Productive Yield, Composition and Nutritional Value of Housefly Larva Meal Reared in High-Altitude Andean Zones of Peru
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methods
2.2.1. First Stage
2.2.2. Second Stage
Analysis | Method | Reference |
---|---|---|
Total protein | Micro Kjeldahl Method | AOAC 954.01 [18] |
Dry Matter (Moisture) | Drying of raw material at 105 °C for 24 h | AOAC 934.39 [18] |
Ashes | Calcination in muffle at 600 °C | AOAC 942.05 [18] |
Ethereal extract | SOXHLET Method | AOAC 920.39 [18] |
Crude fiber | Determination of crude fiber | NTP 205.003 2016 [19] |
2.3. Statistical Analysis
3. Results
3.1. Larval Development According to Culture Substrate
3.2. Nutritional Composition, In Vitro Digestibility and Energy Content of Housefly Larvae Meal
3.3. Amino Acid Profile of Larval Meal
3.4. Fatty Acid Profile of Housefly Larvae Meal
3.5. Evaluation of Salmonella spp. Content
4. Discussion
4.1. Larval Development According to Type of Manure
4.2. Nutritional Composition of Housefly Larvae Meal
4.3. Amino Acid Composition of Larval Meal
4.4. Fatty Acid Profile of Housefly Larval Meal
4.5. Evaluation of the Content of Salmonella spp.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jansson, A.; Berggren, Å. Insects as Food—Something for the Future? Rydhmer, L., Johnsson, P., Eds.; SLU, Future Agriculture—Livestock, Crops and Land Use: Uppsala, Sweden, 2015; ISBN 9789157693358. [Google Scholar]
- Lange, K.W.; Nakamura, Y. Edible Insects as Future Food: Chances and Challenges. J. Future Foods 2021, 1, 38–46. [Google Scholar] [CrossRef]
- Salama, S.M.; Mariod, A.A. The Suitability of Insects and Their Oil as Animal and Pet Feed. In Insect Oil as a Source of Nutraceuticals; Elsevier: Amsterdam, The Netherlands, 2025; pp. 217–225. [Google Scholar]
- Ur Rehman, K.; Cai, M.; Xiao, X.; Zheng, L.; Wang, H.; Soomro, A.A.; Zhou, Y.; Li, W.; Yu, Z.; Zhang, J. Cellulose Decomposition and Larval Biomass Production from the Co-Digestion of Dairy Manure and Chicken Manure by Mini-Livestock (Hermetia illucens L.). J. Environ. Manag. 2017, 196, 458–465. [Google Scholar] [CrossRef] [PubMed]
- Čičková, H.; Newton, G.L.; Lacy, R.C.; Kozánek, M. The Use of Fly Larvae for Organic Waste Treatment. Waste Manag. 2015, 35, 68–80. [Google Scholar] [CrossRef]
- Miranda, C.D.; Cammack, J.A.; Tomberlin, J.K. Large-Scale Production of House Fly, Musca domestica (Diptera: Muscidae), Larvae Fed 3 Manure Types. J. Econ. Entomol. 2023, 116, 1102–1109. [Google Scholar] [CrossRef]
- Makkar, H.P.S.; Tran, G.; Heuzé, V.; Ankers, P. State-of-the-Art on Use of Insects as Animal Feed. Anim. Feed. Sci. Technol. 2014, 197, 1–33. [Google Scholar] [CrossRef]
- da-Silva, W.; Rebelo, É.; Rodrigues, J.; Guerreiro, L.; Silva, T.; Lima, C.; Camargo, R.; Lima, R.; de Sousa, A.; Cardoso, K.; et al. Nutritional Value of the Larvae of the Black Soldier Fly (Hermetia illucens) and the House Fly (Musca domestica) as a Food Alternative for Farm Animals—A Systematic Review. Insects 2024, 15, 619. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.; Chand, N.; Khan, S.; Naz, S.; Alrefaei, A.F.; Chandrasekaran, A.; Khan, R.U. Partial Replacement of Soybean Meal with Musca domestica Larvae Meal in Broiler Diets: Implications for Growth Performance, Nutrient Utilization, Hemato-Biochemical Profile and Organoleptic Characteristics. Arch. Anim. Breed. 2024, 67, 247–257. [Google Scholar] [CrossRef]
