Impact of Low-Starch Dietary Modifications on Faecal Microbiota Composition and Gastric Disease Scores in Performance Horses
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Diet Change
2.3. Blood Collection
2.4. Gastric Disease Scoring
2.5. Microbiota Sequencing
2.6. Microbiota Analyses
2.7. Associations Between Microbiota Structure and Gut Health
2.8. Blood Parameter Responses to Diet Change
2.9. Microbiota Community Composition and Gastric Disease Score
3. Results
3.1. Blood Parameter Responses to Diet Change
3.2. Influence of Diet Change on Gastric Disease
3.3. Gastric and Faecal Microbiota Phylogenetic Sequencing
3.4. Core Microbiota
3.5. Alpha Diversity Measures
3.6. Beta Diversity Measures
3.6.1. Changes in Microbiota Composition
3.6.2. Changes in Functional Groups
3.6.3. Associations Between Microbiota Structure and Gut Health
3.6.4. Microbiota Community Composition and Gastric Ulceration Score
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AST | Aspartate amino-transferase |
ASV | Amplicon sequence variants |
BCS | Body condition score |
BWT | Body weight |
ChiSq | Chi-squared distribution (χ2) |
CK | Creatine kinase |
CI | Confidence interval |
CLR | Centred log ratio |
CPM | Counts per million |
DE | Digestible energy |
DNA | Deoxyribonucleic acid |
ECEIM | European College of Equine Internal Medicine |
EDTA | Ethylenediaminetetraacetic acid |
EGD | Equine Gastric Disease |
EGGD | Equine Glandular Gastric Disease |
EGUS | Equine Gastric Ulcer Syndrome |
ESGD | Equine Squamous Gastric Disease |
F/B Ratio | Firmicute to Bacteroidetes Ratio |
FEI | Fédération Équestre Internationale |
GGT | Gamma glutamyl-transferase |
H2O2 | Hydrogen peroxide |
HK | Hyperkeratosis |
IQR | Interquartile range |
LDA | Linear discriminate analysis |
LEfSe | Linear discriminate analysis effect size |
LMM | Linear mixed model |
MJ | Megajoules |
NP | No pathology |
NSC | Non-structural carbohydrate |
OTU | Operational taxonomic unit |
PERMANOVA | Permutational multivariate analysis of variance |
PCA | Principal component analysis |
rRNA | Ribosomal RNA |
SEM | Standard error of the mean |
VFA | Volatile fatty acids |
WSC | Water-soluble carbohydrate |
References
- Hwang, H.; Dong, H.J.; Han, J.; Cho, S.; Kim, Y.; Lee, I. Prevalence and treatment of gastric ulcers in Thoroughbred racehorses of Korea. J. Vet. Sci. 2022, 23, e19. [Google Scholar] [CrossRef]
- Scheidegger, M.D.; Gerber, V.; Bruckmaier, R.M.; van der Kolk, J.H.; Burger, D.; Ramseyer, A. Increased Adrenocortical Response to Adrenocorticotropic Hormone (ACTH) in Sport Horses with Equine Glandular Gastric Disease (EGGD). Vet. J. 2017, 228, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, S.K.; Cribb, A.E.; Windeyer, M.C.; Read, E.K.; French, D.; Banse, H.E. Risk Factors for Equine Glandular and Squamous Gastric Disease in Show Jumping Warmbloods. Equine Vet. J. 2018, 50, 747–751. [Google Scholar] [CrossRef] [PubMed]
- Sykes, B.W.; Bowen, M.; Habershon-Butcher, J.L.; Green, M.; Hallowell, G.D. Management Factors and Clinical Implications of Glandular and Squamous Gastric Disease in Horses. J. Vet. Intern. Med. 2019, 33, 233–240. [Google Scholar] [CrossRef]
- Galinelli, N.; Wambacq, W.; Broeckx, B.J.G.; Hesta, M. High Intake of Sugars and Starch, Low Number of Meals and Low Roughage Intake Are Associated with Equine Gastric Ulcer Syndrome in a Belgian Cohort. J. Anim. Physiol. Anim. Nutr. 2021, 105, 18–23. [Google Scholar] [CrossRef]
- Colombino, E.; Raspa, F.; Perotti, M.; Bergero, D.; Vervuert, I.; Valle, E.; Capucchio, M.T. Gut Health of Horses: Effects of High Fibre vs High Starch Diet on Histological and Morphometrical Parameters. BMC Vet. Res. 2022, 18, 338. [Google Scholar] [CrossRef]
