Factors Influencing Cage Escape Behavior in a Migrating Passerine at a Stop-Over Site
Simple Summary
Abstract
1. Introduction
- (1)
- Given age differences in migratory experience (immatures migrate for the first time in their life) and spatial neophobia (immatures may be less eager to explore new environments than adults as they have less experience to compare new situations with known ones [31]), we expected that adults would escape from the cage more frequently than immatures.
- (2)
- (3)
- Given various motivations for foraging of individuals with different fuel reserves [19,20] and the results of the previous study showing that lean individuals of the same species explored an unfamiliar environment (cage) at a stop-over site more than fat birds [20], we expected that individuals with lower body conditions (body mass and fat score) to be more motivated and, consequently, escape more frequently compared to individuals with higher fuel loads.
- (4)
- (5)
- Given the negative effects of mercury (Hg) contamination on birds (summarized in [34,35]) and especially its potential effects on the physiological aspects of fattening, it is possible that Hg exposure could cause behavioral changes that would reduce a migrant’s stop-over refueling performance (summarized in [36]). For example, high Hg levels have been observed to suppress the appetite and the motivation to forage in birds [21,22]. High Hg levels have also been associated with lethargy and ataxia (summarized in [36]). Consequently, we expected individuals with higher Hg concentration to escape from the cage less often than those with lower levels.
- (6)
- Given that the daily activity of birds can change over time of the day (following the activity of insects and other ectothermic prey) and that fuel reserves can be lower after the night (due to the capturing of incoming migrants with low fuel reserves, as the sedge warbler is a nocturnal migrant [23]), we expected that individuals captured and tested in the morning hours would behave differently and, in turn, exhibit an inconsistent probability of escaping from the cage. It is hard to predict the direction of differences, as birds captured in the morning hours may be more motivated to refuel, being unable to forage just after landing (as newly arrived birds also had a slightly reduced capacity for food absorption because of significant losses to digestive organs, which may serve as a reservoir of protein catabolized for fuel during flight [37,38]).
2. Materials and Methods
2.1. Study Area
2.2. Trapping of Birds
2.3. Cage Escape Experiment
2.4. Analysis of Bird Movement in the Cage
2.5. Sexing of Captured Birds
2.6. Mercury Concentration in Feathers
2.7. Statistical Analyses
3. Results
3.1. Proportions of Individuals That Escaped from the Cage
3.2. Factors Affecting Cage Escape Probability
3.2.1. Both Age Groups
3.2.2. Immatures
3.3. Repeatability of the Cage Escape Behavior in Immature Individuals
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zentall, T.; Wasserman, E. The Oxford Handbook of Comparative Cognition; Oxford University Press: Oxford, UK, 2012. [Google Scholar]
- Shettleworth, S.J. Cognition, Evolution, and Behavior; Oxford University Press: Oxford, UK, 2010. [Google Scholar]