- Herrera, E.; Petrusan, J.I.; Salvá-Ruiz, B.; Novak, A.; Cavalcanti, K.; Aguilar, V.; Heinz, V.; Smetana, S. Meat Quality of Guinea Pig (Cavia porcellus) Fed with Black Soldier Fly Larvae Meal (Hermetia illucens) as a Protein Source. Sustainability 2022, 14, 1292. [Google Scholar] [CrossRef]
- Cheng, Z.; Yu, L.; Li, H.; Xu, X.; Yang, Z. Use of Housefly (Musca domestica L.) Larvae to Bioconversion Food Waste for Animal Nutrition and Organic Fertilizer. Environ. Sci. Pollut. Res. 2021, 28, 48921–48928. [Google Scholar] [CrossRef]
- Aniebo, A.; Erondu, E.; Owen, O. Proximate Composition of Housefly Larvae (Musca domestica) Meal Generated from Mixture of Cattle Blood and Wheat Bran. Livestock Res. Rural. Dev. 2008, 20, 1–5. [Google Scholar]
- Uushona, T.; Simasiku, A.; Petrus, N.P. Evaluation of Musca domestica (House Fly) Larvae Production from Organic Waste. Welwitschia Int. J. Agric. Sci. 2019, 1, 35–40. [Google Scholar] [CrossRef]
- Sánchez, M.; Gómez, C.; Avendaño, C.; Harmsen, I.; Ortiz, D.; Ceballos, R.; Villamizar, M.; Oyarzun, F.; Wacyk, J.; Valenzuela, C. House Fly (Musca domestica) Larvae Meal as an Ingredient with High Nutritional Valua: Microencapsulation and Improvement of Organoleptic Characteristics. Food Res. Int. 2021, 145, 11023. [Google Scholar] [CrossRef]
- Servicio Nacional de Meteorología e Hidrología (SENAMHI) Caracterización Climática de Las Regiones Apurímac y Cusco; Programa de Adaptación al Cambio Climático (PACC-Peru): Lima, Perú, 2012.
- Rojas, H.; Guaita, R.; Orco, J.; Damman, G. Plan Estratégico Regional Del Sector Agrario de Apurímac 2013–2021. 2021. Available online: https://sinia.minam.gob.pe/sites/default/files/siar-apurimac/archivos/public/docs/persa_2013_-2021_agraria_apurimac.pdf (accessed on 28 January 2025).
- Martiradonna, G.; Soto, A.; González, J. Protocolo de Cria de Musca domestica En Laboratorio. Bol. Malariol. Salud Ambient. 2009, 49, 317–319. [Google Scholar]
- AOAC. Official Methods of Analysis of the Association of Official Analytical Chemists: Official Methods of Analysis of AOAC International, 21st ed.; AOAC: Washington, DC, USA, 2019. [Google Scholar]
- Instituto Nacional de Calidad. (INACAL) NTP 205.003:2016. Alimentos; Determinación de Fibra Cruda: Lima, Perú, 2016. [Google Scholar]
- Li, Y.; Watkins, B. Analysis of Fatty Acids in Food Lipids. In Current Protocols in Food Analytical Chemistry; John Wiley & Sons: New York, NY, USA, 2001; pp. D1.2.1–D1.2.15. [Google Scholar]
- International Commission on Microbiological Specifications for Foods (ICMSF). Microorganisms in Foods, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Ministerio de salud. NTS N° 071-MINSA/DIGESA-V-01; Diario El Peruano: Lima, Peru, 2008; pp. 1–16.