- Bass, L.; Swain, E.; Santos, H.; Hess, T.; Black, J. Effects of Feeding Frequency Using a Commercial Automated Feeding Device on Gastric Ulceration in Exercised Quarter Horses. J. Equine Vet. Sci. 2018, 64, 96–100. [Google Scholar] [CrossRef] [PubMed]
- Biddle, A.S.; Black, S.J.; Blanchard, J.L. An In Vitro Model of the Horse Gut Microbiome Enables Identification of Lactate-Utilizing Bacteria That Differentially Respond to Starch Induction. PLoS ONE 2013, 8, e77599. [Google Scholar] [CrossRef]
- Julliand, V.; Grimm, P. Horse Species Symposium: The Microbiome of the Horse Hindgut: History and Current Knowledge. J. Anim. Sci. 2016, 94, 2262–2274. [Google Scholar] [CrossRef]
- Stewart, H.L.; Pitta, D.; Indugu, N.; Vecchiarelli, B.; Engiles, J.B.; Southwood, L.L. Characterization of the Fecal Microbiota of Healthy Horses. Am. J. Vet. Res. 2018, 79, 811–819. [Google Scholar] [CrossRef]
- Costa, M.C.; Silva, G.; Ramos, R.V.; Staempfli, H.R.; Arroyo, L.G.; Kim, P.; Weese, J.S. Characterization and Comparison of the Bacterial Microbiota in Different Gastrointestinal Tract Compartments in Horses. Vet. J. 2015, 205, 74–80. [Google Scholar] [CrossRef]
- Costa, M.C.; Arroyo, L.G.; Allen-Vercoe, E.; Stämpfli, H.R.; Kim, P.T.; Sturgeon, A.; Weese, J.S. Comparison of the Fecal Microbiota of Healthy Horses and Horses with Colitis by High Throughput Sequencing of the V3–V5 Region of the 16s rRNA Gene. PLoS ONE 2012, 7, e41484. [Google Scholar] [CrossRef] [PubMed]
- Hansen, N.C.K.; Avershina, E.; Mydland, L.T.; Næsset, J.A.; Austbø, D.; Moen, B.; Måge, I.; Rudi, K. High Nutrient Availability Reduces the Diversity and Stability of the Equine Caecal Microbiota. Microb. Ecol. Health Dis. 2015, 26, e27216. [Google Scholar] [CrossRef] [PubMed]
- Raspa, F.; Chessa, S.; Bergero, D.; Sacchi, P.; Ferrocino, I.; Cocolin, L.; Corvaglia, M.R.; Moretti, R.; Cavallini, D.; Valle, E. Microbiota characterization throughout the digestive tract of horses fed a high-fiber vs. a high-starch diet. Front. Vet. Sci. 2024, 11, 1386135. [Google Scholar] [CrossRef] [PubMed]
- Grimm, P.; Philippeau, C.; Julliand, V. Faecal Parameters as Biomarkers of the Equine Hindgut Microbial Ecosystem under Dietary Change. Animal 2017, 11, 1136–1145. [Google Scholar] [CrossRef]
- Bulmer, L.S.; Murray, J.A.; Burns, N.M.; Garber, A.; Wemelsfelder, F.; McEwan, N.R.; Hastie, P.M. High-Starch Diets Alter Equine Faecal Microbiota and Increase Behavioural Reactivity. Sci. Rep. 2019, 9, 18621. [Google Scholar] [CrossRef]
- Paul, L.J.; Ericsson, A.C.; Andrews, F.M.; Keowen, M.L.; Morales Yniguez, F.; Garza, F.; Banse, H.E. Gastric Microbiome in Horses with and without Equine Glandular Gastric Disease. J. Vet. Intern. Med. 2021, 35, 2458–2464. [Google Scholar] [CrossRef]
- van Erck-Westergren, E.; ter Woort, F. Diet-induced Changes in Gastric and Faecal Microbiota in Horses: Association with Gastric Ulcer Healing. Equine Vet. J. 2019, 51, 31. [Google Scholar] [CrossRef]
- Venable, E.B.; Kerley, M.S.; Raub, R. Assessment of Equine Fecal Microbial Profiles during and after a Colic Episode Using Pyrosequencing. J. Equine Vet. Sci. 2013, 33, 347–348. [Google Scholar] [CrossRef]
- Medina, B.; Girard, I.D.; Jacotot, E.; Julliand, V. Effect of a Preparation of Saccharomyces Cerevisiae on Microbial Profiles and Fermentation Patterns in the Large Intestine of Horses Fed a High Fiber or a High Starch Diet. J. Anim. Sci. 2002, 80, 2600–2609. [Google Scholar] [CrossRef]
- Julliand, V.; De Fombelle, A.; Drogoul, C.; Jacotot, E. Feeding and Microbial Disorders in Horses: Part 3—Effects of Three Hay:Grain Ratios on Microbial Profile and Activities. J. Equine Vet. Sci. 2001, 21, 543–546. [Google Scholar] [CrossRef]
