Concentration Changes in Plasma Amino Acids and Their Metabolites in Eventing Horses During Cross-Country Competitions
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Horses
2.2. Veterinary Check-Ups
2.3. Training Schedules
2.4. Feeding
2.5. Competition Conditions
2.6. Performance During CC
2.7. Blood Sampling
2.8. Amino Acid Measurements
2.9. Data Analysis
2.10. Missing Samples
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Weiner, I.D.; Mitch, W.E.; Sands, J.M. Urea and ammonia metabolism and the control of renal nitrogen excretion. Clin. J. Am. Soc. Nephrol. 2015, 10, 1444–1458. [Google Scholar] [CrossRef] [PubMed]
- Kamei, Y.; Hatazawa, Y.; Uchitomi, R.; Yoshimura, R.; Miura, S. Regulation of skeletal muscle function by amino acids. Nutrients 2020, 12, 261. [Google Scholar] [CrossRef] [PubMed]
- Graham-Thiers, P.M.; Kronfeld, D.S. Amino acid supplementation improves muscle mass in aged and young horses. J. Anim. Sci. 2005, 83, 2783–2788. [Google Scholar] [CrossRef]
- Cheng, I.S.; Wang, Y.W.; Chen, I.F.; Hsu, G.S.; Hsueh, C.F.; Chang, C.K. The supplementation of branched-chain amino acids, arginine, and citrulline improves endurance exercise performance in two consecutive days. J. Sports Sci. Med. 2016, 15, 509–515. [Google Scholar] [PubMed]
- DeBoer, M.L.; Martinson, K.L.; Kuhle, K.J.; Sheaffer, C.C.; Hathaway, M.R. Plasma amino acid concentrations of horses grazing alfalfa, cool-season perennial grasses, and Teff. J. Equine Veter. Sci. 2019, 72, 72–78. [Google Scholar] [CrossRef]
- Graham-Thiers, P.M.; Bowen, L.K. The effect of time of feeding on plasma amino acids during exercise and recovery in horses. Transl. Anim. Sci. 2021, 5, txab045. [Google Scholar] [CrossRef]
- Hackl, S.; van den Hoven, R.; Zickl, M.; Spona, J.; Zentek, J. Individual differences and repeatability of post-prandial changes of plasma-free amino acids in young horses. J. Veter. Med. A Physiol. Pathol. Clin. Med. 2006, 53, 439–444. [Google Scholar] [CrossRef]
- Takagi, H.; Yonemochi, C.; Hashimoto, Y.; Matsui, A.; Asai, Y.; Watanabe, R.; Ishibashi, T. Response of plasma concentration of free amino acid to change of dietary protein and amino acid levels in adult thoroughbreds. J. Equine Sci. 2004, 15, 93–98. [Google Scholar] [CrossRef]
- Graham-Thiers, P.M.; Bowen, L.K. Effect of protein source on nitrogen balance and plasma amino acids in exercising horses. J. Anim. Sci. 2011, 89, 729–735. [Google Scholar] [CrossRef]
- Nostell, K.E.A.; Essén-Gustavsson, B.; Bröjer, J.T. Repeated post-exercise administration with a mixture of leucine and glucose alters the plasma amino acid profile in Standardbred trotters. Acta Veter. Scand. 2012, 54, 7. [Google Scholar] [CrossRef]
- Arfuso, F.; Assenza, A.; Fazio, F.; Rizzo, M.; Giannetto, C.; Piccione, G. Dynamic change of serum levels of some branched-chain amino acids and tryptophan in athletic horses after different physical exercises. J. Equine Veter. Sci. 2019, 77, 12–16. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, C.A.A.; Keller, L.A.M.; Ramos, M.T.; Silva, V.P.; Baldani, C.D.; Almeida, F.Q. Changes of serum free amino acids in eventing horses at rest and during exercise in response to dietary protein. Livest. Sci. 2018, 215, 54–58. [Google Scholar] [CrossRef]
- Ott, E.C.; Cavinder, C.A.; Wang, S.; Smith, T.; Lemley, C.O.; Dinh, T.T.N. Oxidative stress biomarkers and free amino acid concentrations in the blood plasma of moderately exercised horses indicate adaptive response to prolonged exercise training. J. Anim. Sci. 2022, 100, skac086. [Google Scholar] [CrossRef]
- Hackl, S.; van den Hoven, R.; Zickl, M.; Spona, J.; Zentek, J. The effects of short intensive exercise on plasma free amino acids in standardbred trotters. J. Anim. Physiol. Anim. Nutr. 2009, 93, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Trottier, N.L.; Nielsen, B.D.; Lang, K.J.; Ku, P.K.; Schott, H.C. Equine endurance exercise alters serum branched-chain amino acid and alanine concentrations. Equine Veter. J. Suppl. 2002, 34, 168–172. [Google Scholar] [CrossRef] [PubMed]
- Westermann, C.M.; Dorland, L.; Wijnberg, I.D.; de Sain-van der Velden, M.G.M.; van Breda, E.; Barneveld, A.; de Graaf-Roelfsema, E.; Keizer, H.A.; van der Kolk, J.H. Amino acid profile during exercise and training in Standardbreds. Res. Veter. Sci. 2011, 91, 144–149. [Google Scholar] [CrossRef]