- Becker, M. Análisis y Valoración de Piensos y Forrajes; Acribia: Zaragoza, Spain, 1961. [Google Scholar]
- Heinrikson, R.L.; Meredith, S.C. Amino Acid Analysis by Reverse-Phase High-Performance Liquid Chromatography: Precolumn Derivatization with Phenylisothiocyanate. Anal. Biochem. 1984, 136, 65–74. [Google Scholar] [CrossRef]
- Food and Agriculture organization of the United Nations (FAO). Dietary Protein Quality Evaluation in Human Nutrition; FAO: Roma, Italy, 2013. [Google Scholar]
- Di Rienzo, J.; Macchiavelli, R.; Casanoves, F. Modelos Lineales Generalizados Mixtos Aplicaciones En InfoStat, 1st ed.; InfoStat Software Estadístico: Cordova, Argentina, 2017. [Google Scholar]
- Larraín, P.; Salas, C. House Fly (Musca domestica L.) (Diptera: Muscidae) Development in Different Types of Manure. Chil. J. Agric. Res. 2008, 68, 192–197. [Google Scholar] [CrossRef]
- Ali, M.H.; Ferdousi, L.; Shaikh, M.E.A.; Begum, M.; Salma, M.; Hossain, M.S.; Juliana, F.M.; Faruki, M.S.I.; Ahmed, S.; Reza, M.S. Exploring the Impact of Culture Media on Life History Characteristics of the House Fly, Musca domestica L. (Diptera: Muscidae). Sci. Afr. 2024, 24, e02133. [Google Scholar] [CrossRef]
- Hamidou, I.; Moussa, Z.; Noël, G.; Fancis, F.; Caparros, R. Breeding Enhancement of Musca domestica L. 1758: Egg Load as a Measure of Optimal Larval Density. Insects 2021, 12, 956. [Google Scholar] [CrossRef]
- Lalander, C.; Diener, S.; Zurbrügg, C.; Vinnerås, B. Effects of Feedstock on Larval Development and Process Efficiency in Waste Treatment with Black Soldier Fly (Hermetia illucens). J. Clean. Prod. 2019, 208, 211–219. [Google Scholar] [CrossRef]
- Zhu, F.X.; Wang, W.P.; Hong, C.L.; Feng, M.G.; Xue, Z.Y.; Chen, X.Y.; Yao, Y.L.; Yu, M. Rapid Production of Maggots as Feed Supplement and Organic Fertilizer by the Two-Stage Composting of Pig Manure. Bioresour. Technol. 2012, 116, 485–491. [Google Scholar] [CrossRef]
- Klakankhai, W.; Nuntapong, N.; Meesin, S.; Yongsue, T.; Niyombandith, T.; Tainchum, K. Rearing Fly Larvae on Various Substrates: Nutrient Composition of Larvae and Frass. Environ. Entomol. 2024, 53, 1027–1034. [Google Scholar] [CrossRef]
- Miranda, C.D.; Crippen, T.L.; Cammack, J.A.; Tomberlin, J.K. Black Soldier Fly, Hermetia illucens (L.) (Diptera: Stratiomyidae), and House Fly, Musca domestica L. (Diptera: Muscidae), Larvae Reduce Livestock Manure and Possibly Associated Nutrients: An Assessment at Two Scales. Environ. Pollut. 2021, 282, 116976. [Google Scholar] [CrossRef] [PubMed]