- Magne, F.; Gotteland, M.; Gauthier, L.; Zazueta, A.; Pesoa, S.; Navarrete, P.; Balamurugan, R. The Firmicutes/Bacteroidetes Ratio: A Relevant Marker of Gut Dysbiosis in Obese Patients? Nutrients 2020, 12, 1474. [Google Scholar] [CrossRef] [PubMed]
- Park, T.; Cheong, H.; Yoon, J.; Kim, A.; Yun, Y.; Unno, T. Comparison of the Fecal Microbiota of Horses with Intestinal Disease and Their Healthy Counterparts. Vet. Sci. 2021, 8, 113. [Google Scholar] [CrossRef] [PubMed]
- Sykes, B.W.; Sykes, K.M.; Hallowell, G.D. A Comparison between Pre- and Post Exercise Administration of Omeprazole in the Treatment of Equine Gastric Ulcer Syndrome: A Blinded, Randomised, Clinical Trial. Equine Vet. J. 2014, 46, 422–426. [Google Scholar] [CrossRef]
- Venner, M.; Lauffs, S.; Deegen, E. Treatment of Gastric Lesions in Horses with Pectin-Lecithin Complex. Equine Vet. J. Suppl. 1999, 31, 91–96. [Google Scholar] [CrossRef]
- Murray, M.J.; Grady, T.C. The Effect of a Pectin-Lecithin Complex on Prevention of Gastric Mucosal Lesions Induced by Feed Deprivation in Ponies. Equine Vet. J. 2002, 34, 195–198. [Google Scholar] [CrossRef] [PubMed]
- Huff, N.K.; Auer, A.D.; Garza, F.; Keowen, M.L.; Kearney, M.T.; McMullin, R.B.; Andrews, F.M. Effect of Sea Buckthorn Berries and Pulp in a Liquid Emulsion on Gastric Ulcer Scores and Gastric Juice PH in Horses. J. Vet. Intern. Med. 2012, 26, 1186–1191. [Google Scholar] [CrossRef]
- Woodward, M.C.; Huff, N.K.; Garza, F.; Keowen, M.L.; Kearney, M.T.; Andrews, F.M. Effect of Pectin, Lecithin, and Antacid Feed Supplements (Egusin®) on Gastric Ulcer Scores, Gastric Fluid PH and Blood Gas Values in Horses. BMC Vet. Res. 2014, 10, S4. [Google Scholar] [CrossRef]
- Stowers, N.L.; Waldron, L.A.; Pryor, I.D.; Hill, S.R.; O’Brien, J. The Influence of Two Lucerne-Based Forage Feeds, FiberProtect® and FiberEdge® on Equine Gastric Ulcer Syndrome in Horses. J. Appl. An. Nut. 2013, 2, e2. [Google Scholar] [CrossRef]
- Sykes, B.W.; Hewetson, M.; Hepburn, R.J.; Luthersson, N.; Tamzali, Y. European College of Equine Internal Medicine Consensus Statement-Equine Gastric Ulcer Syndrome in Adult Horses. J. Vet. Intern. Med. 2015, 29, 1288–1299. [Google Scholar] [CrossRef]
- Murray, M.J.; Schusser, G.F. Measurement of 24-h Gastric PH Using an Indwelling PH Electrode in Horses Unfed, Fed and Treated with Ranitidine. Equine Vet. J. 1993, 25, 417–421. [Google Scholar] [CrossRef] [PubMed]
- Henneke, D.R.; Potter, G.D.; Kreider, J.L.; Yeates, B.F. Relationship between Condition Score, Physical Measurements and Body Fat Percentage in Mares. Equine Vet. J. 1983, 15, 371–372. [Google Scholar] [CrossRef]
- Pineau, V.; ter Woort, F.; Julien, F.; Vernant, M.; Lambey, S.; Hébert, C.; Hanne-Poujade, S.; Westergren, V.; van Erck-Westergren, E. Improvement of Gastric Disease and Ridden Horse Pain Ethogram Scores with Diet Adaptation in Sport Horses. J. Vet. Intern. Med. 2024, 38, 3297–3308. [Google Scholar] [CrossRef]
- Sykes, B.W.; Jokisalo, J.M. Rethinking Equine Gastric Ulcer Syndrome: Part 1—Terminology, Clinical Signs and Diagnosis. Equine Vet. Educ. 2014, 26, 543–547. [Google Scholar] [CrossRef]
- Julliand, S.; Buttet, M.; Hermange, T.; Hillon, P.; Julliand, V. Effect of Diet Composition on Glandular Gastric Disease in Horses. J. Vet. Intern. Med. 2023, 37, 1528–1536. [Google Scholar] [CrossRef]
- Wise, J.C.; Wilkes, E.J.A.; Raidal, S.L.; Xie, G.; Crosby, D.E.; Hale, J.N.; Hughes, K.J. Interobserver and Intraobserver Reliability for 2 Grading Systems for Gastric Ulcer Syndrome in Horses. J. Vet. Intern. Med. 2021, 35, 571–579. [Google Scholar] [CrossRef] [PubMed]
- Rendle, D.; Bowen, M.; Brazil, T.; Conwell, R.; Hallowell, G.; Hepburn, R.; Hewetson, M.; Sykes, B. Recommendations for the Management of Equine Glandular Gastric Disease. UK-Vet Equine 2018, 2, 2–11. [Google Scholar] [CrossRef]