- Iyengar, S.; Parishar, P.; Mohapatra, A.N. Avian cognition and consciousness-from the perspective of neuroscience and behaviour. In Self, Culture and Consciousness: Interdisciplinary Convergences on Knowing and Being; Springer: Singapore, 2018; pp. 23–50. ISBN 9789811057779. [Google Scholar]
- Pravosudov, V.V. Cognitive ecology in the wild—Advances and challenges in avian cognition research. Curr. Opin. Behav. Sci. 2022, 45, 101138. [Google Scholar] [CrossRef]
- Zentall, T.R.; Fernandez, J. Effect of Environmental Enrichment on the Brain and on Learning and Cognition by Animals. Animals 2021, 11, 973. [Google Scholar] [CrossRef]
- Niemelä, P.T.; Vainikka, A.; Forsman, J.T.; Loukola, O.J.; Kortet, R. How does variation in the environment and individual cognition explain the existence of consistent behavioral differences? Ecol. Evol. 2013, 3, 457–464. [Google Scholar] [CrossRef] [PubMed]
- De Meester, G.; Van Linden, L.; Torfs, J.; Pafilis, P.; Šunje, E.; Steenssens, D.; Zulčić, T.; Sassalos, A.; Van Damme, R. Learning with lacertids: Studying the link between ecology and cognition within a comparative framework. Evolution 2022, 76, 2531–2552. [Google Scholar] [CrossRef] [PubMed]
- Ashton, B.J.; Baeckens, S. Digest: Environmental variability as a constraint on cognitive evolution in lizards. Evolution 2023, 77, 625–626. [Google Scholar] [CrossRef]
- Newton, I. The Migration Ecology of Birds; Academic Press: Cambridge, MA, USA, 2007; ISBN 978-0-12-517367-4. [Google Scholar]
- Mettke-Hofmann, C. Avian movements in a modern world: Cognitive challenges. Anim. Cogn. 2017, 20, 77–86. [Google Scholar] [CrossRef]
- Vincze, E.; Kačergytė, I.; Gaviraghi Mussoi, J.; Urhan, U.; Brodin, A. Are comparable studies really comparable? Suggestions from a problem-solving experiment on urban and rural great tits. Anim. Cogn. 2024, 27, 47. [Google Scholar] [CrossRef]
- Pougnault, L.; Cousillas, H.; Heyraud, C.; Huber, L.; Hausberger, M.; Henry, L. Experimental tests for measuring individual attentional characteristics in songbirds. Animals 2021, 11, 2233. [Google Scholar] [CrossRef]
- Dall, S.R.X.; Bell, A.M.; Bolnick, D.I.; Ratnieks, F.L.W. An evolutionary ecology of individual differences. Ecol. Lett. 2012, 15, 1189–1198. [Google Scholar] [CrossRef]
- Mettke-Hofmann, C. Cognitive ecology: Ecological factors, life-styles, and cognition. Wiley Interdiscip. Rev. Cogn. Sci. 2014, 5, 345–360. [Google Scholar] [CrossRef]
- Kluen, E.; Kuhn, S.; Kempenaers, B.; Brommer, J.E. A simple cage test captures intrinsic differences in aspects of personality across individuals in a passerine bird. Anim. Behav. 2012, 84, 279–287. [Google Scholar] [CrossRef]
- Brodin, A.; Utku Urhan, A. Sex differences in learning ability in a common songbird, the great tit—Females are better observational learners than males. Behav. Ecol. Sociobiol. 2014, 69, 237–241. [Google Scholar] [CrossRef]
- Danel, S.; Rebout, N.; Bonadonna, F.; Biro, D. Sex predicts response to novelty and problem-solving in a wild bird with female-biased sexual dimorphism. Proc. B 2024, 291, 20242277. [Google Scholar] [CrossRef]
- Breitwisch, R. Hudak Sex Differences in Risk-Taking Behavior in Foraging Flocks of House Sparrows. Auk 1989, 106, 150–153. [Google Scholar] [CrossRef]
