Beta Diversity Patterns and Drivers of Macroinvertebrate Communities in Major Rivers of Ningxia, China
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Collection of Datasets
2.2.1. Benthic Macroinvertebrates
2.2.2. Environmental Factors
2.2.3. Land Use
2.3. Methods
2.3.1. Environmental Heterogeneity
2.3.2. Beta Diversity Measurement
2.3.3. Buffer Zone Screening
2.4. Statistical Analysis
3. Results
3.1. Composition of Species
3.2. Beta Diversity and Its Components
3.3. Determinants of Beta Diversity Patterns
3.3.1. Water Quality Evaluation and Optimal Buffer Zone Selection
3.3.2. Analysis of the Factors Influencing Beta Diversity
3.4. Community Assembly Mechanisms of Macroinvertebrates
4. Discussion
4.1. Optimal Selection of Buffer Zones
4.2. Analysis of Beta Diversity and Its Influencing Mechanisms
4.3. Limitations and Prospects
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vörösmarty, C.J.; McIntyre, P.B.; Gessner, M.O.; Dudgeon, D.; Prusevich, A.; Green, P.; Glidden, S.; Bunn, S.E.; Sullivan, C.A.; Liermann, C.R.; et al. Global threats to human water security and river biodiversity. Nature. 2010, 467, 555–561. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.Y.; Mao, D.H.; Song, K.S.; Xiang, H.X.; Li, S.J.; Wang, Z.M. Effects of landscape changes on water quality: A global meta-analysis. Water Res. 2024, 260, 121946. [Google Scholar] [CrossRef]
- Roccatello, S.; Lagrotteria, A.; Andrà, C.; Doretto, A. Bridging science and society: Developing a citizen science biomonitoring approach for river ecosystems in Italy. Ecol. Indic. 2025, 171, 113199. [Google Scholar] [CrossRef]
- Tiyasha; Tung, T.M.; Yaseen, Z.M. A survey on river water quality modelling using artificial intelligence models: 2000–2020. J. Hydrol. 2020, 585, 124670. [Google Scholar] [CrossRef]
- Wang, H.; Xiong, X.; Wang, K.H.; Li, X.; Hu, H.J.; Li, Q.L.; Yin, H.Q.; Wu, C.X. The effects of land use on water quality of alpine rivers: A case study in Qilian Mountain, China. Sci. Total Environ. 2023, 875, 162696. [Google Scholar] [CrossRef]
- Emi Fergus, C.; Renée Brooks, J.; Kaufmann, P.R.; Herlihy, A.T.; Hill, R.A.; Mitchell, R.M.; Ringold, P. Disentangling natural and anthropogenic effects on benthic macroinvertebrate assemblages in western US streams. Ecosphere 2023, 14, e4688. [Google Scholar] [CrossRef]
- Liu, Z.Y.; Zhou, T.T.; Heino, J.; Castro, D.M.P.; Cui, Y.D.; Li, Z.F.; Wang, W.M.; Chen, Y.S.; Xie, Z.C. Land conversion induced by urbanization leads to taxonomic and functional homogenization of a river macroinvertebrate metacommunity. Sci. Total Environ. 2022, 825, 153940. [Google Scholar] [CrossRef] [PubMed]
- Dalu, T.; Mwedzi, T.; Wasserman, R.J.; Madzivanzira, T.C.; Nhiwatiwa, T.; Cuthbert, R.N. Land use effects on water quality, habitat, and macroinvertebrate and diatom communities in African highland streams. Sci. Total Environ. 2022, 846, 157346. [Google Scholar] [CrossRef] [PubMed]
- Piló, D.; Carvalho, A.N.; Pereira, F.; Coelho, H.E.; Gaspar, M.B. Evaluation of macrobenthic community responses to dredging through a multimetric approach: Effective or apparent recovery? Ecol. Indic. 2019, 96, 656–668. [Google Scholar] [CrossRef]
- Liu, Y.; Jiang, X.F.; Li, D.P.; Shen, J.C.; An, S.Q.; Leng, X. Intensive human land uses cause the biotic homogenization of algae and change their assembly process in a major watershed of China. Sci. Total Environ. 2023, 871, 162115. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, S.R.; Wang, J.X.; Huang, Y.T.; Freedman, Z.; Fu, S.L.; Liu, K.; Wang, H.; Li, X.Z.; Yao, M.J.; et al. Local community assembly mechanisms shape soil bacterial β diversity patterns along a latitudinal gradient. Nat. Commun. 2020, 11, 5428. [Google Scholar] [CrossRef] [PubMed]