- Alshut, F.; Venner, M.; Martinsson, G.; Vervuert, I. The Effects of Feeding Sodium Chloride Pellets on the Gastric Mucosa, Acid-base, and Mineral Status in Exercising Horses. J. Vet. Intern. Med. 2023, 37, 2552–2561. [Google Scholar] [CrossRef] [PubMed]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-Resolution Sample Inference from Illumina Amplicon Data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA Ribosomal RNA Gene Database Project: Improved Data Processing and Web-Based Tools. Nucleic Acids Res. 2013, 41, D590–D596. [Google Scholar] [CrossRef]
- Wright, E.S. Using DECIPHER v2.0 to Analyze Big Biological Sequence Data in R. R-Journal 2016, 8, 352–359. [Google Scholar] [CrossRef]
- Schliep, K.P. Phangorn: Phylogenetic Analysis in R. Bioinformatics 2011, 27, 592–593. [Google Scholar] [CrossRef] [PubMed]
- Price, M.N.; Dehal, P.S.; Arkin, A.P. Fasttree: Computing Large Minimum Evolution Trees with Profiles Instead of a Distance Matrix. Mol. Biol. Evol. 2009, 26, 1641–1650. [Google Scholar] [CrossRef]
- Ginestet, C. ggplot2: Elegant Graphics for Data Analysis. J. R. Stat. Soc. Ser. A Stat. Soc. 2011, 174, 245–246. [Google Scholar] [CrossRef]
- Kauter, A.; Epping, L.; Semmler, T.; Antao, E.M.; Kannapin, D.; Stoeckle, S.D.; Gehlen, H.; Lübke-Becker, A.; Günther, S.; Wieler, L.H.; et al. The Gut Microbiome of Horses: Current Research on Equine Enteral Microbiota and Future Perspectives. Anim. Microbiome 2019, 1, 14. [Google Scholar] [CrossRef]
- Smith, S. phylosmith: An R-Package for Reproducible and Efficient Microbiome Analysis with Phyloseq-Objects. J. Open Source Softw. 2019, 4, 1442. [Google Scholar] [CrossRef]
- Martin, B.D.; Witten, D.; Willis, A.D. Modeling Microbial Abundances and Dysbiosis with Beta-Binomial Regression. Ann. Appl. Stat. 2020, 14, 94–115. [Google Scholar] [CrossRef]
- McMurdie, P.J.; Holmes, S. Phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS ONE 2013, 8, e61217. [Google Scholar] [CrossRef]
- Dicks, L.M.T.; Botha, M.; Dicks, E.; Botes, M. The Equine Gastro-Intestinal Tract: An Overview of the Microbiota, Disease and Treatment. Livest. Sci. 2014, 160, 69–81. [Google Scholar] [CrossRef]
- Cao, Y.; Dong, Q.; Wang, D.; Zhang, P.; Liu, Y.; Niu, C. MicrobiomeMarker: An R/Bioconductor Package for Microbiome Marker Identification and Visualization. Bioinformatics 2022, 38, 4027–4029. [Google Scholar] [CrossRef]
- Lim, R.; Cabatbat, J.J.T.; Martin, T.L.P.; Kim, H.; Kim, S.; Sung, J.; Ghim, C.M.; Kim, P.J. Large-Scale Metabolic Interaction Network of the Mouse and Human Gut Microbiota. Sci. Data 2020, 7, 204. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Cui, Y.; Li, X.; Yao, M. Microeco: An R Package for Data Mining in Microbial Community Ecology. FEMS Microbiol. Ecol. 2021, 97, fiaa255. [Google Scholar] [CrossRef] [PubMed]
- Bates, D.; Mächler, M.; Bolker, B.M.; Walker, S.C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Fox, J.; Weisberg, S. An R Companion to Applied Regression, 3rd ed.; Sage: Thousand Oaks, CA, USA, 2019. [Google Scholar]
- Lemon, J. Plotrix: A Package in the Red Light District of R; R-News: Rochester, NY, USA, 2006. [Google Scholar]
- Dixon, P. VEGAN, a Package of R Functions for Community Ecology. J. Veg. Sci. 2003, 14, 927–930. [Google Scholar] [CrossRef]
- Barnett, D.; Arts, I.; Penders, J. MicroViz: An R package for microbiome data visualization and statistics. J. Open Source Softw. 2021, 6, 3201. [Google Scholar] [CrossRef]
- Package, T.; Chen, A.J. GUniFrac: Generalized UniFrac Distances, Distance-Based Multivariate Methods and Feature-Based Univariate Methods for Microbiome Data Analysis. CRAN 2015. Available online: https://cran.r-project.org/web/packages/GUniFrac/GUniFrac.pdf (accessed on 11 October 2023).