- Nilsson, A.L.K.; Nilsson, J.Å.; Mettke-Hofmann, C. Energy reserves, information need and a pinch of personality determine decision-making on route in partially migratory blue tits. PLoS ONE 2016, 11, e0163213. [Google Scholar] [CrossRef] [PubMed]
- Marchetti, C.; Zehtindjiev, P. Migratory orientation of sedge warblers (Acrocephalus schoenobaenus) in relation to eating and exploratory behaviour. Behav. Process. 2009, 82, 293–300. [Google Scholar] [CrossRef] [PubMed]
- Bouton, S.N.; Frederick, P.C.; Spalding, M.G.; McGill, H. Effects of chronic, low concentrations of dietary methylmercury on the behavior of juvenile great egrets. Environ. Toxicol. Chem. 1999, 18, 1934–1939. [Google Scholar] [CrossRef]
- Spalding, M.G.; Frederick, P.C.; McGill, H.C.; Bouton, S.N.; McDowell, L.R. Methylmercury accumulation in tissues and its effects on growth and appetite in captive great egrets. J. Wildl. Dis. 2000, 36, 411–422. [Google Scholar] [CrossRef]
- Cramp, S. The Complete Birds of the Western Palearctic on CD-ROM; CDROM; Oxford University Press: Oxford, UK, 1998. [Google Scholar]
- Bibby, C.J.; Green, R.E. Food and fattening of migrating warblers in some french marshlands. Ringing Migr. 1983, 4, 175–184. [Google Scholar] [CrossRef]
- Bibby, C.J.; Green, R.E. Autumn Migration Strategies of Reed and Sedge Warblers. Ornis Scand. 1981, 12, 1–12. [Google Scholar] [CrossRef]
- Yosef, R.; Chernetsov, N. Stopover ecology of migratory Sedge Warblers (Acrocephalus schoenobaenus) at Eilat, Israel. Ostrich 2004, 75, 52–56. [Google Scholar] [CrossRef]
- Kerbiriou, C.; Bargain, B.; Le Viol, I.; Pavoine, S. Diet and fuelling of the globally threatened aquatic warbler at autumn migration stopover as compared with two congeners. Anim. Conserv. 2011, 14, 261–270. [Google Scholar] [CrossRef]
- Schaub, M.; Jenni, L. Fuel deposition of three passerine bird species along the migration route. Oecologia 2000, 122, 306–317. [Google Scholar] [CrossRef]
- Schaub, M.; Jenni, L. Body mass of six long-distance migrant passerine species along the autumn migration route. J. Ornithol. 2000, 141, 441–460. [Google Scholar] [CrossRef]
- Jakubas, D.; Wojczulanis-Jakubas, K.; Powers, A.; Frazier, T.; Bottomley, M.; Kraszpulski, M. Differences in a cage escape behaviour between two migrating warblers of different stop-over strategy. Animals 2021, 11, 639. [Google Scholar] [CrossRef] [PubMed]
- Mettke-Hofmann, C. Head Colour and Age Relate to Personality Traits in Gouldian Finches. Ethology 2012, 118, 906–916. [Google Scholar] [CrossRef]
- Dingemanse, N.J.; De Goede, P. The relation between dominance and exploratory behavior is context-dependent in wild great tits. Behav. Ecol. 2004, 15, 1023–1030. [Google Scholar] [CrossRef]
- Dingemanse, N.J.; Both, C.; Drent, P.J.; Van Oers, K.; Van Noordwijk, A.J. Repeatability and heritability of exploratory behaviour in great tits from the wild. Anim. Behav. 2002, 64, 929–938. [Google Scholar] [CrossRef]
- Ackerman, J.T.; Eagles-Smith, C.A.; Herzog, M.P.; Hartman, C.A.; Peterson, S.H.; Evers, D.C.; Jackson, A.K.; Elliott, J.E.; Vander Pol, S.S.; Bryan, C.E. Avian mercury exposure and toxicological risk across western North America: A synthesis. Sci. Total Environ. 2016, 568, 749–769. [Google Scholar] [CrossRef]
- Ackerman, J.T.; Hartman, C.A.; Herzog, M.P. Mercury contamination in resident and migrant songbirds and potential effects on body condition. Environ. Pollut. 2019, 246, 797–810. [Google Scholar] [CrossRef]
