Influence of Different Litter Regimens on Ceca Microbiota Profiles in Salmonella-Challenged Broiler Chicks
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Description of Salmonella Strain Used for Experimentation
2.2. Experimental Design, Diet, and Bird Management
2.3. Preparation of Bacterial Inoculum and Salmonella Challenge
2.4. Chick Growth Performance Indices
2.5. Cecal Sample Collection
2.6. DNA Extraction
2.7. 16S rRNA Amplicon Sequencing and Bioinformatics Analysis
2.8. Statistical Analysis
3. Results
3.1. Growth Performance Parameters and Cecal SE Concentration of Chicks
3.2. Sequencing Results and Cecal Microbial Community
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Durmuş, M.; Kurşun, K.; Açık, I.P.; Tufan, M.; Kutay, H.; Benli, H.; Baylan, M.; Kutlu, H.R. Effect of different litter materials on growth performance, the gait score and footpad dermatitis, carcass parameters, meat quality, and microbial load of litter in broiler chickens. Poult. Sci. 2023, 102, 102763. [Google Scholar] [CrossRef] [PubMed]
- Cressman, M.D.; Yu, Z.; Nelson, M.C.; Moeller, S.J.; Lilburn, M.S.; Zerby, H.N. Interrelations between the microbiotas in the litter and in the intestines of commercial broiler chickens. Appl. Environ. Microbiol. 2010, 76, 6572–6582. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Niu, S.; Tie, K.; Zhang, Q.; Deng, H.; Gao, C.; Yu, T.; Lei, L.; Feng, X. Characteristics of the intestinal flora of specific pathogen free chickens with age. Microb. Pathog. 2019, 132, 325–334. [Google Scholar]
- Oakley, B.B.; Lillehoj, H.S.; Kogut, M.H.; Kim, W.K.; Maurer, J.J.; Pedroso, A.; Lee, M.D.; Collett, S.R.; Johnson, T.J.; Cox, N.A. The chicken gastrointestinal microbiome. FEMS Microbiol. Lett. 2014, 360, 100–112. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, J.; Yu, L.; Xu, T.; Zhu, N. Microbiota and metabolome responses in the cecum and serum of broiler chickens fed with plant essential oils or virginiamycin. Sci. Rep. 2020, 10, 5382. [Google Scholar] [CrossRef]
- Wei, S.; Morrison, M.; Yu, Z. Bacterial census of poultry intestinal microbiome. Poult. Sci. 2013, 92, 671–683. [Google Scholar] [CrossRef]
- Mancabelli, L.; Ferrario, C.; Milani, C.; Mangifesta, M.; Turroni, F.; Duranti, S.; Lugli, G.A.; Viappiani, A.; Ossiprandi, M.C.; van Sinderen, D. Insights into the biodiversity of the gut microbiota of broiler chickens. Environ. Microbiol. 2016, 18, 4727–4738. [Google Scholar] [CrossRef]
- Şekeroğlu, A.; Eleroğlu, H.; Sarıca, M.; Camcı, Ö. Based materials and base material management used in production on the ground. J. Poult. Res. 2013, 10, 25–34. [Google Scholar]
- Cengiz, Ö.; Hess, J.B.; Bilgili, S.F. Effect of bedding type and transient wetness on footpad dermatitis in broiler chickens. J. Appl. Poult. Res. 2011, 20, 554–560. [Google Scholar] [CrossRef]
- Watts, D.B.; Hess, J.B.; Bilgili, S.F.; Torbert, H.A.; Sibley, J.L.; Davis, J.D. Flue gas desulfurization gypsum: Its effectiveness as an alternative bedding material for broiler production. J. Appl. Poult. Res. 2017, 26, 50–59. [Google Scholar] [CrossRef]