- He, S.W.; Wang, B.X.; Chen, K.; Li, N.; Soininen, J. Species–environment sorting explains latitudinal patterns in spatiotemporal β-diversity for freshwater macroinvertebrates. Ecography 2024, 2024, e07111. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Liu, J.W.; Song, D.R.; Yao, P.; Zhu, S.D.; Zhou, Y.; Jin, J.; Zhang, X.H. Stochasticity-driven weekly fluctuations distinguished the temporal pattern of particle-associated microorganisms from its free-living counterparts in temperate coastal seawater. Water Res. 2024, 248, 120849. [Google Scholar] [CrossRef]
- Mori, A.S.; Isbell, F.; Seidl, R. β-Diversity, Community Assembly, and Ecosystem Functioning. Trends Ecol. Evol. 2018, 33, 549–564. [Google Scholar] [CrossRef] [PubMed]
- Leprieur, F.; Tedesco, P.A.; Hugueny, B.; Beauchard, O.; Dürr, H.H.; Brosse, S.; Oberdorff, T. Partitioning global patterns of freshwater fish beta diversity reveals contrasting signatures of past climate changes. Ecol. Lett. 2011, 14, 325–334. [Google Scholar] [CrossRef]
- Wang, J.; Ding, C.Z.; Tao, J.; Jiang, X.M.; Heino, J.; Ding, L.Y.; Su, W.; Chen, M.L.; Zhang, K.; He, D.M. Damming affects riverine macroinvertebrate metacommunity dynamics: Insights from taxonomic and functional beta diversity. Sci. Total Environ. 2021, 763, 142945. [Google Scholar] [CrossRef]
- Legendre, P. Comparison of permutation methods for the partial correlation and partial mantel tests. J. Stat. Comput. Sim. 2000, 67, 37–73. [Google Scholar] [CrossRef]
- Mokany, K.; Ware, C.; Woolley, S.N.C.; Ferrier, S.; Fitzpatrick, M.C. A working guide to harnessing generalized dissimilarity modelling for biodiversity analysis and conservation assessment. Global Ecol. Biogeogr. 2022, 31, 802–821. [Google Scholar] [CrossRef]
- Wan, X.H.; Fang, Y.; Jiang, Y.M.; Lu, X.Q.; Zhu, L.; Feng, J.F. Temperature and nutrients alter the relative importance of stochastic and deterministic processes in the coastal macroinvertebrates biodiversity assembly on long-time scales. Ecol. Evol. 2024, 14, e11062. [Google Scholar] [CrossRef]
- Ferrier, S.; Manion, G.; Elith, J.; Richardson, K. Using generalized dissimilarity modelling to analyse and predict patterns of beta diversity in regional biodiversity assessment. Divers. Distrib. 2007, 13, 252–264. [Google Scholar] [CrossRef]
- Lv, Y.Y.; Liu, G.H.; Wang, Y.C.; Wang, Y.X.; Jin, X.W.; Chen, H.; Wu, N.C. Near-natural streams: Spatial factors are key in shaping multiple facets of zooplankton alpha and beta diversity. Environ. Res. 2024, 255, 119174. [Google Scholar] [CrossRef] [PubMed]
- Lai, J.S.; Zou, Y.; Zhang, J.L.; Peres-Neto, P.R. Generalizing hierarchical and variation partitioning in multiple regression and canonical analyses using the rdacca.hp R package. Methods Ecol. Evol. 2022, 13, 782–788. [Google Scholar] [CrossRef]
- Wu, Y.H.; Yang, Z.Y.; Chen, S.R.; Chen, L.Y.; Sui, M.Z.; Zhang, G.Q.; Liu, Q.F.; Chen, D.M.; He, Y.J.; Zang, L.P. Drivers of β-diversity and its component-dependence along the natural restoration in an extremely heterogeneous forest ecosystem. Catena 2024, 243, 108224. [Google Scholar] [CrossRef]
- Nie, R.; Xu, X.M.; Xu, P.J.; Zhuge, Y.S.; Zheng, T.; Yu, X.; Yao, R.; Tan, H.W.; Li, G.Q.; Zhao, X.H.; et al. Taxonomic and functional responses of benthic macroinvertebrates to wastewater effluents in the receiving river of ecologically vulnerable karst areas in Southwest China. Environ. Res. 2025, 278, 121666. [Google Scholar] [CrossRef] [PubMed]