- Kuhn, M. Building Predictive Models in R Using the Caret Package. J. Stat. Softw. 2008, 28, 1–26. [Google Scholar] [CrossRef]
- Mönki, J.; Hewetson, M.; Virtala, A.M.K. Risk Factors for Equine Gastric Glandular Disease: A Case-Control Study in a Finnish Referral Hospital Population. J. Vet. Intern. Med. 2016, 30, 1270–1275. [Google Scholar] [CrossRef]
- Padalino, B.; Davis, G.L.; Raidal, S.L. Effects of Transportation on Gastric PH and Gastric Ulceration in Mares. J. Vet. Intern. Med. 2020, 34, 922–932. [Google Scholar] [CrossRef]
- Sharbine, K.P.; McConnell, E.J.; Secombe, C.; Byrne, D. The Prevalence and Changes over Time of Equine Glandular Gastric Disease in a Teaching Herd Population. Equine Vet. Educ. 2023, 35, 637–648. [Google Scholar] [CrossRef]
- Luthersson, N.; Bolger, C.; Fores, P.; Barfoot, C.; Nelson, S.; Parkin, T.D.H.; Harris, P. Effect of changing diet on gastric ulceration in exercising horses and ponies following cessation of omeprazole treatment. J. Equine Vet. Sci. 2017, 83, 102742. [Google Scholar] [CrossRef] [PubMed]
- Elliott, S.N.; Buret, A.; McKnight, W.; Miller, M.J.S.; Wallace, J.L. Bacteria rapidly colonize and modulate healing of gastric ulcers in rats. Am. J. Physiol. 1998, 275, G425–G432. [Google Scholar] [CrossRef]
- Métayer, N.; Lhǒte, M.; Bahr, A.; Cohen, N.D.; Kim, I.; Roussel, A.J.; Julliand, V. Meal size and starch content affect gastric emptying in horses. Equine Vet. J. 2004, 36, 436–440. [Google Scholar] [CrossRef]
- Lybbert, T.; Gibbs, P.; Cohen, N.; Scott, B.; Sigler, D. Feeding alfalfa hay to exercising horses reduces the severity of gastric squamous mucosal ulceration. In Proceedings of the 53rd Annual Convention of the American Association of Equine Practitioners, Orlando, FL, USA, 1–5 December 2007; pp. 525–526. [Google Scholar]
- Fedtke, A.; Pfaff, M.; Volquardsen, J.; Venner, M.; Vervuert, I. Effects of feeding different roughage-based diets on gastric mucosa after weaning in Warmblood foals. Pferdeheilkunde 2015, 31, 596–601. [Google Scholar] [CrossRef]
- Vondran, S.; Venner, M.; Vervuert, I. Effects of two alfalfa preparations with different particle sizes on the gastric mucosa in weanlings: Alfalfa chaff versus alfalfa pellets. BMC Vet. Res. 2016, 12, 110. [Google Scholar] [CrossRef]
- Cappai, M.G.; Picciau, M.; Pinna, W. Ulcerogenic risk assessment of diets for pigs in relation to gastric lesion prevalence. BMC Vet. Res. 2013, 9, 36. [Google Scholar] [CrossRef]
- Grosse Liesner, V.; Taube, V.; Leonhard-Marek, S.; Beineke, A.; Kamphues, J. Integrity of gastric mucosa in reared piglets—Effects of physical form of diets (meal/pellets), pre-processing grinding (coarse/fine) and addition of lignocellulose (0/2.5%). J. Anim. Physiol. Anim. Nutr. 2009, 93, 373–380. [Google Scholar] [CrossRef] [PubMed]
- le Jeune, S.S.; Nieto, J.E.; Dechant, J.E.; Snyder, J.R. Prevalence of gastric ulcers in thoroughbred broodmares in pasture: A preliminary report. Vet. J. 2009, 181, 251–255. [Google Scholar] [CrossRef]
- Kranenburg, L.C.; van der Poel, S.H.; Warmelink, T.S.; van Doorn, D.A.; van den Boom, R. Changes in management lead to improvement and healing of equine squamous gastric disease. Animals 2023, 13, 1498. [Google Scholar] [CrossRef]
- Weinert-Nelson, J.R.; Biddle, A.S.; Sampath, H.; Williams, C.A. Fecal Microbiota, Forage Nutrients, and Metabolic Responses of Horses Grazing Warm- and Cool-Season Grass Pastures. Animals 2023, 13, 790. [Google Scholar] [CrossRef]