- Pan, D.; Yu, Z. Intestinal microbiome of poultry and its interaction with host and diet. Gut Microbes 2014, 5, 108–119. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Lilburn, M.; Yu, Z. Intestinal microbiota of broiler chickens as affected by litter management regimens. Front. Microbiol. 2016, 7, 593. [Google Scholar] [CrossRef] [PubMed]
- Chinivasagam, H.N.; Estella, W.; Rodrigues, H.; Mayer, D.G.; Weyand, C.; Tran, T.; Onysk, A.; Diallo, I. On-farm Campylobacter and Escherichia coli in commercial broiler chickens: Re-used bedding does not influence Campylobacter emergence and levels across sequential farming cycles. Poult. Sci. 2016, 95, 1105–1115. [Google Scholar] [CrossRef] [PubMed]
- Muniz, E.; Mesa, D.; Cuaspa, R.; Souza, A.M.; Santin, E. Presence of Salmonella spp. in reused broiler litter. Rev. Colomb. Cienc. Pecu. 2014, 27, 12–27. [Google Scholar] [CrossRef]
- Lu, J.; Sanchez, S.; Hofacre, C.; Maurer, J.J.; Harmon, B.G.; Lee, M.D. Evaluation of broiler litter with reference to the microbial composition as assessed by using 16S rRNA and functional gene markers. Appl. Environ. Microbiol. 2003, 69, 901–908. [Google Scholar] [CrossRef]
- Velazquez-Meza, M.E.; Galarde-López, M.; Carrillo-Quiróz, B.; Alpuche-Aranda, C.M. Antimicrobial resistance: One health approach. Vet. World 2022, 15, 743–749. [Google Scholar] [CrossRef]
- Roll, V.; Dai Prá, M.A.; Roll, A.P. Research on Salmonella in broiler litter reused for up to 14 consecutive flocks. Poult. Sci. 2011, 90, 2257–2262. [Google Scholar] [CrossRef]
- Lee, K.W.; Lillehoj, H.S.; Lee, S.H.; Jang, S.I.; Ritter, G.D.; Bautista, D.A.; Lillehoj, E.P. Impact of fresh or used litter on the posthatch immune system of commercial broilers. Avian Dis. 2011, 55, 539–544. [Google Scholar] [CrossRef]
- Fasina, Y.O.; Newman, M.M.; Stough, J.M.; Liles, M.R. Effect of Clostridium perfringens infection and antibiotic administration on microbiota in the small intestine of broiler chickens. Poult. Sci. 2016, 95, 247–260. [Google Scholar] [CrossRef]
- Fasina, Y.O.; Holt, P.S.; Moran, E.T.; Moore, R.W.; Conner, D.E.; McKee, S.R. Intestinal cytokine response of commercial source broiler chicks to Salmonella typhimurium infection. Poult. Sci. 2008, 87, 1335–1346. [Google Scholar] [CrossRef]
- Fasina, Y.O.; Bowers, J.B.; Hess, J.B.; McKee, S.R. Effect of dietary glutamine supplementation on Salmonella colonization in the ceca of young broiler chicks. Poult. Sci. 2010, 89, 1042–1048. [Google Scholar] [CrossRef]
- USDA Food Safety and Inspection Service, Office of Public Health Science. USDA Food Safety and Inspection Service Laboratory Guide (2019) Isolation and Identification of Salmonella from Meat, Poultry, Pasteurized Egg, Siluriformes (Fish) Products, and Carcass and Environmental Sponges; USDA Food Safety and Inspection Service, Office of Public Health Science: Athens, GA, USA, 2019.