- Fahy, J.C.; Demierre, E.; Oertli, B. Long-term monitoring of water temperature and macroinvertebrates highlights climate change threat to alpine ponds in protected areas. Biol. Conserv. 2024, 290, 110461. [Google Scholar] [CrossRef]
- Liu, Z.Y.; Heino, J.; Soininen, J.; Zhou, T.T.; Wang, W.M.; Cui, Y.D.; Chen, Y.S.; Li, Z.F.; Zhang, J.Q.; Xie, Z.C. Different responses of incidence-weighted and abundance-weighted multiple facets of macroinvertebrate beta diversity to urbanization in a subtropical river system. Ecol. Indic. 2022, 143, 109357. [Google Scholar] [CrossRef]
- Zhao, X.; Ma, Y.; Xie, H.Y.; Du, C.; Zhan, A.B.; Xu, J.; Giesy, J.P.; Wu, F.C.; Jin, X.W. Spatial distribution of benthic taxonomic and functional diversity in the Yellow River Basin: From ecological processes to associated determinant factors. Environ. Int. 2024, 188, 108745. [Google Scholar] [CrossRef]
- Li, Z.F.; Chen, X.; Jiang, X.M.; Tonkin, J.D.; Xie, Z.C.; Heino, J. Distance decay of benthic macroinvertebrate communities in a mountain river network: Do dispersal routes and dispersal ability matter? Sci. Total Environ. 2021, 758, 143630. [Google Scholar] [CrossRef]
- Zhang, T.P.; Lei, Q.L.; Liang, X.; Lindsey, S.; Luo, J.F.; Pei, W.; Du, X.Z.; Wu, S.X.; An, M.Y.; Qiu, W.W.; et al. Optimization of the N footprint model and analysis of nitrogen pollution in irrigation areas: A case study of Ningxia Hui Autonomous Region, China. J. Environ. Manag. 2023, 340, 118002. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, Y.P. Coming ecological risks of organochlorine pesticides and novel brominated flame retardants in the Yellow River Basin. Sci. Total Environ. 2023, 857, 159296. [Google Scholar] [CrossRef]
- Li, R.; Shi, Y.; Feng, C.C.; Guo, L. The spatial relationship between ecosystem service scarcity value and urbanization from the perspective of heterogeneity in typical arid and semiarid regions of China. Ecol. Indic. 2021, 132, 108299. [Google Scholar] [CrossRef]
- Wang, D.; Hao, H.G.; Liu, H.; Sun, L.H.; Li, Y.Y. Spatial-temporal changes of landscape and habitat quality in typical ecologically fragile areas of western China over the past 40 years: A case study of the Ningxia Hui Autonomous Region. Ecol. Evol. 2024, 14, e10847. [Google Scholar] [CrossRef]
- Tan, C.P.; Yang, J.P.; Li, M. Temporal-Spatial Variation of Drought Indicated by SPI and SPEI in Ningxia Hui Autonomous Region, China. Atmosphere 2015, 6, 1399–1421. [Google Scholar] [CrossRef]
- Barbour, M.T.; Gerritsen, J.; Snyder, B.D.; Stribling, J.B. Rapid Bioassessment Protocols for Use in Streams and Wadable Rivers: Periphyton, Benthic Macroinvertebrates and Fish, 2nd ed.; EPA 841-B-99-002; US Environmental Protection Agency: Washington, DC, USA, 1999. [Google Scholar]
- Hamada, N.; Thorp, J.H.; Christopher Rogers, D. Thorp and Covich’s Freshwater Invertebrates, 4th ed.; Volume III: Keys to Neotropical Hexapoda; Academic Press: Cambridge, MA, USA, 2018. [Google Scholar]
- Qiu, W.G.; Wang, J.C.; Zhang, Z. Map of Benthic Fauna Monitoring in Liaohe River Basin; China Environmental Science Press: Beijing, China, 2014. (In Chinese) [Google Scholar]
- Liu, Y.H.; Zhong, Y.F.; Ma, A.L.; Zhao, J.; Zhang, L.P. Cross-resolution national-scale land-cover mapping based on noisy label learning: A case study of China. Int. J. Appl. Earth Obs. 2023, 118, 103265. [Google Scholar] [CrossRef]
- Hijmans, R. Geosphere: Spherical Trigonometry. R Package Version 1.5-20. 2024. Available online: https://CRAN.R-project.org/package=geosphere (accessed on 2 July 2024).