- Proudman, C.J.; Hunter, J.O.; Darby, A.C.; Escalona, E.E.; Batty, C.; Turner, C. Characterisation of the faecal metabolome and microbiome of Thoroughbred racehorses. Equine Vet. J. 2015, 47, 580–586. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, M.M.; Harris, H.M.B.; Jeffery, I.B.; Claesson, M.J.; Younge, B.; O’Toole, P.W.; Ross, R.P. The core faecal bacterial microbiome of Irish Thoroughbred racehorses. Lett. Appl. Microbiol. 2013, 57, 492–501. [Google Scholar] [CrossRef] [PubMed]
- Mach, N.; Midoux, C.; Leclercq, S.; Pennarun, S.; Le Moyec, L.; Rué, O.; Robert, C.; Sallé, G.; Barrey, E. Mining the equine gut metagenome: Poorly-characterized taxa associated with cardiovascular fitness in endurance athletes. Commun. Biol. 2022, 5, 1032. [Google Scholar] [CrossRef] [PubMed]
- Devi, T.B.; Devadas, K.; George, M.; Gandhimathi, A.; Chouhan, D.; Retnakumar, R.J.; Alexander, S.M.; Varghese, J.; Dharmaseelan, S.; Chandrika, S.K.; et al. Low Bifidobacterium Abundance in the Lower Gut Microbiota Is Associated With Helicobacter Pylori-Related Gastric Ulcer and Gastric Cancer. Front. Microbiol. 2021, 12, 631140. [Google Scholar] [CrossRef]
- Wegierska, A.E.; Charitos, I.A.; Topi, S.; Potenza, M.A.; Montagnani, M.; Santacroce, L. The Connection Between Physical Exercise and Gut Microbiota: Implications for Competitive Sports Athletes. Sports Med. 2022, 52, 2355–2369. [Google Scholar] [CrossRef]
- Mańkowska, K.; Marchelek-Myśliwiec, M.; Kochan, P.; Kosik-Bogacka, D.; Konopka, T.; Grygorcewicz, B.; Roszkowska, P.; Cecerska-Heryć, E.; Siennicka, A.; Konopka, J.; et al. Microbiota in Sports. Arch. Microbiol. 2022, 204, 485. [Google Scholar] [CrossRef]
- Li, Y.; Cheng, M.; Zha, Y.; Yang, K.; Tong, Y.; Wang, S.; Lu, Q.; Ning, K. Gut Microbiota and Inflammation Patterns for Specialized Athletes: A Multi-Cohort Study across Different Types of Sports. mSystems 2023, 8, e0025923. [Google Scholar] [CrossRef]
- Hughes, R.L.; Holscher, H.D. Fueling Gut Microbes: A Review of the Interaction between Diet, Exercise, and the Gut Microbiota in Athletes. Adv. Nutr. 2021, 12, 2190–2215. [Google Scholar] [CrossRef]
- Chapuis, R.J.J.; Becker, A.A.M.J.; Dowling, P.M.; Weese, J.S. Characterisation of faecal microbiota in horses medicated with oral doxycycline hyclate. Equine Vet. J. 2023, 55, 129–141. [Google Scholar] [CrossRef]
- Turnbaugh, P.J.; Ley, R.E.; Mahowald, M.A.; Magrini, V.; Mardis, E.R.; Gordon, J.I. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 2006, 444, 1027–1031. [Google Scholar] [CrossRef]
- Biddle, A.S.; Tomb, J.F.; Fan, Z. Microbiome and Blood Analyte Differences Point to Community and Metabolic Signatures in Lean and Obese Horses. Front. Vet. Sci. 2018, 5, 225. [Google Scholar] [CrossRef] [PubMed]
- Su, S.; Zhao, Y.; Liu, Z.; Liu, G.; Du, M.; Wu, J.; Bai, D.; Li, B.; Bou, G.; Zhang, X.; et al. Characterization and comparison of the bacterial microbiota in different gastrointestinal tract compartments of Mongolian horses. Microbiologyopen 2020, 9, 1085–1101. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Li, B.; Bai, D.; Huang, J.; Shiraigo, W.; Yang, L.; Zhao, Q.; Ren, X.; Wu, J.; Bao, W.; et al. Comparison of Fecal Microbiota of Mongolian and Thoroughbred Horses by High-Throughput Sequencing of the V4 Region of the 16S RRNA Gene. Asian-Australas J. Anim. Sci. 2016, 29, 1345–1352. [Google Scholar] [CrossRef]
- Ericsson, A.C.; Johnson, P.J.; Lopes, M.A.; Perry, S.C.; Lanter, H.R. A Microbiological Map of the Healthy Equine Gastrointestinal Tract. PLoS ONE 2016, 11, e0166523. [Google Scholar] [CrossRef] [PubMed]