- Waltman, W.D.; Gast, R.K.; Mallinson, E.T. Salmonellosis. In A Laboratory Manual for the Isolation, Identification and Characterization of Avian Pathogens, 5th ed.; Dufour-Zavala, L., Swayne, D.E., Glisson, J.R., Pearson, J.E., Reed, W.M., Jackwood, M.W., Woolcock, P.R., Eds.; American Association of Avian Pathologists: Athens, GA, USA, 2008; pp. 3–10. [Google Scholar]
- National Research Council; Subcommittee on Poultry Nutrition. Nutrient Requirements of Poultry: 1994; National Academies Press: Washington, DC, USA, 1994. [Google Scholar]
- Marsh, A.J.; Azcarate-Peril, M.A.; Aljumaah, M.R.; Neville, J.; Perrin, M.T.; Dean, L.L.; Wheeler, M.D.; Hines, I.N.; Pawlak, R. Fatty acid profile driven by maternal diet is associated with the composition of human milk microbiota. Front. Microbiomes 2022, 1, 1041752. [Google Scholar] [CrossRef]
- Ribeiro, A.A.; Jiao, Y.; Girnary, M.; Alves, T.; Chen, L.; Farrell, A.; Wu, D.; Teles, F.; Inohara, N.; Swanson, K.V. Oral biofilm dysbiosis during experimental periodontitis. Mol. Oral Microbiol. 2022, 37, 256–265. [Google Scholar] [CrossRef]
- Camp, K.K. Impact of Surgical and Dietary Weight Loss Interventions on the Obesity—Gut Microbiome—Breast Cancer Links. Doctoral Dissertation, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA, 2022. [Google Scholar]
- Bertelsen, R.J.; Barrionuevo, A.M.P.; Shigdel, R.; Lie, S.A.; Lin, H.; Real, F.G.; Ringel-Kulka, T.; Åstrøm, A.N.; Svanes, C. Association of oral bacteria with oral hygiene habits and self-reported gingival bleeding. J. Clin. Periodontol. 2022, 49, 768–781. [Google Scholar] [CrossRef]
- Arbeeva, L.; Azcarate-Peril, M.A.; Cui, Y.; Nelson, A.E.; Loeser, R.F. Association of plasma microbial composition with a leaky gut in obesity-related osteoarthritis: An exploratory study. Osteoarthr. Cartil. Open 2022, 4, 100317. [Google Scholar] [CrossRef]
- Haddad, L.B.; Tang, J.H.; Davis, N.L.; Kourtis, A.P.; Chinula, L.; Msika, A.; Tegha, G.; Hosseinipour, M.C.; Nelson, J.A.; Hobbs, M.M. Influence of Hormonal Contraceptive Use and HIV on Cervicovaginal Cytokines and Microbiota in Malawi. Msphere 2023, 8, e00585-22. [Google Scholar] [CrossRef] [PubMed]
- Garcés-Gudiño, J.; Merino-Guzmán, R.; Cevallos-Gordón, A.L. Litter reuse reduces Eimeria spp oocyst counts and improves the performance in broiler chickens reared in a tropical zone in Ecuador. Eur. Poult. Sci. 2018, 82, 1–9. [Google Scholar] [CrossRef]
- Hussein, M.A.; Khattak, F.; Vervelde, L.; Athanasiadou, S.; Houdijk, J.G. Growth performance, caecal microbiome profile, short-chain fatty acids, and litter characteristics in response to placement on reused litter and combined threonine, arginine and glutamine supplementation to juvenile male broiler chickens. Anim. Microbiome 2023, 5, 18. [Google Scholar] [CrossRef] [PubMed]
- Taboosha, M.F. Effect of reusing litter on productive performance, carcass characteristics and behavior of broiler chickens. Int. J. Environ. 2017, 6, 61–69. [Google Scholar]