- Ranjard, L.; Dequiedt, S.; Chemidlin Prévost-Bouré, N.; Thioulouse, J.; Saby, N.P.A.; Lelievre, M.; Maron, P.A.; Morin, F.E.R.; Bispo, A.; Jolivet, C.; et al. Turnover of soil bacterial diversity driven by wide-scale environmental heterogeneity. Nat. Commun. 2013, 4, 1434. [Google Scholar] [CrossRef]
- Baselga, A. Separating the two components of abundance-based dissimilarity: Balanced changes in abundance vs. abundance gradients. Methods Ecol. Evol. 2013, 4, 552–557. [Google Scholar] [CrossRef]
- Baselga, A. Partitioning abundance-based multiple-site dissimilarity into components: Balanced variation in abundance and abundance gradients. Methods Ecol. Evol. 2017, 8, 799–808. [Google Scholar] [CrossRef]
- Wang, W.W.; Liu, C.J.; Zhang, F.; Tan, M.L.; Shi, J.C.; Zhang, Z.M.; Duan, P.; Kung, H.-T.; Xin, H.Y. Evaluation of impacts of environmental factors and land use on seasonal surface water quality in arid and humid regions using structural equation models. Ecol. Indic. 2022, 144, 109546. [Google Scholar] [CrossRef]
- Song, Y.Z.; Wang, J.F.; Ge, Y.; Xu, C.D. An optimal parameters-based geographical detector model enhances geographic characteristics of explanatory variables for spatial heterogeneity analysis: Cases with different types of spatial data. GISci Remote Sens. 2020, 57, 593–610. [Google Scholar] [CrossRef]
- Xu, Y.; Xu, X.R.; Tang, Q. Human activity intensity of land surface: Concept, methods and application in China. J. Geogr. Sci. 2016, 26, 1349–1361. [Google Scholar] [CrossRef]
- Pesce, S.F.; Wunderlin, D.A. Use of water quality indices to verify the impact of Cordoba City (Argentina) on Suquia River. Water Res. 2000, 34, 2915–2926. [Google Scholar] [CrossRef]
- Sun, W.; Xia, C.Y.; Xu, M.Y.; Guo, J.; Sun, G.P. Application of modified water quality indices as indicators to assess the spatial and temporal trends of water quality in the Dongjiang River. Ecol. Indic. 2016, 66, 306–312. [Google Scholar] [CrossRef]
- Wang, J.L.; Fu, Z.S.; Qiao, H.X.; Liu, F.X. Assessment of eutrophication and water quality in the estuarine area of Lake Wuli, Lake Taihu, China. Sci. Total Environ. 2019, 650, 1392–1402. [Google Scholar] [CrossRef]
- Wu, Z.S.; Wang, X.L.; Chen, Y.W.; Cai, Y.J.; Deng, J.C. Assessing river water quality using water quality index in Lake Taihu Basin, China. Sci. Total Environ. 2018, 612, 914–922. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.L.; Jiang, Y.; Liu, Q.; Dong, M.; Xu, D.; Liu, Y.; Xu, X. Using a water quality index to assess the water quality of the upper and middle streams of the Luanhe River, northern China. Sci. Total Environ. 2019, 667, 142–151. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.T.; Wang, Z.T. Distribution pattern and composition difference of urban spontaneous plants of multi-mountainous city. Glob. Ecol. Conserv. 2025, 59, e03564. [Google Scholar] [CrossRef]
- Ning, D.L.; Deng, Y.; Tiedje, J.M.; Zhou, J.Z. A general framework for quantitatively assessing ecological stochasticity. Proc. Natl. Acad. Sci. USA 2019, 116, 16892–16898. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Chen, H.Q.; Gao, P.; Huang, X.H.; Zhu, Y.X.; Xu, M.; Yuan, Q.; Gao, Y.; Shen, X.X. Distribution and drivers of antibiotic resistance genes in brackish water aquaculture sediment. Sci. Total Environ. 2023, 860, 160475. [Google Scholar] [CrossRef]