- Pieterse, E.; Pretorius, Q. Nutritional Evaluati on of Dried Larvae and Pupae Meal of the Housefly (Musca domestica) Using Chemical-and Broiler-Based Biological Assays. Anim. Prod. Sci. 2014, 54, 347–355. [Google Scholar] [CrossRef]
- Hwangbo, J.; Hong, E.C.; Jang, A.; Kang, H.K.; Oh, J.S.; Kim, B.W.; Park, B.S. Utilization of House Fly-Maggots, a Feed Supplement in the Production of Broiler Chickens. J. Environ. Biol. 2009, 30, 609–614. [Google Scholar] [PubMed]
- Fasakin, E.; Balogun, A.; Ajayi, O. Evaluation of Full-Fat and Defatted Maggot Meals in the Feeding of Clariid Catfish Clarias Gariepinus Fingerlings. Aquac. Res. 2003, 34, 733–738. [Google Scholar] [CrossRef]
- Aniebo, A.O.; Owen, O.J. Effects of Age and Method of Drying on the Proximate Composition of Housefly Larvae (Musca domestica Linnaeus) Meal (HFLM). Pak. J. Nutr. 2010, 9, 485–487. [Google Scholar] [CrossRef]
- Ogunji, J.; Kloas, W.; Wirth, M.; Schulz, C.; Rennert, B. Housefly Maggot Meal (Magmeal) as a Protein Source for Oreochromis niloticus (Linn.). Asian Fish. Sci. 2008, 21, 319–331. [Google Scholar] [CrossRef]
- Jayanegara, A.; Novandri, B.; Yantina, N.; Ridla, M. Use of Black Soldier Fly Larvae (Hermetia Illucens) to Substi-tute Soybean Meal in Ruminant Diet: An in Vitro Rumen Fermentation Study. Vet. World 2017, 10, 1439–1446. [Google Scholar] [CrossRef]
- McDonald, P.; Edwards, R.A.; Greenhalgh, J.F.D.; Morgan, C.A.; Sinclair, L.A.; Wilkinson, R.G. Animal Nutrition, 8th ed.; Pearson: London, UK, 2011. [Google Scholar]
- Rezaei, R.; Wang, W.; Wu, Z.; Dai, Z.; Wang, J.; Wu, G. Biochemical and Physiological Bases for Utilization of Dietary Amino Acids by Young Pigs. J. Anim. Sci. Biotechnol. 2013, 4, 7. [Google Scholar] [CrossRef]
- Agunbiade, J.A.; Adeyemi, O.A.; Ashiru, O.M.; Awojobi, H.A.; Taiwo, A.A.; Oke, D.B.; Adekunmisi, A.A. Replacement of Fish Meal with Marggot Meal in Cassava-Based Layers Diets. J. Poult. Sci. 2007, 44, 278–282. [Google Scholar] [CrossRef]
- Osae, R.; Tibiru Apaliya, M.; Ahima, J.; Kwaw, E.; Alolga, R.N. The Economic Importance of Insect Oils and Their Sustainable Use. In Insect Oil as a Source of Nutraceuticals: New Approaches in the Food and Feed Industry; Elsevier: Amsterdam, The Netherlands, 2024; pp. 35–46. ISBN 9780443239342. [Google Scholar]
- St-hilaire, S.; Sheppard, C.; Tomberlin, J.K.; Newton, L.; Mcguire, M.A.; Mosley, E.E.; Hardy, R.W.; Sealey, W. Fly Prepupae as a Feedstuff for Rainbow Trout, Oncorhynchus mykiss. J. World Aquac. Soc. 2007, 38, 59–67. [Google Scholar] [CrossRef]
- Yang, S.; Li, Q.; Gao, Y.; Zheng, L.; Liu, Z. Biodiesel Production from Swine Manure via Housefly Larvae (Musca domestica L.). Renew. Energy 2014, 66, 222–227. [Google Scholar] [CrossRef]
