Differentiation of mtDNA Methylation in Tissues of Ridgetail White Prawn, Exopalaemon carinicauda
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ridgetail White Prawn, Exopalaemon carinicauda
2.2. Experimental Methods
2.2.1. DNA Extraction and Methylation
2.2.2. Extraction of Total RNA and Synthesis of First Strand of cDNA
2.2.3. Analysis of DNMT1 and DNMT3b Expression Characteristics
2.2.4. In Situ Hybridization
2.2.5. Statistical Analysis
3. Results
3.1. Methylation Levels of Mitochondrial Genomes in Different Tissues
3.2. Expression Characteristics of DNMTs in Different Tissues
3.3. Spatial Distribution Analysis of mRNA Signals of DNMT1 and DNMT3b
4. Discussion
4.1. Tissue-Specific Difference in mtDNA Methylation Levels and Potential Mechanisms
4.2. The Regulatory Mechanisms of DNMT1 and DNMT3b on mtDNA Methylation in Different Tissues
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, W.; Xu, J. DNA methyltransferases and their roles in tumorigenesis. Biomark. Res. 2017, 5, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.F.; Zhai, J.; Meyers, B.C. Conservation and divergence in eukaryotic DNA methylation. Proc. Natl. Acad. Sci. USA 2010, 107, 9027–9028. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, Y. Role of Mammalian DNA Methyltransferases in Development. Annu. Rev. Biochem. 2020, 89, 135–158. [Google Scholar] [CrossRef]
- Mattei, A.L.; Bailly, N.; Meissner, A. DNA methylation: A historical perspective. Trends Genet. 2022, 38, 676–707. [Google Scholar] [CrossRef]
- Uysal, F.; Akkoyunlu, G.; Ozturk, S. Dynamic expression of DNA methyltransferases (DNMTs) in oocytes and early embryos. Biochimie 2015, 116, 103–113. [Google Scholar] [CrossRef]
- Bestor, T.; Laudano, A.; Mattaliano, R.; Ingram, V. Cloning and sequencing of a cDNA encoding DNA methyltransferase of mouse cells: The carboxyl-terminal domain of the mammalian enzymes is related to bacterial restriction methyltransferases. J. Mol. Biol. 1988, 203, 971–983. [Google Scholar] [CrossRef]
- Arand, J.; Spieler, D.; Karius, T.; Branco, M.R.; Meilinger, D.; Meissner, A.; Jenuwein, T.; Xu, G.; Leonhardt, H.; Wolf, V.; et al. In Vivo control of CpG and non-CpG DNA methylation by DNA methyltransferases. PLoS Genet. 2012, 8, e1002750. [Google Scholar] [CrossRef]
- Zhang, Z.M.; Liu, S.; Lin, K.; Luo, Y.; Perry, J.J.; Wang, Y.; Song, J. Crystal Structure of Human DNA Methyltransferase 1. J. Mol. Biol. 2015, 427, 2520–2531. [Google Scholar] [CrossRef]
- Kent, B.; Magnani, E.; Walsh, M.J.; Sadler, K.C. UHRF1 regulation of Dnmt1 is required for pre-gastrula zebrafish development. Dev. Biol. 2016, 412, 99–113. [Google Scholar] [CrossRef]