- Hjalmarsson, A.E.; Graf, W.; Jähnig, S.C.; Vitecek, S.; Pauls, S.U. Molecular association and morphological characterisation of Himalopsyche larval types (Trichoptera, Rhyacophilidae). ZooKeys 2018, 773, 79–108. [Google Scholar] [CrossRef]
- Ju, H.R.; Zhang, Z.X.; Zuo, L.J.; Wang, J.F.; Zhang, S.R.; Wang, X.; Zhao, X.L. Driving forces and their interactions of built-up land expansion based on the geographical detector—A case study of Beijing, China. Int. J. Geogr. Infor. Sci. 2016, 30, 2188–2207. [Google Scholar] [CrossRef]
- Gao, J.; Deng, G.Y.; Jiang, H.B.; Ma, Q.Y.; Wen, Y.; He, C.G.; Guo, Y.; Cao, Y.Y. Water quality management of micro swamp wetland based on the “source-transfer-sink” theory: A case study of Momoge Swamp Wetland in Songnen Plain, China. J. Clean Prod. 2024, 446, 141450. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Wang, M.; Ren, K.; Yan, K.; Liang, Y.G.; Yuan, H.L.; Yang, L.; Ren, Y.X. The relationship between mountain wetland health and water quality: A case study of the upper Hanjiang River Basin, China. J. Environ. Manag. 2023, 346, 118998. [Google Scholar] [CrossRef]
- Yao, X.C.; Zeng, C.F.; Duan, X.J.; Wang, Y.Z. Effects of land use patterns on seasonal water quality in Chinese basins at multiple temporal and spatial scales. Ecol. Indic. 2024, 166, 112423. [Google Scholar] [CrossRef]
- Zhu, J.Y.; Peng, S.Y.; Shen, X.J.; Lin, Z.Q.; Gong, L.P.; Zhang, R.; Huang, B.M. Multiple scale impacts of land use intensity on water quality in the Chishui river source area. Ecol. Indic. 2024, 166, 112396. [Google Scholar] [CrossRef]
- Wang, W.W.; Zhang, F.; Zhao, Q.; Liu, C.J.; Jim, C.Y.; Johnson, V.C.; Tan, M.L. Determining the main contributing factors to nutrient concentration in rivers in arid northwest China using partial least squares structural equation modeling. J. Environ. Manag. 2023, 343, 118249. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.Y.; Wang, P.; Shu, W.; Ding, M.J.; Zhang, H. Influence of landscape structures on river water quality at multiple spatial scales: A case study of the Yuan river watershed, China. Ecol. Indic. 2021, 121, 107226. [Google Scholar] [CrossRef]
- Wang, W.Y.; Yang, P.; Xia, J.; Huang, H.Q.; Li, J. Impact of land use on water quality in buffer zones at different scales in the Poyang Lake, middle reaches of the Yangtze River basin. Sci. Total Environ. 2023, 896, 165161. [Google Scholar] [CrossRef]
- Qian, S.S.; King, R.S.; Richardson, C.J. Two statistical methods for the detection of environmental thresholds. Ecol. Model 2003, 166, 87–97. [Google Scholar] [CrossRef]
- Wang, H.; Xiong, Q.Q.; Feng, Q.Y.; Xiao, S.Z.; Mu, D.J.; Sun, X.X.; Wang, S.J. Prediction and impact of Location-Weighted landscape Index on water quality in a typical karst region in southwest China: A case study of the Huanghou basin. Ecol. Indic. 2024, 165, 112186. [Google Scholar] [CrossRef]