- Kubasova, T.; Faldynova, M.; Crhanova, M.; Karasova, D.; Zeman, M.; Babak, V.; Rychlik, I. Succession, replacement, and modification of chicken litter microbiota. Appl. Environ. Microbiol. 2022, 88, e01809-22. [Google Scholar] [CrossRef]
- Jazi, V.; Mohebodini, H.; Ashayerizadeh, A.; Shabani, A.; Barekatain, R. Fermented soybean meal ameliorates Salmonella Typhimurium infection in young broiler chickens. Poult. Sci. 2019, 98, 5648–5660. [Google Scholar] [CrossRef] [PubMed]
- Fasina, Y.O.; Obanla, T.O.; Ferket, P.R.; Shah, D.H. Comparative efficacy of spray-dried plasma and bacitracin methylene disalicylate in reducing cecal colonization by Salmonella Enteritidis in broiler chickens. Poult. Sci. 2021, 100, 101134. [Google Scholar] [CrossRef] [PubMed]
- Corrier, D.E.; Hinton, A., Jr.; Hargis, B.; DeLoach, J.R. Effect of used litter from floor pens of adult broilers on Salmonella colonization of broiler chicks. Avian Dis. 1992, 36, 897–902. [Google Scholar] [CrossRef] [PubMed]
- Chinivasagam, H.N.; Tran, T.; Blackall, P.J. Impact of the Australian litter re-use practice on Salmonella in the broiler farming environment. Food Res. Int. 2012, 45, 891–896. [Google Scholar] [CrossRef]
- Louis, P.; Hold, G.L.; Flint, H.J. The gut microbiota, bacterial metabolites and colorectal cancer. Nat. Rev. Microbiol. 2014, 12, 661–672. [Google Scholar] [CrossRef]
- Louis, P.; Flint, H.J.; Michel, C. How to manipulate the microbiota: Prebiotics. In Microbiota of the Human Body: Implications in Health and Disease; Springer: Cham, Switzerland, 2016; pp. 119–142. [Google Scholar]
- Zhao, W.; Wang, Y.; Liu, S.; Huang, J.; Zhai, Z.; He, C.; Ding, J.; Wang, J.; Wang, H.; Fan, W. The dynamic distribution of porcine microbiota across different ages and gastrointestinal tract segments. PLoS ONE 2015, 10, e0117441. [Google Scholar] [CrossRef]
- Wen, C.; Gou, Q.; Gu, S.; Huang, Q.; Sun, C.; Zheng, J.; Yang, N. The cecal ecosystem is a great contributor to intramuscular fat deposition in broilers. Poult. Sci. 2023, 102, 102568. [Google Scholar] [CrossRef]
- Torres-Rodriguez, A.; Donoghue, A.M.; Donoghue, D.J.; Barton, J.T.; Tellez, G.; Hargis, B.M. Performance and condemnation rate analysis of commercial turkey flocks treated with a Lactobacillus spp.-based probiotic. Poult. Sci. 2007, 86, 444–446. [Google Scholar] [CrossRef]
- Brisbin, J.T.; Parvizi, P.; Sharif, S. Differential cytokine expression in T-cell subsets of chicken caecal tonsils co-cultured with three species of Lactobacillus. Benef. Microbes 2012, 3, 205–210. [Google Scholar] [CrossRef]
- Borda-Molina, D.; Seifert, J.; Camarinha-Silva, A. Current perspectives of the chicken gastrointestinal tract and its microbiome. Comput. Struct. Biotechnol. J. 2018, 16, 131–139. [Google Scholar] [CrossRef]
- Zenner, C.; Hitch, T.C.; Riedel, T.; Wortmann, E.; Tiede, S.; Buhl, E.M.; Abt, B.; Neuhaus, K.; Velge, P.; Overmann, J. Early-life immune system maturation in chickens using a synthetic community of cultured gut bacteria. Msystems 2021, 6, e01300-20. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, K.; Watanabe, T.; Komeda, Y.; Okamoto, A.; Minaga, K.; Kamata, K.; Yamao, K.; Takenaka, M.; Hagiwara, S.; Sakurai, T. Dysbiosis-associated polyposis of the Colon—Cap polyposis. Front. Immunol. 2018, 9, 918. [Google Scholar] [CrossRef]