- Seewagen, C.L. The threat of global mercury pollution to bird migration: Potential mechanisms and current evidence. Ecotoxicology 2020, 29, 1254–1267. [Google Scholar] [CrossRef] [PubMed]
- Tracy, C.R.; McWhorter, T.J.; Wojciechowski, M.S.; Pinshow, B.; Karasov, W.H. Carbohydrate absorption by blackcap warblers (Sylvia atricapilla) changes during migratory refuelling stopovers. J. Exp. Biol. 2010, 213, 380–385. [Google Scholar] [CrossRef] [PubMed]
- Bauchinger, U.; Wohlmann, A.; Biebach, H. Flexible remodeling of organ size during spring migration of the garden warbler (Sylvia borin). Zoology 2005, 108, 97–106. [Google Scholar] [CrossRef] [PubMed]
- Jakubas, D.; Wojczulanis-Jakubas, K. Sex-and age-related differences in the timing and body condition of migrating Reed Warblers Acrocephalus scirpaceus and Sedge Warblers Acrocephalus schoenobaenus. Naturwissenschaften 2010, 97, 505–511. [Google Scholar] [CrossRef]
- Nitecki, C.; Jakubas, D.; Typiak, J. Awifauna jeziora Druzno. In Jezioro Druzno—Monografia Przyrodnicza; Nitecki, C., Ed.; Wydawnictwo Mantis: Olsztyn, Poland, 2013; pp. 1–295. [Google Scholar]
- Svensson, L. Identification Guide to European Passerines, 4th ed.; British Trust for Ornithology: Stockholm, Sweden, 1993. [Google Scholar]
- Busse, P. Bird Station Manual; SE European Bird Migration Network: Gdańsk, Poland; University of Gdańsk Press: Gdańsk, Poland, 2000. [Google Scholar]
- Wojczulanis-Jakubas, K.; Wietrzykowski, J.; Jakubas, D. Response of reed warbler and sedge warbler to acoustic playback in relation to age, sex, and body condition. J. Ornithol. 2016, 157, 137–143. [Google Scholar] [CrossRef]
- Kozłowska, A.; Stępniewska, K.; Stępniewski, K.; Busse, P. Dynamics of Autumn Migration of the Acrocephalus Warblers Through the Polish Baltic Coast. Ring 2010, 31, 15–43. [Google Scholar] [CrossRef]
- Formella, M.; Busse, P. Directional preferences of the Reed Warbler (Acrocephalus scirpaceus) and the Sedge Warbler (A. schoenobaenus) on autumn migration at Lake Drużno (N Poland). Ring 2002, 24, 15–29. [Google Scholar] [CrossRef]
- Wojczulanis-Jakubas, K.; Jakubas, D. Predicting the sex of the Sedge Warbler (Acrocephalus schoenobaenus) by discriminant analysis. Ornis Fenn. 2011, 88, 90–97. [Google Scholar]
- Griffiths, R.; Double, M.C.; Orr, K.; Dawson, R.J.G. A DNA test to sex most birds. Mol. Ecol. 1998, 7, 1071–1075. [Google Scholar] [CrossRef]
- Binkowski, L.J.; Fort, J.; Brault-Favrou, M.; Gallien, F.; Le Guillou, G.; Chastel, O.; Bustamante, P. Foraging ecology drives mercury contamination in chick gulls from the English Channel. Chemosphere 2021, 267, 128622. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022. [Google Scholar]
- Mangiafico, S.S. Summary and analysis of extension program evaluation in R, version 1.15.0. 2016. Available online: https://rcompanion.org/handbook (accessed on 27 June 2024).
- Giner, G.; Smyth, G.K. statmod: Probability Calculations for the Inverse Gaussian Distribution. R J. 2016, 8, 339–351. [Google Scholar] [CrossRef]
- Therneau, T.M.; A Package for Survival Analysis in R. R Package Version 3.8-3. 2024. Available online: https://CRAN.R-project.org/package=survival (accessed on 27 June 2024).