- Xiao, H.B.; Su, R.L.; Luo, Y.; Jiang, Y.B.; Wang, Y.; Hu, R.G.; Lin, S. Effects of land cover patterns on pond water nitrogen and phosphorus concentrations in a small agricultural watershed in Central China. Catena 2024, 237, 107800. [Google Scholar] [CrossRef]
- Wu, H.W.; Wu, F.; Li, Z.H.; Gao, X.; Wu, X.H.; Bao, G.J. Considering scale effects in water quality analysis to enhance the precision of influencing factor response analysis. Ecol. Indic. 2024, 163, 112091. [Google Scholar] [CrossRef]
- Xu, Y.T.; Li, P.; Ma, F.M.; Liu, X.H.; Zhang, N.C.; Pan, J.J.; Meng, Y.X. Watershed landscape characteristics and connectivity drive river water quality under seasonal dynamics. J. Clean Prod. 2024, 473, 143533. [Google Scholar] [CrossRef]
- Wang, J.F.; Hu, Y. Environmental health risk detection with GeogDetector. Environ. Modell Softw. 2012, 33, 114–115. [Google Scholar] [CrossRef]
- Wang, J.F.; Li, X.H.; Christakos, G.; Liao, Y.L.; Zhang, T.; Gu, X.; Zheng, X.Y. Geographical Detectors-Based Health Risk Assessment and its Application in the Neural Tube Defects Study of the Heshun Region, China. Int. J. Geogr. Inf. Sci. 2010, 24, 107–127. [Google Scholar] [CrossRef]
- Wang, G.J.; Peng, W.F.; Zhang, L.D.; Zhang, J. Quantifying the impacts of natural and human factors on changes in NPP using an optimal parameters-based geographical detector. Ecol. Indic. 2023, 155, 111018. [Google Scholar] [CrossRef]
- Huang, L.; Chen, X.H.; Yuan, Z.; Ye, C.X.; Liang, Y.S. Impact of Landscape Patterns on Water Quality in Urbanized Rivers at Characteristic Scale: A Case of Pearl River Delta, China. Environ. Manag. 2024, 74, 715–728. [Google Scholar] [CrossRef] [PubMed]
- Shi, P.; Zhang, Y.; Li, Z.B.; Li, P.; Xu, G.C. Influence of land use and land cover patterns on seasonal water quality at multi-spatial scales. Catena 2017, 151, 182–190. [Google Scholar] [CrossRef]
- Mello, K.d.; Valente, R.A.; Randhir, T.O.; Santos, A.C.A.d.; Vettorazzi, C.A. Effects of land use and land cover on water quality of low-order streams in Southeastern Brazil: Watershed versus riparian zone. Catena 2018, 167, 130–138. [Google Scholar] [CrossRef]
- Zhou, H.Y.; Rao, K.; Yao, M.J.; Xiong, Y.; Wang, Y.; Yin, Y.H. Effects of land use, meteorology, and hydrology on nutrients, biochemical indexes, and heavy metals in Qingjiang River Basin, China. J. Clean Prod. 2022, 370, 133416. [Google Scholar] [CrossRef]
- Wang, J.F.; Zhang, T.L.; Fu, B.J. A measure of spatial stratified heterogeneity. Ecol. Indic. 2016, 67, 250–256. [Google Scholar] [CrossRef]
- Locke, K.A. Modelling relationships between land use and water quality using statistical methods: A critical and applied review. J. Environ. Manag. 2024, 362, 121290. [Google Scholar] [CrossRef]
- Wang, Y.B.; Junaid, M.; Deng, J.Y.; Tang, Q.P.; Luo, L.; Xie, Z.Y.; Pei, D.S. Effects of land-use patterns on seasonal water quality at multiple spatial scales in the Jialing River, Chongqing, China. Catena 2024, 234, 107646. [Google Scholar] [CrossRef]
- Anderson, M.J.; Crist, T.O.; Chase, J.M.; Vellend, M.; Inouye, B.D.; Freestone, A.L.; Sanders, N.J.; Cornell, H.V.; Comita, L.S.; Davies, K.F.; et al. Navigating the multiple meanings of beta diversity: A roadmap for the practicing ecologist. Ecol. Lett. 2011, 14, 19–28. [Google Scholar] [CrossRef]
