Neural Correlates of Flight Acceleration in Pigeons: Gamma-Band Activity and Local Functional Network Dynamics in the AID Region
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Outdoor Free-Flight Experiment
2.2. Experimental Animals and Surgery
2.3. GPS, Posture and Local Field Potentials Data Synchronously Acquisition and Preprocessing
2.4. Neural Signal Analysis
2.5. Statistical Test
2.6. Decoding Flight States Using Machine Learning Models
3. Results
3.1. Results of Wingbeat Artifact Removal
3.2. Time–Frequency Domain Characterization of AID Neural Signals During Flight Acceleration
3.3. Functional Network Analysis of AID Neural Activity Under Flight Acceleration States
3.4. Gamma-Band Specificity in Neural Decoding of Flight States
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, L.; Jin, F.; Yang, L.; Li, J.; Li, Z.; Li, M.; Shang, Z. The Hippocampus in Pigeons Contributes to the Model-Based Valuation and the Relationship between Temporal Context States. Animals 2024, 14, 431. [Google Scholar] [CrossRef] [PubMed]
- Taylor, L.A.; Portugal, S.J.; Biro, D. Homing Pigeons (Columba Livia) Modulate Wingbeat Characteristics as a Function of Route Familiarity. J. Exp. Biol. 2017, 220, 2908–2915. [Google Scholar] [CrossRef] [PubMed]
- Fang, K.; Guo, X.; Tang, Y.; Wang, W.; Wang, Z.; Dai, Z. High-Frequency Local Field Potential Oscillations for Pigeons in Effective Turning. Animals 2024, 14, 509. [Google Scholar] [CrossRef] [PubMed]
- Li, M.-M.; Fan, J.-T.; Cheng, S.-G.; Yang, L.-F.; Yang, L.; Wang, L.-F.; Shang, Z.-G.; Wan, H. Enhanced Hippocampus-Nidopallium Caudolaterale Connectivity during Route Formation in Goal-Directed Spatial Learning of Pigeons. Animals 2021, 11, 2003. [Google Scholar] [CrossRef]
- Sarel, A.; Finkelstein, A.; Las, L.; Ulanovsky, N. Vectorial Representation of Spatial Goals in the Hippocampus of Bats. Science 2017, 355, 176–180. [Google Scholar] [CrossRef]
- Chen, Y.-F.; Fu, R.; Wu, J.; Song, J.; Ma, R.; Jiang, Y.-C.; Zhang, M. Continuous Bimanual Trajectory Decoding of Coordinated Movement From EEG Signals. IEEE J. Biomed. Health Inform. 2022, 26, 6012–6023. [Google Scholar] [CrossRef]
- Kennedy, S.D.; Schwartz, A.B. Distributed Processing of Movement Signaling. Proc. Natl. Acad. Sci. USA 2019, 116, 26266–26273. [Google Scholar] [CrossRef]
- Maurer, A.P.; Burke, S.N.; Lipa, P.; Skaggs, W.E.; Barnes, C.A. Greater Running Speeds Result in Altered Hippocampal Phase Sequence Dynamics. Hippocampus 2012, 22, 737–747. [Google Scholar] [CrossRef]
- Sheremet, A.; Kennedy, J.P.; Qin, Y.; Zhou, Y.; Lovett, S.D.; Burke, S.N.; Maurer, A.P. Theta-Gamma Cascades and Running Speed. J. Neurophysiol. 2019, 121, 444–458. [Google Scholar] [CrossRef]
- Kennedy, J.P.; Zhou, Y.; Qin, Y.; Lovett, S.D.; Sheremet, A.; Burke, S.N.; Maurer, A.P. A Direct Comparison of Theta Power and Frequency to Speed and Acceleration. J. Neurosci. 2022, 42, 4326–4341. [Google Scholar] [CrossRef]
- Kropff, E.; Carmichael, J.E.; Moser, E.I.; Moser, M.-B. Frequency of Theta Rhythm Is Controlled by Acceleration, but Not Speed, in Running Rats. Neuron 2021, 109, 1029–1039.e8. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.; Sheremet, A.; Cooper, T.L.; Burke, S.N.; Maurer, A.P. Nonlinear Theta-Gamma Coupling between the Anterior Thalamus and Hippocampus Increases as a Function of Running Speed. eNeuro 2023, 10, ENEURO.0470-21.2023. [Google Scholar] [CrossRef] [PubMed]
- Kobler, R.J.; Sburlea, A.I.; Mondini, V.; Hirata, M.; Müller-Putz, G.R. Distance- and Speed-Informed Kinematics Decoding Improves M/EEG Based Upper-Limb Movement Decoder Accuracy. J. Neural Eng. 2020, 17, 056027. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Chen, X.; Yang, L.; Li, M.; Shang, Z. Phase–Amplitude Coupling between Theta Rhythm and High-Frequency Oscillations in the Hippocampus of Pigeons during Navigation. Animals 2024, 14, 439. [Google Scholar] [CrossRef]