- Lorincz, M.C.; Schübeler, D.; Hutchinson, S.R.; Dickerson, D.R.; Groudine, M. DNA methylation density influences the stability of an epigenetic imprint and Dnmt3a/b-independent de novo methylation. Mol. Cell Biol. 2002, 22, 7572–7580. [Google Scholar] [CrossRef]
- Tuorto, F.; Herbst, F.; Alerasool, N.; Bender, S.; Popp, O.; Federico, G.; Reitter, S.; Liebers, R.; Stoecklin, G.; Gröne, H.; et al. The tRNA methyltransferase Dnmt2 is required for accurate polypeptide synthesis during haematopoiesis. EMBO J. 2015, 34, 2350–2362. [Google Scholar] [CrossRef] [PubMed]
- Rafels-Ybern, À.; Torres, A.G.; Grau-Bove, X.; Ruiz-Trillo, I.; de Pouplana, L.R. Codon adaptation to tRNAs with Inosine modification at position 34 is widespread among Eukaryotes and present in two Bacterial phyla. RNA Biol. 2018, 15, 500–507. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, S.; Jurkowski, T.P.; Kellner, S.; Schneider, D.; Jeltsch, A.; Helm, M. The RNA methyltransferase Dnmt2 methylates DNA in the structural context of a tRNA. RNA Biol. 2017, 14, 1241–1251. [Google Scholar] [CrossRef]
- Rai, K.; Chidester, S.; Zavala, C.V.; Manos, E.J.; James, S.R.; Karpf, A.R.; Jones, D.A.; Cairns, B.R. Dnmt2 functions in the cytoplasm to promote liver, brain, and retina development in zebrafish. Genes Dev. 2007, 21, 261–266. [Google Scholar] [CrossRef]
- Lu, J.; Fang, J.; Zhu, H.; Liang, K.L.; Khudaverdyan, N.; Song, J. Structural basis for the allosteric regulation and dynamic assembly of DNMT3B. Nucleic Acids Res. 2023, 51, 12476–12491. [Google Scholar] [CrossRef]
- Tóth, D.M.; Szeri, F.; Ashaber, M.; Muazu, M.; Székvölgyi, L.; Arányi, T. Tissue-specific roles of de novo DNA methyltransferases. Epigenetics Chromatin 2025, 18, 5. [Google Scholar] [CrossRef]
- Taglini, F.; Kafetzopoulos, I.; Rolls, W.; Musialik, K.I.; Lee, H.Y.; Zhang, Y.; Marenda, M.; Kerr, L.; Finan, H.; Rubio-Ramon, C.; et al. DNMT3B PWWP mutations cause hypermethylation of heterochromatin. EMBO Rep. 2024, 25, 1130–1155. [Google Scholar] [CrossRef]
- Zhu, Z.; Wang, X. Significance of Mitochondria DNA Mutations in Diseases. Adv. Exp. Med. Biol. 2017, 1038, 219–230. [Google Scholar]
- Reis, R.J.S.; Goldstein, S. Mitochondrial DNA in mortal and immortal human cells. Genome number, integrity, and methylation. J. Biol. Chem. 1983, 258, 9078–9085. [Google Scholar] [CrossRef]
- Vanyushin, B.F.; Kirnos, M.D. The nucleotide composition and pyrimidine clusters in DNA from beef heart mitochondria. FEBS Lett. 1974, 39, 195–199. [Google Scholar] [CrossRef]
- Tajima, S.; Suetake, I.; Takeshita, K.; Nakagawa, A.; Kimura, H. Domain Structure of the Dnmt1, Dnmt3a, and Dnmt3b DNA Methyltransferases. Adv. Exp. Med. Biol. 2016, 945, 63–86. [Google Scholar] [PubMed]
- Barrès, R.; Osler, M.E.; Yan, J.; Rune, A.; Fritz, T.; Caidahl, K.; Krook, A.; Zierath, J.R. Non-CpG methylation of the PGC-1alpha promoter through DNMT3B controls mitochondrial density. Cell Metab. 2009, 10, 189–198. [Google Scholar] [CrossRef]