- Chen, J.; Shiyomi, M.; Huang, D.M.; Yu, H.L. Quantitative evaluation of species composition dissimilarity within a community and among communities. Ecol. Res. 2021, 36, 152–160. [Google Scholar] [CrossRef]
- Barwell, L.J.; Isaac, N.J.B.; Kunin, W.E. Measuring β-diversity with species abundance data. J. Anim. Ecol. 2015, 84, 1112–1122. [Google Scholar] [CrossRef] [PubMed]
- Beck, J.; Holloway, J.D.; Schwanghart, W. Undersampling and the measurement of beta diversity. Methods Ecol. Evol. 2013, 4, 370–382. [Google Scholar] [CrossRef]
- Schroeder, P.J.; Jenkins, D.G. How robust are popular beta diversity indices to sampling error? Ecosphere 2018, 9, e02100. [Google Scholar] [CrossRef]
- Wang, H.X.; He, X.L.; Yao, Z.L.; Wang, B.; Jiang, Y.T.; Lin, L.X. Acoustic beta indices exhibited a weak correlation with both vocal species composition dissimilarity and environmental factors dissimilarity in a subtropical forest. Ecol. Indic. 2025, 172, 113266. [Google Scholar] [CrossRef]
- Delciellos, A.C.; Borges-Júnior, V.N.T.; Cerqueira, R.; Vieira, M.V.; Prevedello, J.A. Non-linear homogenization of small mammal communities following habitat loss in a biodiversity hotspot. Biol. Conserv. 2025, 306, 111144. [Google Scholar] [CrossRef]
- Xu, Y.P.; Xiang, Z.L.; Rizo, E.Z.; Naselli-Flores, L.; Han, B.P. Combination of linear and nonlinear multivariate approaches effectively uncover responses of phytoplankton communities to environmental changes at regional scale. J. Environ. Manag. 2022, 305, 114399. [Google Scholar] [CrossRef]
- Woolley, S.N.C.; Foster, S.D.; O’Hara, T.D.; Wintle, B.A.; Dunstan, P.K. Characterising uncertainty in generalised dissimilarity models. Methods Ecol. Evol. 2017, 8, 985–995. [Google Scholar] [CrossRef]
- Chen, Y.T.; Liu, Z.X.; Régnière, J.; Vasseur, L.; Lin, J.; Huang, S.G.; Ke, F.S.; Chen, S.P.; Li, J.Y.; Huang, J.L.; et al. Large-scale genome-wide study reveals climate adaptive variability in a cosmopolitan pest. Nat. Commun. 2021, 12, 7206. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.F.; Wang, J.; Liu, Z.Y.; Meng, X.L.; Heino, J.; Jiang, X.K.; Xiong, X.; Jiang, X.M.; Xie, Z.C. Different responses of taxonomic and functional structures of stream macroinvertebrate communities to local stressors and regional factors in a subtropical biodiversity hotspot. Sci. Total Environ. 2019, 655, 1288–1300. [Google Scholar] [CrossRef] [PubMed]
- Chase, J.M. Stochastic community assembly causes higher biodiversity in more productive environments. Science 2010, 328, 1388–1391. [Google Scholar] [CrossRef] [PubMed]
- Chase, J.M.; Myers, J.A. Disentangling the importance of ecological niches from stochastic processes across scales. Phil. Trans. R Soc. B 2011, 366, 2351–2363. [Google Scholar] [CrossRef] [PubMed]
- He, S.W.; Qin, C.Y.; Soininen, J. A flexible framework to assess patterns and drivers of beta diversity across spatial scales. Ecography 2024, 2024, e06901. [Google Scholar] [CrossRef]
