Fatty Acids and Color Without Compromising Laying-Hen Performance: A Meta-Analysis. Animals, 15(14), 2062. https://doi.org/10.3390/ani15142062