- Zi-zhe, C.; De-po, Y.; Sheng-qing, W.; Yong, W.; Reaney, M.J.T.; Zhi-min, Z.; Long-ping, Z.; Guo, S.; Yi, N.; Dong, Z.; et al. Conversion of Poultry Manure to Biodiesel, a Practical Method of Producing Fatty Acid Methyl Esters via Housefly (Musca domestica L.) Larval Lipid. Fuel 2017, 210, 463–471. [Google Scholar] [CrossRef]
- ASTM. International ASTM D6751-10; Standard Specification for Biodiesel Fuel Blend Stock (B100) for Middle Distillate Fuels. ASTM: West Conshohocken, PA, USA, 2010. [CrossRef]
- Arango, G.; Vergara, R.; Mejía, H. Análisis Composicional, Microbiológico y Digestibilidad de La Proteína de La Harina de Larvas de Hermetia illuscens L (Diptera: Stratiomyiidae) En Angelópolis-Antioquia, Colombia. Rev. Fac. Nac. Agron. 2004, 57, 2491–2499. [Google Scholar]
- Lu, X.; Shen, J.; Jin, X.; Ma, Y.; Huang, Y.; Mei, H.; Chu, F.; Zhu, J. Bactericidal Activity of Musca domestica Cecropin (Mdc) on Multidrug-Resistant Clinical Isolate of Escherichia coli. Appl. Microbiol. Biotechnol. 2012, 95, 939–945. [Google Scholar] [CrossRef]
Type of Manure | Initial Weight (mg) | Final Weight (mg) | Total Weight Gain (mg) 1 | Size (mm) |
---|---|---|---|---|
Pig | 3.02 ± 0.01 | 17.70 ± 0.37 c | 14.69 ± 0.37 c | 8.44 ± 0.10 b |
Guinea pig | 3.02 ± 0.01 | 13.16 ± 0.71 d | 10.11 ± 0.71 d | 3.79 ± 0.05 e |
Poultry | 3.02 ± 0.01 | 18.40 ± 0.74 c | 15.38 ± 0.74 b | 5.38 ± 0.12 d |
Poultry + Guinea pig | 3.00 ± 0.01 | 13.29 ± 0.71 d | 10.29 ± 0.71 d | 6.89 ± 0.25 c |
Pig + Guinea pig | 3.02 ± 0.01 | 22.05 ± 0.48 b | 19.03 ± 0.48 b | 8.36 ± 0.27 b |
Poultry + Pig | 3.02 ± 0.01 | 27.60 ± 0.58 a | 24.58 ± 0.59 a | 9.47 ± 0.16 a |
Type of Manure | Development Time (Days) | No. of Dead Larvae | Mortality (%) |
---|---|---|---|
Pig | 10.00 ± 0.42 b | 7.70 ± 1.25 ab | 3.85 ± 0.62 a |
Guinea pig | 13.10 ± 0.43 a | 4.10 ± 1.78 ab | 2.05 ± 0.89 ab |
Poultry | 10.60 ± 0.48 b | 0 c | 0 c |
Poultry + Guinea pig | 10.50 ± 0.42 b | 0.20 ± 0.20 bc | 0.10 ± 0.10 bc |
Pig + Guinea pig | 10.30 ± 0.43 b | 1.20 ± 1.00 bc | 0.60 ± 0.50 bc |
Poultry+ Pig | 10.20 ± 0.42 b | 0 c | 0 c |
Variable | Mean | E.E. | Lower Limit (95%) | Upper Limit (95%) |
---|---|---|---|---|
Dry matter | 92.27 | 0.40 | 91.49 | 93.05 |
Soluble carbohydrates | 12.03 | 0.78 | 10.50 | 13.56 |
Ethereal extract | 13.07 | 1.34 | 10.44 | 15.70 |
Protein | 56.50 | 1.04 | 53.76 | 56.24 |
Ashes | 10.93 | 0.86 | 9.24 | 12.62 |
Crude fiber | 6.77 | 0.35 | 6.08 | 7.46 |
In vitro protein digestibility | 88.30 | 0.20 | 87.91 | 88.69 |
Total Energy content (MJ kg−1) | 16.36 | 0.60 | 15.18 | 17.54 |