- Rattenborg, N.C.; Voirin, B.; Cruz, S.M.; Tisdale, R.; Dell’Omo, G.; Lipp, H.-P.; Wikelski, M.; Vyssotski, A.L. Evidence That Birds Sleep in Mid-Flight. Nat. Commun. 2016, 7, 12468. [Google Scholar] [CrossRef]
- Vyssotski, A.L.; Dell’Omo, G.; Dell’Ariccia, G.; Abramchuk, A.N.; Serkov, A.N.; Latanov, A.V.; Loizzo, A.; Wolfer, D.P.; Lipp, H.-P. EEG Responses to Visual Landmarks in Flying Pigeons. Curr. Biol. 2009, 19, 1159–1166. [Google Scholar] [CrossRef]
- Yang, L.; Ma, E.; Yang, L.; Li, M.; Shang, Z.; Wang, L.; Ma, Z.; Li, J. Decoding Typical Flight States Based on Neural Signals from the Midbrain Motor Nuclei of Pigeons. J. Integr. Neurosci. 2024, 23, 72. [Google Scholar] [CrossRef]
- Mouritsen, H.; Heyers, D.; Güntürkün, O. The Neural Basis of Long-Distance Navigation in Birds. Annu. Rev. Physiol. 2016, 78, 133–154. [Google Scholar] [CrossRef]
- Steinemer, A.; Simon, A.; Güntürkün, O.; Rook, N. Parallel Executive Pallio-motor Loops in the Pigeon Brain. J. Comp. Neurol. 2024, 532, e25611. [Google Scholar] [CrossRef]
- Stacho, M.; Herold, C.; Rook, N.; Wagner, H.; Axer, M.; Amunts, K.; Güntürkün, O. A Cortex-like Canonical Circuit in the Avian Forebrain. Science 2020, 369, eabc5534. [Google Scholar] [CrossRef]
- Yuan, R.C.; Bottjer, S.W. Multidimensional Tuning in Motor Cortical Neurons during Active Behavior. eNeuro 2020, 7, Eneuro.0109-20.2020. [Google Scholar] [CrossRef] [PubMed]
- Zemel, B.M.; Nevue, A.A.; Tavares, L.E.; Dagostin, A.; Lovell, P.V.; Jin, D.Z.; Mello, C.V.; Von Gersdorff, H. Motor Cortex Analogue Neurons in Songbirds Utilize Kv3 Channels to Generate Ultranarrow Spikes. eLife 2023, 12, e81992. [Google Scholar] [CrossRef] [PubMed]
- Dell’Ariccia, G.; Dell’Omo, G.; Wolfer, D.P.; Lipp, H.-P. Flock Flying Improves Pigeons’ Homing: GPS Track Analysis of Individual Flyers versus Small Groups. Anim. Behav. 2008, 76, 1165–1172. [Google Scholar] [CrossRef]
- Kano, F.; Walker, J.; Sasaki, T.; Biro, D. Head-Mounted Sensors Reveal Visual Attention of Free-Flying Homing Pigeons. J. Exp. Biol. 2018, 221, jeb183475. [Google Scholar] [CrossRef]
- Usherwood, J.R.; Stavrou, M.; Lowe, J.C.; Roskilly, K.; Wilson, A.M. Flying in a flock comes at a cost in pigeons. Nature 2011, 474, 494–497. [Google Scholar] [CrossRef]
- Avvaru, S.; Peled, N.; Provenza, N.R.; Widge, A.S.; Parhi, K.K. Region-Level Functional and Effective Network Analysis of Human Brain during Cognitive Task Engagement. IEEE T. Neur. Sys. Reh. 2021, 29, 1651–1660. [Google Scholar] [CrossRef]
- Yi, H.; Zhang, X.; Bai, W.; Liu, T.; Tian, X. Canonical Correlation between LFP Network and Spike Network during Working Memory Task in Rat. Behav. Brain Res. 2015, 289, 84–91. [Google Scholar] [CrossRef]
- Mello, C.V.; Kaser, T.; Buckner, A.A.; Wirthlin, M.; Lovell, P.V. Molecular Architecture of the Zebra Finch Arcopallium. J. Comp. Neurol. 2019, 527, 2512–2556. [Google Scholar] [CrossRef]
- Muthukumaraswamy, S.D. Functional Properties of Human Primary Motor Cortex Gamma Oscillations. J. Neurophysiolo. 2010, 104, 2873–2885. [Google Scholar] [CrossRef]
- Giustiniani, A.; Tarantino, V.; Bracco, M.; Bonaventura, R.E.; Oliveri, M. Functional Role of Cerebellar Gamma Frequency in Motor Sequences Learning: A tACS Study. Cerebellum 2021, 20, 913–921. [Google Scholar] [CrossRef]
- Ulloa, J.L. The Control of Movements via Motor Gamma Oscillations. Front. Hum. Neurosci. 2022, 15, 787157. [Google Scholar] [CrossRef] [PubMed]