- Sokol, H.; Jegou, S.; McQuitty, C.; Straub, M.; Leducq, V.; Landman, C.; Kirchgesner, J.; Le Gall, G.; Bourrier, A.; Nion-Larmurier, I. Specificities of the intestinal microbiota in patients with inflammatory bowel disease and Clostridium difficile infection. Gut Microbes 2018, 9, 55–60. [Google Scholar] [CrossRef]
- Wu, S.; Liu, Y.; Duan, Y.; Wang, F.; Guo, F.; Yan, F.; Yang, X.; Yang, X. Intestinal toxicity of deoxynivalenol is limited by supplementation with Lactobacillus plantarum JM113 and consequentially altered gut microbiota in broiler chickens. J. Anim. Sci. Biotechnol. 2018, 9, 74. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Bennett, D.C.; Tun, H.M.; Kim, J.; Cheng, K.M.; Zhang, H.; Leung, F.C. The effect of diet and host genotype on ceca microbiota of Japanese quail fed a cholesterol enriched diet. Front. Microbiol. 2015, 6, 1092. [Google Scholar] [CrossRef]
- Xu, R.; Kiarie, E.G.; Yiannikouris, A.; Sun, L.; Karrow, N.A. Nutritional impact of mycotoxins in food animal production and strategies for mitigation. J. Anim. Sci. Biotechnol. 2022, 13, 69. [Google Scholar] [CrossRef]
- Liu, Y.; Feng, Y.; Yang, X.; Lv, Z.; Li, P.; Zhang, M.; Wei, F.; Jin, X.; Hu, Y.; Guo, Y. Mining chicken ileal microbiota for immunomodulatory microorganisms. ISME J. 2023, 17, 758–774. [Google Scholar] [CrossRef]
- Wang, Y.; Jin, T.; Zhang, N.; Li, J.; Wang, Y.; Kulyar, M.F.; Han, Z.; Li, Y. Effect of stocking density and age on physiological performance and dynamic gut bacterial and fungal communities in Langya hens. Microb. Cell Factories 2021, 20, 218. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wang, J.; Zhou, Y.; Han, H.; Liu, W.; Li, D.; Li, F.; Cao, D.; Lei, Q. Integrated omics analysis reveals differences in gut microbiota and gut-host metabolite profiles between obese and lean chickens. Poult. Sci. 2022, 101, 102165. [Google Scholar] [CrossRef]
- Lyu, Z.; Yuan, G.; Zhang, Y.; Zhang, F.; Liu, Y.; Li, Y.; Li, G.; Wang, Y.; Zhang, M.; Hu, Y. Anaerostipes caccae CML199 enhances bone development and counteracts aging-induced bone loss through the butyrate-driven gut–bone axis: The chicken model. Microbiome 2024, 12, 215. [Google Scholar] [CrossRef]
- Eeckhaut, V.; Van Immerseel, F.; Pasmans, F.; De Brandt, E.; Haesebrouck, F.; Ducatelle, R.; Vandamme, P. Anaerostipes butyraticus sp. nov., an anaerobic, butyrate-producing bacterium from Clostridium cluster XIVa isolated from broiler chicken caecal content, and emended description of the genus Anaerostipes. Int. J. Syst. Evol. Microbiol. 2010, 60, 1108–1112. [Google Scholar] [CrossRef]
- Gillis, C.C.; Hughes, E.R.; Spiga, L.; Winter, M.G.; Zhu, W.; de Carvalho, T.F.; Chanin, R.B.; Behrendt, C.L.; Hooper, L.V.; Santos, R.L. Dysbiosis-associated change in host metabolism generates lactate to support Salmonella growth. Cell Host Microbe 2018, 23, 54–64.e6. [Google Scholar] [CrossRef] [PubMed]