- Gao, H.; Zhao, L.; Xue, B.; Zhu, G.; Lai, X.; Chen, J.; Shen, X.; Yan, B. Methylation profiling of the mitochondrial genome in response to starvation in the the Ridgetail White Prawn, Exopalaemon carinicauda. J. J. Fish. China 2015, 39, 953–961. [Google Scholar]
- Hua, S.; Yu, F.; Li, Y.; Liu, X.; Shi, T.; Zhang, P.; Li, W.; Baloch, W.A.; Yan, B.; Gao, H. The ubiquitin-like, containing PHD and RING finger domains 1 (uhrf1) gene promotes ovarian development in Exopalaemon carinicauda. Aquac. Rep. 2023, 29, 101492. [Google Scholar] [CrossRef]
- Zhang, S.; Pang, Z.; Gao, J.; Dai, Q.; Liu, X.; Shen, Y.; Baloch, W.A.; Noonari, S.; Wang, P.; Gao, H. Functional analysis of the cell cycle protein E gene (ccne) in ovarian development of the white ridgetail prawn, Exopalaemon carinicauda. Aquac. Rep. 2023, 32, 101716. [Google Scholar] [CrossRef]
- Liu, X.; Gao, J.; Zhang, P.; Shi, T.; Yan, B.; Azra, M.N.; Baloch, W.A.; Wang, P.; Gao, H. De novo transcriptional analysis of the response to starvation stress in the white ridgetail prawn, Exopalaemon carinicauda. Genomics 2023, 115, 110746. [Google Scholar] [CrossRef]
- Xu, Z.; Shi, J.; Chen, Q.; Yang, S.; Wang, Z.; Xiao, B.; Lai, Z.; Jing, Y.; Li, Y.; Li, X. Regulation of de novo and maintenance DNA methylation by DNA methyltransferases in postimplantation embryos. J. Biol. Chem. 2025, 301, 107990. [Google Scholar] [CrossRef]
- Falisse, E.; Ducos, B.; Stockwell, P.A.; Morison, I.M.; Chatterjee, A.; Silvestre, F. DNA methylation and gene expression alterations in zebrafish early-life stages exposed to the antibacterial agent triclosan. Environ. Pollut. 2018, 243, 1867–1877. [Google Scholar] [CrossRef]
- Liu, B.; Li, G.; Li, X.; Wang, H.; Yang, J.; Wen, H.; He, F. The responsive mechanisms of DNA methylation and transcriptional regulation to acute hypoxia stress in HIF-1/VEGFA signal pathway of Japanese flounder (Paralichthys olivaceus). Aquaculture 2024, 578, 740021. [Google Scholar] [CrossRef]
- Jonz, M.G. Cell proliferation and regeneration in the gill. J. Comp. Physiol. B 2024, 194, 583–593. [Google Scholar] [CrossRef]
- Nguyen, F.; Jonz, M.G. Replacement of mitochondrion-rich cells during regeneration of the gills and opercular epithelium in zebrafish (Danio rerio). Acta Histochem. 2021, 123, 151738. [Google Scholar] [CrossRef] [PubMed]
- Ciullo, A.; Li, L.; Li, C.; Tsi, K.; Farrell, C.; Pellegrini, M.; Marbán, E.; E Ibrahim, A.G. Non-coding RNA yREX3 from human extracellular vesicles exerts macrophage-mediated cardioprotection via a novel gene-methylating mechanism. Eur. Heart J. 2024, 45, 2660–2673. [Google Scholar] [CrossRef] [PubMed]
Name | Sequence |
---|---|
16# | TGGTTTTTTGATAGTGATTTTATATCGTTTATATATGTGT |