- Donoghue, J.P.; Sanes, J.N.; Hatsopoulos, N.G.; Gaál, G. Neural Discharge and Local Field Potential Oscillations in Primate Motor Cortex during Voluntary Movements. J. Neurophysiol. 1998, 79, 159–173. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, M.; Ferrero, L.; Iáñez, E.; Azorín, J.M.; Contreras-Vidal, J.L. Sensory Integration in Human Movement: A New Brain-Machine Interface Based on Gamma Band and Attention Level for Controlling a Lower-Limb Exoskeleton. Front. Bioeng. Biotechnol. 2020, 8, 735. [Google Scholar] [CrossRef] [PubMed]
- Oh, S.; Jekal, J.; Won, J.; Lim, K.S.; Jeon, C.-Y.; Park, J.; Yeo, H.-G.; Kim, Y.G.; Lee, Y.H.; Ha, L.J.; et al. A Stealthy Neural Recorder for the Study of Behaviour in Primates. Nat. Biomed. Eng. 2024, 9, 882–895. [Google Scholar] [CrossRef]
- Kadmon Harpaz, N.; Ungarish, D.; Hatsopoulos, N.G.; Flash, T. Movement Decomposition in the Primary Motor Cortex. Cereb. Cortex 2019, 29, 1619–1633. [Google Scholar] [CrossRef]
- Park, A.J.; Harris, A.Z.; Martyniuk, K.M.; Chang, C.-Y.; Abbas, A.I.; Lowes, D.C.; Kellendonk, C.; Gogos, J.A.; Gordon, J.A. Reset of Hippocampal–Prefrontal Circuitry Facilitates Learning. Nature 2021, 591, 615–619. [Google Scholar] [CrossRef]
- Das, A.; Menon, V. Replicable Patterns of Causal Information Flow between Hippocampus and Prefrontal Cortex during Spatial Navigation and Spatial–Verbal Memory Formation. Cereb. Cortex 2022, 32, 5343–5361. [Google Scholar] [CrossRef]
- Londei, F.; Arena, G.; Ferrucci, L.; Russo, E.; Ceccarelli, F.; Genovesio, A. Connecting the Dots in the Zona Incerta: A Study of Neural Assemblies and Motifs of Inter-Area Coordination in Mice. iScience 2024, 27, 108761. [Google Scholar] [CrossRef]
- Payne, H.L.; Lynch, G.F.; Aronov, D. Neural Representations of Space in the Hippocampus of a Food-Caching Bird. Science 2021, 373, 343–348. [Google Scholar] [CrossRef]
Model | Function | Sampling Rate | Mounting Position | Weight |
---|---|---|---|---|
ADS1299 | Acquisition of 8-channel neural signals | 1000 Hz | Head-mounted | 1.26 g |
MPU6050 | Acquisition of posture data (IMU) | 200 Hz | Head-mounted | 1.27 g |
ATGM336H-5N | Acquisition of GPS data | 10 Hz | Back-mounted | 1.77 g |
ID | Experimental Date | Total Trials | Valid Trials |
---|---|---|---|
P01 | 20240507–20240611 | 41 | 24 |
P04 | 20240812–20240915 | 33 | 19 |
P05 | 20241107–20241126 | 27 | 14 |
P09 | 20241206–20250110 | 38 | 20 |
P12 | 20250209–20250315 | 39 | 18 |
P16 | 20250209–20250315 | 36 | 18 |
Model | Theta | Delta | Alpha | Beta | Gamma |
---|---|---|---|---|---|
SVM | 41.77 ± 6.64 | 43.67 ± 7.35 | 44.76 ± 7.29 | 57.61 ± 8.52 | 73.49 ± 5.31 |
DNN | 50.38 ± 6.08 | 58.53 ± 8.86 | 64.16 ± 6.63 | 78.15 ± 8.85 | 83.68 ± 6.29 |
CNN | 64.02 ± 7.25 | 67.54 ± 9.12 | 73.58 ± 8.10 | 83.61 ± 7.33 | 89.60 ± 5.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Tang, Z.; Li, M.; Yang, L.; Shang, Z. Neural Correlates of Flight Acceleration in Pigeons: Gamma-Band Activity and Local Functional Network Dynamics in the AID Region. Animals 2025, 15, 1851. https://doi.org/10.3390/ani15131851
Li S, Tang Z, Li M, Yang L, Shang Z. Neural Correlates of Flight Acceleration in Pigeons: Gamma-Band Activity and Local Functional Network Dynamics in the AID Region. Animals. 2025; 15(13):1851. https://doi.org/10.3390/ani15131851
Chicago/Turabian StyleLi, Suchen, Zhuo Tang, Mengmeng Li, Lifang Yang, and Zhigang Shang. 2025. "Neural Correlates of Flight Acceleration in Pigeons: Gamma-Band Activity and Local Functional Network Dynamics in the AID Region" Animals 15, no. 13: 1851. https://doi.org/10.3390/ani15131851
APA StyleLi, S., Tang, Z., Li, M., Yang, L., & Shang, Z. (2025). Neural Correlates of Flight Acceleration in Pigeons: Gamma-Band Activity and Local Functional Network Dynamics in the AID Region. Animals, 15(13), 1851. https://doi.org/10.3390/ani15131851