- Oladeinde, A.; Abdo, Z.; Zwirzitz, B.; Woyda, R.; Lakin, S.M.; Press, M.O.; Cox, N.A.; Thomas IV, J.C.; Looft, T.; Rothrock, M.J., Jr. Litter commensal bacteria can limit the horizontal gene transfer of antimicrobial resistance to Salmonella in chickens. Appl. Environ. Microbiol. 2022, 88, e02517-21. [Google Scholar] [CrossRef] [PubMed]
- McCormack, U.M.; Curião, T.; Buzoianu, S.G.; Prieto, M.L.; Ryan, T.; Varley, P.; Crispie, F.; Magowan, E.; Metzler-Zebeli, B.U.; Berry, D. Exploring a possible link between the intestinal microbiota and feed efficiency in pigs. Appl. Environ. Microbiol. 2017, 83, e00380-17. [Google Scholar] [CrossRef]
- Frampton, J.; Murphy, K.G.; Frost, G.; Chambers, E.S. Short-chain fatty acids as potential regulators of skeletal muscle metabolism and function. Nat. Metab. 2020, 2, 840–848. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Wang, C.; Qin, K.; Shi, H.; Yang, X.; Yang, X. Lactobacillus Plantarum injection at the embryonic stage alters the early growth performance and lipid metabolism of broilers by specific genera of bacteria. Poult. Sci. 2023, 102, 102522. [Google Scholar] [CrossRef]
- Stanley, D.; Hughes, R.J.; Geier, M.S.; Moore, R.J. Bacteria within the gastrointestinal tract microbiota correlated with improved growth and feed conversion: Challenges presented for the identification of performance enhancing probiotic bacteria. Front. Microbiol. 2016, 7, 187. [Google Scholar] [CrossRef]
- Rychlik, I. Composition and function of chicken gut microbiota. Animals 2020, 10, 103. [Google Scholar] [CrossRef]
- Vacca, M.; Celano, G.; Calabrese, F.M.; Portincasa, P.; Gobbetti, M.; De Angelis, M. The controversial role of human gut lachnospiraceae. Microorganisms 2020, 8, 573. [Google Scholar] [CrossRef]
- Dai, Z.; Wang, X.; Liu, Y.; Liu, J.; Xiao, S.; Yang, C.; Zhong, Y. Effects of dietary microcapsule sustained-release sodium butyrate on the growth performance, immunity, and gut microbiota of yellow broilers. Animals 2023, 13, 3598. [Google Scholar] [CrossRef]
- Ameer, A.; Cheng, Y.; Saleem, F.; Uzma; McKenna, A.; Richmond, A.; Gundogdu, O.; Sloan, W.T.; Javed, S.; Ijaz, U.Z. Temporal stability and community assembly mechanisms in healthy broiler cecum. Front. Microbiol. 2023, 14, 1197838. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Yu, H.; Zhang, H.; Zhao, Q.; Si, W.; Qin, Y.; Zhang, J. Dietary Epimedium extract supplementation improves intestinal functions and alters gut microbiota in broilers. J. Anim. Sci. Biotechnol. 2023, 14, 14. [Google Scholar] [CrossRef]
- Liao, X.; Shao, Y.; Sun, G.; Yang, Y.; Zhang, L.; Guo, Y.; Luo, X.; Lu, L. The relationship among gut microbiota, short-chain fatty acids, and intestinal morphology of growing and healthy broilers. Poult. Sci. 2020, 99, 5883–5895. [Google Scholar] [CrossRef]
- Namted, S.; Poungpong, K.; Loongyai, W.; Rakangthong, C.; Bunchasak, C. Dietary autolysed yeast modulates blood profiles, small intestinal morphology and caecal microbiota of weaning pigs. Animal 2022, 16, 100660. [Google Scholar] [CrossRef]