- Milinovich, G.J.; Burrell, P.C.; Pollitt, C.C.; Klieve, A.V.; Blackall, L.L.; Ouwerkerk, D.; Woodland, E.; Trott, D.J. Microbial ecology of the equine hindgut during oligofructose-induced laminitis subject category: Microbe-microbe and microbe-host interactions. ISME J. 2008, 2, 1169. [Google Scholar] [CrossRef]
- Burakova, I.; Smirnova, Y.; Gryaznova, M.; Syromyatnikov, M.; Chizhkov, P.; Popov, E.; Popov, V. The Effect of Short-Term Consumption of Lactic Acid Bacteria on the Gut Microbiota in Obese People. Nutrients 2022, 14, 3384. [Google Scholar] [CrossRef]
- Lo Feudo, C.M.; Stucchi, L.; Conturba, B.; Stancari, G.; Zucca, E.; Ferrucci, F. Medical causes of poor performance and their associations with fitness in Standardbred racehorses. J. Vet. Intern. Med. 2023, 37, 1514–1527. [Google Scholar] [CrossRef]
- Hardy, L.; Martin, M.; Barré, C.; Tanquerel, L. Prevalence of gastric ulcers in horses from the French Republican Guard cavalry regiment and association with plasma gamma-glutamyl transpeptidase activity. J. Equine Vet. Sci. 2025, 149, 105566. [Google Scholar] [CrossRef]
- Muñoz-Prieto, A.; Contreras-Aguilar, M.D.; Cerón, J.J.; Ayala, I.; Martin-Cuervo, M.; Gonzalez-Sanchez, J.C.; Jacobsen, S.; Kuleš, J.; Beletić, A.; Rubić, I.; et al. Changes in Proteins in Saliva and Serum in Equine Gastric Ulcer Syndrome Using a Proteomic Approach. Animals 2022, 12, 1169. [Google Scholar] [CrossRef]
- Contreras-Aguilar, M.D.; Escribano, D.; Martínez-Subiela, S.; Martín-Cuervo, M.; Lamy, E.; Tecles, F.; Cerón, J.J. Changes in saliva analytes in equine acute abdominal disease: A sialochemistry approach. BMC Vet. Res. 2019, 15, 187. [Google Scholar] [CrossRef]
- Elnozahi, N.A.; Said, E.A.; Bistawroos, A.E.; Aly, R.G. Effect of sodium butyrate on gastric ulcer aggravation and hepatic injury inflicted by bile duct ligation in rats. Saudi Pharm. J. 2020, 28, 675–682. [Google Scholar] [CrossRef] [PubMed]
- Bello-Perez, L.A.; Flores-Silva, P.C.; Agama-Acevedo, E.; Tovar, J. Starch digestibility: Past, present, and future. J. Sci. Food Agric. 2020, 100, 5009–5016. [Google Scholar] [CrossRef] [PubMed]
- Pace, F.A.; Montes, J.H.; Philippe, M.G.; Ramos, L.F.P.; Clementino, F.M.M.; Júnior, J.M.d.O.; Moreira, F.; Bianchi, I.; Peripolli, V. Interactive effects between sugar source and pelleting temperature on processing, digestibility and blood metabolites in nursery piglets. Livest. Sci. 2020, 240, 104182. [Google Scholar] [CrossRef]
- Mann, S.; Ramsay, J.D.; Wakshlag, J.J.; Stokol, T.; Reed, S.; Divers, T.J. Investigating the pathogenesis of high-serum gamma-glutamyl transferase activity in Thoroughbred racehorses: A series of case-control studies. Equine Vet. J. 2022, 54, 39–51. [Google Scholar] [CrossRef]
- Pratt, S.; Bowen, I.; Hallowell, G.; Shipman, E.; Redpath, A. Assessment of agreement using the equine glandular gastric disease grading system in 84 cases. Vet. Med. Sci. 2022, 8, 1472–1477. [Google Scholar] [CrossRef]
Nutritional Analyses | Pre | Post | Hay * | Overall Nutrition (per Day) | Ingested Nutrients (g/kg BWT per Day) | |||
---|---|---|---|---|---|---|---|---|
Omento Sport | HS Feed | Regul Digest | Pre | Post | Pre | Post | ||
DE (MJ/kg) | 7.4 | 10.8 | 11.9 | 5.65 | 23.85 | 17.55 | 0.52 | 0.41 |
Crude protein (%) | 9 | 11 | 11.5 | 10.45 | 30.45 | 21.95 | 6.69 | 5.13 |
Crude fats (%) | 4 | 3 | 6.4 | 2.63 | 9.63 | 9.03 | 2.12 | 2.11 |
Crude fibre (%) | 19.1 | 14.5 | 12 | 27.44 | 60.64 | 39.44 | 13.32 | 9.22 |
Ash (%) | 8.2 | 7.0 | 9.0 | 8.5 | 23.7 | 17.5 | 5.21 | 4.09 |