- Kassambara, A.; Kosiński, M.; Biecek, P. Survminer: Drawing Survival Curves Using ‘ggplot2’; CRAN: Contributed Packages; R Foundation for Statistical Computing: Vienna, Austria, 2016. [Google Scholar]
- Lenth, R.V. Response-Surface Methods in R, Using rsm. J. Stat. Softw. 2010, 32, 1–17. [Google Scholar] [CrossRef]
- Denz, R.; Timmesfeld, N. Visualizing the (Causal) Effect of a Continuous Variable on a Time-To-Event Outcome. Epidemiology 2023, 34, 652–660. [Google Scholar] [CrossRef]
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016. [Google Scholar]
- Frossard, J.; Renaud, O. Permutation Tests for Regression, ANOVA, and Comparison of Signals: The permuco Package. J. Stat. Softw. 2021, 99, 1–32. [Google Scholar] [CrossRef]
- Stoffel, M.A.; Nakagawa, S.; Schielzeth, H. rptR: Repeatability estimation and variance decomposition by generalized linear mixed-effects models. Methods Ecol. Evol. 2017, 8, 1639–1644. [Google Scholar] [CrossRef]
- Mettke-Hofmann, C.; Lorentzen, S.; Schlicht, E.; Schneider, J.; Werner, F. Spatial Neophilia and Spatial Neophobia in Resident and Migratory Warblers (Sylvia). Ethology 2009, 115, 482–492. [Google Scholar] [CrossRef]
- Mettke-Hofmann, C. Learning and cognition in resident and migrant birds. In Behavioral and Chemical Ecology; Zhang, W., Liu, H., Eds.; Nova Science Publishers: New York, NY, USA, 2010; pp. 155–172. ISBN 9781617613920. [Google Scholar]
- Cimprich, D.A.; Woodrey, M.S.; Moore, F.R. Passerine migrants respond to variation in predation risk during stopover. Anim. Behav. 2005, 69, 1173–1179. [Google Scholar] [CrossRef]
- Mettke-Hofmann, C.; Gwinner, E. Differential assessment of environmental information in a migratory and a nonmigratory passerine. Anim. Behav. 2004, 68, 1079–1086. [Google Scholar] [CrossRef]
- Mettke-Hofmann, C.; Wink, M.; Braun, M.; Winkler, H. Residency and a Broad Feeding Spectrum are Related to Extensive Spatial Exploration in Parrots. Behav. Ecol. 2012, 23, 1365–1371. [Google Scholar] [CrossRef]
- Paxton, K.L.; Van Riper, C.; O’Bien, C. Movement Patterns and Stopover Ecology of Wilson’s Warblers During Spring Migration on the Lower Colorado River in Southwestern Arizona. Condor Ornithol. Appl. 2008, 110, 672–681. [Google Scholar] [CrossRef]
- Remacha, C.; Ramírez, A.; Arriero, E.; Pérez-Tris, J. Haemosporidian infections influence risk-taking behaviours in young male blackcaps, Sylvia atricapilla. Anim. Behav. 2023, 196, 113–126. [Google Scholar] [CrossRef]
- Réale, D.; Reader, S.M.; Sol, D.; McDougall, P.T.; Dingemanse, N.J. Integrating animal temperament within ecology and evolution. Biol. Rev. 2007, 82, 291–318. [Google Scholar] [CrossRef] [PubMed]
- Abbey-Lee, R.N.; Mathot, K.J.; Dingemanse, N.J. Behavioral and morphological responses to perceived predation risk: A field experiment in passerines. Behav. Ecol. 2016, 27, 857–864. [Google Scholar] [CrossRef]
- Abbey-Lee, R.N.; Dingemanse, N.J. Adaptive individual variation in phenological responses to perceived predation levels. Nat. Commun. 2019, 10, 1601. [Google Scholar] [CrossRef]
- Sih, A.; Bell, A.; Johnson, J.C. Behavioral syndromes: An ecological and evolutionary overview. Trends Ecol. Evol. 2004, 19, 372–378. [Google Scholar] [CrossRef] [PubMed]
- Dingemanse, N.J.; Both, C.; Drent, P.J.; Tinbergen, J.M. Fitness consequences of avian personalities in a fluctuating environment. Proc. R. Soc. London. Ser. B Biol. Sci. 2004, 271, 847–852. [Google Scholar] [CrossRef]