- Crespo-Piazuelo, D.; Migura-Garcia, L.; Estellé, J.; Criado-Mesas, L.; Revilla, M.; Castelló, A.; Muñoz, M.; García-Casco, J.M.; Fernández, A.I.; Ballester, M. Association between the pig genome and its gut microbiota composition. Sci. Rep. 2019, 9, 8791. [Google Scholar] [CrossRef] [PubMed]
- Cui, X.; Gou, Z.; Jiang, Z.; Li, L.; Lin, X.; Fan, Q.; Wang, Y.; Jiang, S. Dietary fiber modulates abdominal fat deposition associated with cecal microbiota and metabolites in yellow chickens. Poult. Sci. 2022, 101, 101721. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Akhtar, M.; Ma, Z.; Hu, T.; Liu, Q.; Pan, H.; Zhang, X.; Nafady, A.A.; Ansari, A.R.; Abdel-Kafy, E.M. Chicken cecal microbiota reduces abdominal fat deposition by regulating fat metabolism. npj Biofilms Microbiomes 2023, 9, 28. [Google Scholar] [CrossRef]
- Rebollada-Merino, A.; Ugarte-Ruiz, M.; Hernández, M.; Miguela-Villoldo, P.; Abad, D.; Cuesta-Alvaro, P.; Rodríguez-Lázaro, D.; de Juan, L.; Domínguez, L.; Rodríguez-Bertos, A. Dietary supplementation with fermented defatted “alperujo” induces modifications of the intestinal mucosa and cecal microbiota of broiler chickens. Poult. Sci. 2020, 99, 5308–5315. [Google Scholar] [CrossRef]
- McKenna, A.; Ijaz, U.Z.; Kelly, C.; Linton, M.; Sloan, W.T.; Green, B.D.; Lavery, U.; Dorrell, N.; Wren, B.W.; Richmond, A. Impact of industrial production system parameters on chicken microbiomes: Mechanisms to improve performance and reduce Campylobacter. Microbiome 2020, 8, 128. [Google Scholar] [CrossRef]
- Torok, V.A.; Hughes, R.J.; Ophel-Keller, K.; Ali, M.; MacAlpine, R. Influence of different litter materials on cecal microbiota colonization in broiler chickens. Poult. Sci. 2009, 88, 2474–2481. [Google Scholar] [CrossRef]
Ingredient | Control Diet |
---|---|
Corn (7.5% Crude protein) | 51.46 |
Soybean meal (47.5% Crude Protein) | 40.39 |
Poultry fat | 3.64 |
Limestone | 1.07 |
Mono-Dicalcium phosphate | 2.03 |
Salt NaCl | 0.40 |
Sodium bicarbonate | 0.02 |
L-Lysine HCl 98% | 0.13 |
DL-Methionine 99.0% | 0.34 |
L-Threonine 98.5% | 0.11 |
NCSU Poultry Vitamin Premix 1 | 0.05 |
NCSU Poultry Mineral Premix 2 | 0.20 |
Choline chloride 60% | 0.10 |
Selenium Premix | 0.05 |
Analyzed nutrient composition 3 | |
Metabolizable energy (Kcal/kg) | 3117 |
Crude Protein, % | 24.63 |
Crude Fat, % | 4.74 |
Crude Fiber, % | 2.3 |
Ash, % | 6.32 |
Calculated nutrient composition | |
Total Sulfur Amino Acids, % | 1.03 |
Lysine, % | 1.42 |
Calcium, % | 0.96 |
Available phosphorus, % | 0.48 |
Treatment | Body Weight (BW, kg/Bird) | Body Weight Gain (BWG, kg/Bird) | FCR (kg:kg) | Feed Intake (FI, kg/Bird) | Mortality (%) | |
---|---|---|---|---|---|---|
Litter type | FL | 0.420 ± 0.006 b | 0.363 ± 0.005 b | 1.682 ± 0.082 | 0.609 ± 0.023 b | 9.167 ± 2.159 |
DL | 0.479 ± 0.009 a | 0.436 ± 0.007 a | 1.57 ± 0.019 | 0.685 ± 0.013 a | 5.83 ± 1.967 | |
p-Value | 0.0004 | <0.00001 | 0.0790 | 0.0037 | 0.199 | |
Salmonella challenge | NC 1 | 0.448 ± 0.019 | 0.406 ± 0.018 | 1.544 ± 0.022 b | 0.628 ± 0.032 | 8.333 ± 1.667 |
SE | 0.45 ± 0.009 | 0.393 ± 0.016 | 1.707 ± 0.072 a | 0.666 ± 0.01 | 6.667 ± 2.520 | |
p-Value | 0.8568 | 0.1758 | 0.0195 | 0.0779 | 0.510 | |