Sodium (%) | 0.3 | 0.2 | 0.4 | - | 0.5 | 0.4 | 0.03 | 0.03 |
Starch (%) | 13 | 29 | 11 | - | 42 | 11 | 2.72 | 0.87 |
Sugars (%) | - | 2.5 | 5.5 | 5.1 | 7.6 | 10.6 | 1.67 | 2.48 |
Calcium (%) | 0.83 | 1 | 1.2 | 0.65 | 2.48 | 1.85 | 0.55 | 0.43 |
Phosphorous (%) | 0.27 | 0.5 | 0.6 | 0.26 | 1.03 | 0.86 | 0.23 | 0.20 |
Severity Score | Area of Gastric Mucosa Assessed | Total EGD Severity Grading * | |
---|---|---|---|
Non-Glandular Lesion Score | Glandular Lesion Score | ||
0 | No pathology (NP) | No pathology (NP) | No pathology (NP) |
1 | Single, small, multifocal lesions | Mild to moderate focal erythematous areas (gastritis) | Mild (grading 1–2) |
2 | Large single or extensive superficial lesions | Moderate to severe focal to multifocal erythematous extensive areas | Moderate (grading 3–4) |
3 | Deep ulcers present | Erythematous areas with focal fibrinosuppurative lesions | Moderate (grading 5–6) |
4 | Extensive areas of deep ulceration, with bleeding ulcers | Erythematous areas with focal fibrinosuppurative and haemorrhagic lesions | Severe (grading 7–8) |
Mean (±SEM) Blood Marker Concentrations | Normal Reference Range | Mean Difference ± Confidence Interval (CI) | t | df | p | ||
---|---|---|---|---|---|---|---|
Pre | Post | ||||||
Gamma Glutamyl Transferase [GGT] (U/L) | 41.56 ± 5.04 | 16.89 ± 2.19 | 10–40 | −24.67 ± 10.22 | −5.57 | 8 | <0.001 |
Aspartate aminotransferase (AST) (UI/L) | 581.56 ± 43.57 | 319.33 ± 13.40 | 160–400 | −199.23 ± 45.58 | −6.26 | 8 | 0.0002 |
Creatine Kinase [CK] (U/L) | 333.89 ± 44.45 | 274.78 ± 29.39 | 60–330 | −59.11 ± 42.02 | −3.24 | 8 | 0.01 |
Vitamin E (mg/L) | 2.89 ± 0.28 | 3.84 ± 0.52 | 2.2–7.7 | 1.04 ± 0.74 | 3.33 | 7 | 0.01 |
Total EGD | EGGD | ESGD | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
t | df | ChiSq | p | t | df | ChiSq | p | t | df | ChiSq | p | |
Gamma Glutamyl Transferase [GGT] (U/L) | 5.31 | 17 | 28.19 | 0.0001 | 4.65 | 17 | 21.66 | 0.0001 | 3.28 | 17 | 10.74 | 0.001 |
Aspartate aminotransferase (AST) (UI/L) | 4.25 | 17 | 18.08 | <0.0001 | 5.39 | 17 | 29.06 | <0.0001 | 2.23 | 17 | 4.95 | 0.03 |
Creatine Kinase [CK] (U/L) | 2.22 | 17 | 4.94 | 0.03 | 2.31 | 17 | 5.33 | 0.02 | 1.90 | 17 | 3.62 | 0.06 |
Vitamin E (mg/L) | −2.83 | 16 | 8.02 | 0.005 | −2.26 | 16 | 6.85 | 0.009 | −2.08 | 16 | 6.18 | 0.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Irving, J.; Pineau, V.; Shultz, S.; ter Woort, F.; Julien, F.; Lambey, S.; van Erck-Westergren, E. Impact of Low-Starch Dietary Modifications on Faecal Microbiota Composition and Gastric Disease Scores in Performance Horses. Animals 2025, 15, 1908. https://doi.org/10.3390/ani15131908
Irving J, Pineau V, Shultz S, ter Woort F, Julien F, Lambey S, van Erck-Westergren E. Impact of Low-Starch Dietary Modifications on Faecal Microbiota Composition and Gastric Disease Scores in Performance Horses. Animals. 2025; 15(13):1908. https://doi.org/10.3390/ani15131908
Chicago/Turabian StyleIrving, Jessica, Violaine Pineau, Susanne Shultz, Fe ter Woort, Félicie Julien, Sandrine Lambey, and Emmanuelle van Erck-Westergren. 2025. "Impact of Low-Starch Dietary Modifications on Faecal Microbiota Composition and Gastric Disease Scores in Performance Horses" Animals 15, no. 13: 1908. https://doi.org/10.3390/ani15131908
APA StyleIrving, J., Pineau, V., Shultz, S., ter Woort, F., Julien, F., Lambey, S., & van Erck-Westergren, E. (2025). Impact of Low-Starch Dietary Modifications on Faecal Microbiota Composition and Gastric Disease Scores in Performance Horses. Animals, 15(13), 1908. https://doi.org/10.3390/ani15131908