Amino Acids | Composition (mg/g Protein) | Amino Acid Pattern (FAO, 2013) [25] >18 Years | Amino Acid Score * >18 Years |
---|---|---|---|
Aspartic acid | 81.57 | ||
Alanine | 44.01 | ||
Arginine | 100.00 | ||
Histidine | 20.57 | 15 | 137.13 |
Isoleucine | 26.65 | 30 | 88.83 |
Glycine | 45.26 | ||
Glutamic acid | 96.60 | ||
Lysine | 59.75 | 45 | 132.77 |
Leucine | 46.87 | 59 | 79.44 |
Methionine | 13.06 | 22 | 59.36 |
Proline | 32.92 | ||
Phenylalanine | 49.73 | (P + T) 38 | 257.02 |
Tyrosine | 47.94 | ||
Serine | 38.64 | ||
Threonine | 83.72 | 23 | 364.00 |
Tryptophan | 8.77 | 6 | 146.16 |
Valine | 38.28 | 39 | 98.15 |
Fatty Acid | Mean | E.E. | Lower Limit (95%) | Upper Limit (95%) | |
---|---|---|---|---|---|
C12:0 | Lauric acid | 0.26 | 0.01 | 0.24 | 0.28 |
C14:0 | Myristic acid | 4.13 | 0.11 | 3.91 | 4.35 |
C14:1 | Myristoleic acid | 0.38 | 0.01 | 0.36 | 0.40 |
C15:0 | Pentadecanoic acid | 2.63 | 0.05 | 2.53 | 2.73 |
C16:0 | Palmitic acid | 29.34 | 0.06 | 29.22 | 29.46 |
C16:1 | Palmitoleic acid | 21.65 | 0.07 | 21.51 | 21.79 |
C17:0 | Heptadecanoic acid | 1.11 | 0.01 | 1.09 | 1.13 |
C18:0 | Stearic acid | 8.66 | 0.06 | 8.54 | 8.78 |
C18:1n-9 | Cis-9 oleic acid | 26.53 | 0.12 | 26.29 | 26.76 |
C18:2 | Linoleic acid | 4.19 | 0.13 | 3.94 | 4.44 |
C20:0 | Arachidic acid | 0.17 | 0.01 | 0.15 | 0.19 |
C18:3n-3 | Linolenic acid | 0.26 | 0.01 | 0.24 | 0.28 |
C21:0 | Heneicosanoic acid | 0.69 | 0.08 | 0.53 | 0.85 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ochoa, I.; Valderrama, E.; Ayquipa, E.M.; Cárdenas, L.A.; Zea, D.; Huamani, Z.; Castellaro, G. Productive Yield, Composition and Nutritional Value of Housefly Larva Meal Reared in High-Altitude Andean Zones of Peru. Animals 2025, 15, 2054. https://doi.org/10.3390/ani15142054
Ochoa I, Valderrama E, Ayquipa EM, Cárdenas LA, Zea D, Huamani Z, Castellaro G. Productive Yield, Composition and Nutritional Value of Housefly Larva Meal Reared in High-Altitude Andean Zones of Peru. Animals. 2025; 15(14):2054. https://doi.org/10.3390/ani15142054
Chicago/Turabian StyleOchoa, Isai, Emperatriz Valderrama, Elisa M. Ayquipa, Ludwing A. Cárdenas, Delmer Zea, Zenaida Huamani, and Giorgio Castellaro. 2025. "Productive Yield, Composition and Nutritional Value of Housefly Larva Meal Reared in High-Altitude Andean Zones of Peru" Animals 15, no. 14: 2054. https://doi.org/10.3390/ani15142054
APA StyleOchoa, I., Valderrama, E., Ayquipa, E. M., Cárdenas, L. A., Zea, D., Huamani, Z., & Castellaro, G. (2025). Productive Yield, Composition and Nutritional Value of Housefly Larva Meal Reared in High-Altitude Andean Zones of Peru. Animals, 15(14), 2054. https://doi.org/10.3390/ani15142054