- Adkins-Regan, E. Hormones and Animal Social Behavior; Princeton University Press: Princeton, NJ, USA, 2013. [Google Scholar]
- Adámková, M.; Bílková, Z.; Tomášek, O.; Šimek, Z.; Albrecht, T. Feather steroid hormone concentrations in relation to age, sex, and molting time in a long-distance migratory passerine. Ecol. Evol. 2019, 9, 9018–9026. [Google Scholar] [CrossRef]
- Elliott, K.H.; Gaston, A.J.; Crump, D. Sex-specific behavior by a monomorphic seabird represents risk partitioning. Behav. Ecol. 2010, 21, 1024–1032. [Google Scholar] [CrossRef]
- Block, T.A.; Star, R.; Shizuka, D.; Chaine, A.S.; Lyon, B.E. A migratory sparrow has personality in winter that is independent of other traits. Anim. Behav. 2021, 178, 217–227. [Google Scholar] [CrossRef]
- Burns, J.G.; Ydenberg, R.C. The effects of wing loading and gender on the escape flights of least sandpipers (Calidris minutilla) and western sandpipers (Calidris mauri). Behav. Ecol. Sociobiol. 2002, 52, 128–136. [Google Scholar] [CrossRef]
- Leisler, B.; Winkler, H.; Wink, M. Evolution of breeding systems in acrocephaline warblers. Auk 2002, 119, 379–390. [Google Scholar] [CrossRef]
- Krams, I.A.; Vrublevska, J.; Sepp, T.; Abolins-Abols, M.; Rantala, M.J.; Mierauskas, P.; Krama, T. Sex-Specific Associations Between Nest Defence, Exploration and Breathing Rate in Breeding Pied Flycatchers. Ethology 2014, 120, 492–501. [Google Scholar] [CrossRef]
- Svedberg, M. Neophobia and Parental Care in Collared Flycatchers (Ficedula albicollis). Bachelor’s Thesis, Uppsala University, Disciplinary Domain of Science and Technology, Biology, Biology Education Centre, Uppsala, Sweden, 2023. [Google Scholar]
- Stȩpniewska, K.; Ozarowska, A.; Busse, P.; Zehtindjiev, P.; Ilieva, M.; Hnatyna, O.; Meissner, W. Fuelling strategies differ among juvenile Sedge and Reed Warblers along the eastern European flyway during autumn migration. Ornis Fenn. 2018, 95, 103–114. [Google Scholar] [CrossRef]
- Bayly, N.J. Extreme fattening by sedge warblers, Acrocephalus schoenobaenus, is not triggered by food availability alone. Anim. Behav. 2007, 74, 471–479. [Google Scholar] [CrossRef]
- Burger, J.; Gochfeld, M. Metal levels in feathers of 12 species of seabirds from Midway Atoll in the northern Pacific Ocean. Sci. Total Environ. 2000, 257, 37–52. [Google Scholar] [CrossRef] [PubMed]
- Ackerman, J.T.; Peterson, S.H.; Herzog, M.P.; Yee, J.L. Methylmercury Effects on Birds: A Review, Meta-Analysis, and Development of Toxicity Reference Values for Injury Assessment Based on Tissue Residues and Diet. Environ. Toxicol. Chem. 2024, 43, 1195–1241. [Google Scholar] [CrossRef]
- Zurell, D.; Graham, C.H.; Gallien, L.; Thuiller, W.; Zimmermann, N.E. Long-distance migratory birds threatened by multiple independent risks from global change. Nat. Clim. Change 2018, 8, 992–996. [Google Scholar] [CrossRef]
- Bairlein, F. Migratory birds under threat. Science 2016, 354, 547–548. [Google Scholar] [CrossRef]
- Ozsanlav-Harris, L.; Burgess, M.D.; Hilton, G.M.; Bearhop, S. Changes in the spatial patterns of avian migrations: Evidence, mechanisms and causes. Divers. Distrib. 2023, 29, 1527–1545. [Google Scholar] [CrossRef]
- Sweet, W.V.; Kopp, R.E.; Weaver, C.P.; Obeysekera, J.; Horton, R.M.; Thieler, E.R.; Zervas, C.; Center for Operational Oceanographic Products and Services National. Global and Regional Sea Level Rise Scenarios for the United States; Technical Report NOS CO-OPS 083; NOAA National Ocean Service Center for Operational Oceanographic Products and Services: Silver Spring, MD, USA, 2017.