TATTTTTTAGTTAATTATTATTTTGGATTCGAAGTTGTTG | |
TTTGGTATTGATATTTTGTCGACGTAGTTTGATTTTITTT | |
TTATATTTCGTTTATTGATGAGGAGGATAATTTTATATTT | |
ATTTAGTATAATTGTATAATTGATTTTTAATTAATAAGTT | |
TGGTATTTTTAGGATAG | |
21# | AAGTGTTAGTTAATTTAGGTTTAAATCGAATCAATAAATA |
TACCCCCGCCGCTACTAAAGTAGAAGAATGCACTAAAGCT | |
GATACAGGCGTAGGAGCTGCCATTGCAGCTGGTA |
Name | Sequence | Purpose |
---|---|---|
16#-F | TGGTTTTTTGATAGTGATTTTATAT | BSP primers |
16#-R | CTATCCTAAAAATACCAAACTTATTATTA | |
21#-F | AAGTGTTAGTTAATTTAGGTTTAAAT | |
21#-R | TACCAACTACAATAACAACTCCTAC | |
D1-qRT-F | CATCCAGACAAAAAGCAAGG | qRT primers |
D1-qRT-R | CCAGTATGAGGCAAACACCA | |
D3- qRT-F | GCCGGTAGGATCAAACAACC | |
D3-qRT-R | CAACGAACCTGCCAAAAATG | |
18S-F | TATACGCTAGTGGAGCTGGAA | |
18S-R | GGGGAGGTAGTGACGAAAAT | |
D1-F | AGCCATGACCCAGTCACGTAATGCCGGGAGTGTTATCCCA | Recombination primers |
D1-R | CTTACTTCTGACAACGATCGCCAGTGAAGAGTGACAATTTTGGA | |
D3-F | AGCCATGACCCAGTCACGTAATGATGGAATCAAACTATGAAGTACTTG | |
D3-R | CTTACTTCTGACAACGATCGTTATCTGAATCTTTCTTGTCGTTTGG | |
Pspt18-F | CGATCGTTGTCAGAAGTAAGTTGG | |
Pspt18-R | TACGTGACTGGGTCATGGCTG | |
TanD1-sp6 | ATTTAGGTGACACTATAGAATACAAGCTTGCATGCCTGCGCAACAAATTCGTC | DIG probes |
TanD3-sp6 | ATTTAGGTGACACTATAGAATACAAGCTTGCATGCCTGCTCATCAAGCGTT |
Tissues | Total Methylation Rate of Control (%) | Numbers of 16&21# Methylation Sites | Numbers of Total Methylation Sites | Total Methylation Rate of Starvation (%) |
---|---|---|---|---|
Intestine | 0 | 206 | 570 | 36.29 ± 2.16 |
Hepatopancreas | 0 | 184 | 570 | 30.5 ± 1.46 |
Gill | 0 | 151 | 570 | 26.4 ± 0.98 |
Heart | 0 | 124 | 570 | 21.9 ± 0.83 |
Muscle | 0 | 109 | 570 | 19.3 ± 0.76 |
Eyestalk | 0 | 31 | 570 | 5.76 ± 0.78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, M.; Gao, J.; Zhou, X.; Zhong, H.; Zhang, S.; Xu, J.; Yu, F.; Lai, X.; Yan, B.; Gao, H. Differentiation of mtDNA Methylation in Tissues of Ridgetail White Prawn, Exopalaemon carinicauda. Animals 2025, 15, 2037. https://doi.org/10.3390/ani15142037
Jiang M, Gao J, Zhou X, Zhong H, Zhang S, Xu J, Yu F, Lai X, Yan B, Gao H. Differentiation of mtDNA Methylation in Tissues of Ridgetail White Prawn, Exopalaemon carinicauda. Animals. 2025; 15(14):2037. https://doi.org/10.3390/ani15142037
Chicago/Turabian StyleJiang, Muchen, Jiayi Gao, Xinyu Zhou, Hao Zhong, Sichen Zhang, Jing Xu, Fei Yu, Xiaofang Lai, Binlun Yan, and Huan Gao. 2025. "Differentiation of mtDNA Methylation in Tissues of Ridgetail White Prawn, Exopalaemon carinicauda" Animals 15, no. 14: 2037. https://doi.org/10.3390/ani15142037
APA StyleJiang, M., Gao, J., Zhou, X., Zhong, H., Zhang, S., Xu, J., Yu, F., Lai, X., Yan, B., & Gao, H. (2025). Differentiation of mtDNA Methylation in Tissues of Ridgetail White Prawn, Exopalaemon carinicauda. Animals, 15(14), 2037. https://doi.org/10.3390/ani15142037