Litter type × SE challenge | CONFL | 0.409 ± 0.006 | 0.368 ± 0.005 | 1.531 ± 0.043 b | 0.564 ± 0.018 b | 6.667 ± 2.722 ab |
CONFLSE | 0.431 ± 0.005 | 0.358 ± 0.009 | 1.832 ± 0.095 a | 0.655 ± 0.018 a | 11.667 ± 3.191 a | |
CONDL | 0.488 ± 0.018 | 0.444 ± 0.013 | 1.558 ± 0.022 b | 0.692 ± 0.026 a | 10.00 ± 1.925 a | |
CONDLSE | 0.470 ± 0.006 | 0.428 ± 0.006 | 1.581 ± 0.034 b | 0.677 ± 0.009 a | 1.667 ± 1.667 b | |
p-Value | 0.0834 | 0.7346 | 0.0375 | 0.0215 | 0.0190 |
Log10 CFU/g Cecal Contents | ||
---|---|---|
Treatment | d 3 | d 14 |
DL | 2.14 ± 0.24 b | 0.89 ± 0.50 b |
FL | 5.68 ± 0.38 a | 2.48 ± 0.06 a |
p-value | <0.00001 | 0.02 |
Genus | Litter Type 1 | Mean Diff | Wilcox p-Value | |
---|---|---|---|---|
Lactobacillus | DL | FL | 0.147335 | 0.004329 |
Clostridia_vadinBB60_group | DL | FL | 0.004405 | 0.025974 |
Lachnospira | DL | FL | 0.000647 | 0.012436 |
Staphylococcus | DL | FL | 0.000094 | 0.034087 |
Oscillospiraceae UCG_005 | DL | FL | 0.016222 | 0.015152 |
Lachnospiraceae_NK4A214_group | DL | FL | 0.001542 | 0.025974 |
Marvinbryantia | DL | FL | 0.000837 | 0.007796 |
Family_XIII_AD3011_group | DL | FL | 0.000727 | 0.020022 |
Clostridia_UCG_014 | DL | FL | 0.044653 | 0.025974 |
CHKCI001 | DL | FL | 0.002965 | 0.002165 |
Acetanaerobacterium | DL | FL | 0.000044 | 0.029480 |
Corynebacterium | DL | FL | 0.000281 | 0.002778 |
Eubacterium_ventriosum_group | DL | FL | 0.000155 | 0.009622 |
Uncultured bacterium | DL | FL | 0.004984 | 0.012436 |
Oscillibacter | DL | FL | −0.004972 | 0.041126 |
Lachnospiraceae_NK4A136_group | DL | FL | −0.001933 | 0.008658 |
Eisenbergiella | DL | FL | −0.005624 | 0.025974 |
Butyricicoccus | DL | FL | −0.024286 | 0.041126 |
Ruminococcus_gauvreauii_group | DL | FL | −0.007363 | 0.025974 |
Colidextribacter | DL | FL | −0.005041 | 0.025974 |
Uncultured bacterium | DL | FL | −0.053002 | 0.041126 |
Genus | SE Challenge 1 | Mean Diff | Wilcox p-Value | |
---|---|---|---|---|
Anaerostipes | SE | NC | −0.009722 | 0.004329 |
Uncultured bacterium | SE | NC | −0.004216 | 0.015152 |
Merdibacter | SE | NC | −0.001706 | 0.041126 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ekunseitan, D.A.; Harrison, S.H.; Ogunade, I.M.; Fasina, Y.O. Influence of Different Litter Regimens on Ceca Microbiota Profiles in Salmonella-Challenged Broiler Chicks. Animals 2025, 15, 2039. https://doi.org/10.3390/ani15142039
Ekunseitan DA, Harrison SH, Ogunade IM, Fasina YO. Influence of Different Litter Regimens on Ceca Microbiota Profiles in Salmonella-Challenged Broiler Chicks. Animals. 2025; 15(14):2039. https://doi.org/10.3390/ani15142039
Chicago/Turabian StyleEkunseitan, Deji A., Scott H. Harrison, Ibukun M. Ogunade, and Yewande O. Fasina. 2025. "Influence of Different Litter Regimens on Ceca Microbiota Profiles in Salmonella-Challenged Broiler Chicks" Animals 15, no. 14: 2039. https://doi.org/10.3390/ani15142039
APA StyleEkunseitan, D. A., Harrison, S. H., Ogunade, I. M., & Fasina, Y. O. (2025). Influence of Different Litter Regimens on Ceca Microbiota Profiles in Salmonella-Challenged Broiler Chicks. Animals, 15(14), 2039. https://doi.org/10.3390/ani15142039