- Jakubas, D.; Lazarus, M. Autumn migration strategy and stop-over sites of the globally threatened Aquatic Warbler Acrocephalus paludicola on the Atlantic flyway migration route. Acta Ornithol. 2020, 55, 23–37. [Google Scholar] [CrossRef]
- Guidelines for the Use of Animals Guidelines for the treatment of animals in behavioural research and teaching. Anim. Behav. 2012, 83, 301–309. [CrossRef]
- du Sert, N.P.; Hurst, V.; Ahluwalia, A.; Alam, S.; Avey, M.T.; Baker, M.; Browne, W.J.; Clark, A.; Cuthill, I.C.; Dirnagl, U.; et al. The arrive guidelines 2.0: Updated guidelines for reporting animal research. PLoS Biol. 2020, 18, e3000410. [Google Scholar] [CrossRef]
Variable | HR 1 | 95% CI 2 | p-Value |
---|---|---|---|
Age | |||
Immatures | — | — | |
Adults | 1.39 | 0.60, 3.24 | 0.445 |
Fat score | 0.98 | 0.74, 1.28 | 0.864 |
Body mass | 1.18 | 0.88, 1.57 | 0.268 |
Total distance covered | 0.99 | 0.95, 1.03 | 0.660 |
Horizontal variance | 1.01 | 1.00, 1.01 | <0.001 |
Vertical variance | 1.00 | 1.00, 1.00 | 0.228 |
Capturing hour | 1.05 | 0.94, 1.17 | 0.348 |
Frailty (bird identity) | 0.084 |
Variable | HR 1 | 95% CI 2 | p-Value |
---|---|---|---|
Sex | |||
Female | — | — | |
Male | 2.27 | 1.41, 3.66 | <0.001 |
Fat score | 1.02 | 0.81, 1.29 | 0.841 |
Body mass | 0.92 | 0.70, 1.21 | 0.554 |
Total distance covered | 0.99 | 0.96, 1.03 | 0.718 |
Horizontal variance | 1.00 | 1.00, 1.01 | <0.001 |
Vertical variance | 1.00 | 1.0, 1.00 | 0.135 |
Capturing hour | 1.09 | 0.99, 1.19 | 0.066 |
Hg concentration | 1.01 | 0.77, 1.32 | 0.951 |
Frailty (bird identity) | 0.756 |
Norm of Hg Concentration | Norm | Threshold Value | Individuals: n (%) | |
---|---|---|---|---|
(Reference) | [µg/g d.w.] | Below Threshold | Above Threshold | |
feathers [81] | 5.0 | 200 (99.5) | 1 (0.50) | |
EC * breast feathers [82] | EC1 ** | 2.3 | 184 (91.5) | 17 (8.5) |
EC5 *** | 5.7 | 200 (99.5) | 1 (0.5) | |
EC * head feathers [82] | EC1 ** | 2.6 | 191 (95.0) | 10 (5.0) |
EC5 *** | 6.5 | 201 (100) | 0 (0) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jakubas, D.; Wojczulanis-Jakubas, K.; Witkowska, M.; Lesiewicz, A.; Manikowska-Ślepowrońska, B.; Wiśniowska, I.; Binkowski, Ł.J. Factors Influencing Cage Escape Behavior in a Migrating Passerine at a Stop-Over Site. Animals 2025, 15, 1945. https://doi.org/10.3390/ani15131945
Jakubas D, Wojczulanis-Jakubas K, Witkowska M, Lesiewicz A, Manikowska-Ślepowrońska B, Wiśniowska I, Binkowski ŁJ. Factors Influencing Cage Escape Behavior in a Migrating Passerine at a Stop-Over Site. Animals. 2025; 15(13):1945. https://doi.org/10.3390/ani15131945
Chicago/Turabian StyleJakubas, Dariusz, Katarzyna Wojczulanis-Jakubas, Marta Witkowska, Aleksandra Lesiewicz, Brygida Manikowska-Ślepowrońska, Izabela Wiśniowska, and Łukasz J. Binkowski. 2025. "Factors Influencing Cage Escape Behavior in a Migrating Passerine at a Stop-Over Site" Animals 15, no. 13: 1945. https://doi.org/10.3390/ani15131945
APA StyleJakubas, D., Wojczulanis-Jakubas, K., Witkowska, M., Lesiewicz, A., Manikowska-Ślepowrońska, B., Wiśniowska, I., & Binkowski, Ł. J. (2025). Factors Influencing Cage Escape Behavior in a Migrating Passerine at a Stop-Over Site. Animals, 15(13), 1945. https://doi.org/10.3390/ani15131945