- Growns, I. Differences in bioregional classifications among four aquatic biotic groups: Implications for conservation reserve design and monitoring programs. J. Environ. Manag. 2009, 90, 2652–2658. [Google Scholar] [CrossRef]
- Dong, R.; Wang, Y.Y.; Lu, C.; Lei, G.C.; Wen, L. The seasonality of macroinvertebrate β diversity along the gradient of hydrological connectivity in a dynamic river-floodplain system. Ecol. Indic. 2021, 121, 107112. [Google Scholar] [CrossRef]
- Chen, J.; Gao, Y.Y.; Qian, H.; Jia, H.; Zhang, Q.Y. Insights into water sustainability from a grey water footprint perspective in an irrigated region of the Yellow River Basin. J. Clean Prod. 2021, 316, 128329. [Google Scholar] [CrossRef]
- López-Rodríguez, M.J.; Muñoz, C.M.; Ripoll-Martín, E.; Figueroa, J.M.T.d. Effect of shifts in habitats and flow regime associated to water diversion for agriculture on the macroinvertebrate community of a small watershed. Aquat. Ecol. 2019, 53, 483–495. [Google Scholar] [CrossRef]
- Li, J.X.; Ma, M.D.; Wang, L.Y.; Jin, Y.J.; Liu, Y.M.; Yin, X.W.; Liu, G.; Song, J.X. Ecological drivers of taxonomic, functional, and phylogenetic beta diversity of macroinvertebrates in Wei River Basin of northwest China. Front. Ecol. Evol. 2024, 12, 1410915. [Google Scholar] [CrossRef]
- Pavoine, S.; Marcon, E.; Ricotta, C. ‘Equivalent numbers’ for species, phylogenetic or functional diversity in a nested hierarchy of multiple scales. Methods Ecol. Evol. 2016, 7, 1152–1163. [Google Scholar] [CrossRef]
- Martins, A.; Collart, F.; Sim-Sim, M.; Patiño, J. Ecological drivers of taxonomic, functional, and phylogenetic diversity of bryophytes in an oceanic island. Ecol. Evol. 2024, 14, e70023. [Google Scholar] [CrossRef] [PubMed]
- Farooq, M.; Liu, S.; Tan, L.; Cai, Q.H.; Chiu, M.-C.; Resh, V.H. Multidimensional aspects of riverine biodiversity can vary in response to nutrient pollution and environmental dynamics across climatic watersheds. Environ. Pollut. 2024, 361, 124775. [Google Scholar] [CrossRef]
- Heino, J.; Bini, L.M.; García-Girón, J.; Lansac-Tôha, F.M.; Lindholm, M.; Rolls, R.J. Navigating the spatial and temporal aspects of beta diversity to clarify understanding biodiversity change. Glob. Ecol. Conserv. 2024, 56, e03343. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Q.; Wei, Z.; Qiu, X.; Zhao, Z. Beta Diversity Patterns and Drivers of Macroinvertebrate Communities in Major Rivers of Ningxia, China. Animals 2025, 15, 2034. https://doi.org/10.3390/ani15142034
Yang Q, Wei Z, Qiu X, Zhao Z. Beta Diversity Patterns and Drivers of Macroinvertebrate Communities in Major Rivers of Ningxia, China. Animals. 2025; 15(14):2034. https://doi.org/10.3390/ani15142034
Chicago/Turabian StyleYang, Qiangqiang, Zeyu Wei, Xiaocong Qiu, and Zengfeng Zhao. 2025. "Beta Diversity Patterns and Drivers of Macroinvertebrate Communities in Major Rivers of Ningxia, China" Animals 15, no. 14: 2034. https://doi.org/10.3390/ani15142034
APA StyleYang, Q., Wei, Z., Qiu, X., & Zhao, Z. (2025). Beta Diversity Patterns and Drivers of Macroinvertebrate Communities in Major Rivers of Ningxia, China. Animals, 15(14), 2034. https://doi.org/10.3390/ani15142034