- Assenza, A.; Bergero, D.; Tarantola, M.; Piccione, G.; Caola, G. Blood serum branched chain amino acids and tryptophan modifications in horses competing in long-distance rides of different length. J. Anim. Physiol. Anim. Nutr. 2004, 88, 172–177. [Google Scholar] [CrossRef]
- Mcgorum, B.C.; Kirk, J. Equine dysautonomia (grass sickness) is associated with altered plasma amino acid levels and depletion of plasma sulphur amino acids. Equine Veter. J. 2001, 33, 473–477. [Google Scholar] [CrossRef]
- Zicker, S.C.; Spensley, M.S.; Rogers, Q.R.; Willits, N.H. Concentrations of amino acids in the plasma of neonatal foals with septicemia. Am. J. Veter. Res. 1991, 52, 1010–1013. [Google Scholar] [CrossRef]
- Gulick, B.A.; Liu, I.K.M.; Qualls, C.W.J.; Gribble, D.H.; Rogers, Q.R. Effect of pyrrolizidine alkaloid-induced hepatic disease on plasma amino acid patterns in the horse. Am. J. Veter. Res. 1980, 41, 1894–1898. [Google Scholar] [CrossRef]
- Stoeckle, S.D.; Timmermann, D.; Merle, R.; Gehlen, H. Plasma amino acids in horses suffering from pituitary pars intermedia dysfunction. Animals 2022, 12, 3315. [Google Scholar] [CrossRef] [PubMed]
- Stoeckle, S.D.; Timmermann, D.; Merle, R.; Gehlen, H. Plasma Amino Acid Concentration in Obese Horses with/Without Insulin Dysregulation and Laminitis. Animals 2022, 12, 3580. [Google Scholar] [CrossRef] [PubMed]
- Klein, D.J.; McKeever, K.H.; Mirek, E.T.; Anthony, T.G. Metabolomic response of equine skeletal muscle to acute fatiguing exercise and training. Front. Physiol. 2020, 11, 110. [Google Scholar] [CrossRef]
- Bergero, D.; Assenza, A.; Schiavone, A.; Piccione, G.; Perona, G.; Caola, G. Amino acid concentrations in blood serum of horses performing long lasting low-intensity exercise. J. Anim. Physiol. Anim. Nutr. 2005, 89, 146–150. [Google Scholar] [CrossRef] [PubMed]
- Harris, R.C.; Harris, D.B.; Dunnett, M.; Harris, P.A.; Fallowfield, J.; Naylor, J.R. Plasma ammonia and lactate responses using incremental and constant speed exercise tests. Equine Veter. J. Suppl. 1999, 31, 546–551. [Google Scholar] [CrossRef]
- Calvert, L.D.; Singh, S.J.; Greenhaff, P.L.; Morgan, M.D.; Steiner, M.C. The plasma ammonia response to cycle exercise in COPD. Eur. Respir. J. 2008, 31, 751–758. [Google Scholar] [CrossRef]
- Kellmann, M.; Bertollo, M.; Bosquet, L.; Brink, M.; Coutts, A.J.; Duffield, R.; Erlacher, D.; Halson, S.L.; Hecksteden, A.; Heidari, J.; et al. Recovery and performance in sport: Consensus statement. Int. J. Sports Physiol. Perform. 2018, 13, 240–245. [Google Scholar] [CrossRef]
- Hecksteden, A.; Skorski, S.; Schwindling, S.; Hammes, D.; Pfeiffer, M.; Kellmann, M.; Ferrauti, A.; Meyer, T. Blood-borne markers of fatigue in competitive athletes—Results from simulated training camps. PLoS ONE 2016, 11, e0148810. [Google Scholar] [CrossRef]
- Soroko, M.; Śpitalniak-Bajerska, K.; Zaborski, D.; Poźniak, B.; Dudek, K.; Janczarek, I. Exercise-induced changes in skin temperature and blood parameters in horses. Arch. Anim. Breed. 2019, 62, 205–213. [Google Scholar] [CrossRef]
- Hoffman, R.M.; Hess, T.M.; Williams, C.A.; Kronfeld, D.S.; Griewe-Crandell, K.M.; Waldron, J.E.; Graham-Thiers, P.M.; Gay, L.S.; Splan, R.K.; Saker, K.E.; et al. Speed associated with plasma pH, oxygen content, total protein and urea in an 80 km race. Equine Veter. J. Suppl. 2002, 10, 39–43. [Google Scholar] [CrossRef]
- Giers, J.; Bartel, A.; Kirsch, K.; Müller, S.F.; Horstmann, S.; Gehlen, H. Blood-based markers for skeletal and cardiac muscle function in eventing horses before and after cross-country rides and how they are influenced by plasma volume shift. Animals 2023, 13, 3110. [Google Scholar] [CrossRef] [PubMed]
- Assenza, A.; Marafioti, S.; Congiu, F.; Giannetto, C.; Fazio, F.; Bruschetta, D.; Piccione, G. Serum muscle-derived enzymes response during show jumping competition in horse. Veter. World 2016, 9, 251–255. [Google Scholar] [CrossRef] [PubMed]
- Burger, D.; Vidondo, B.; Gerber, V.; Deillon, D.; Müller, A.; Scheidegger, M.; Käser, R.; Ramseyer, A. High-level competition exercise and related fatigue are associated with stride and jumping characteristics in eventing horses. Equine Veter. J. 2024, 56, 631–641. [Google Scholar] [CrossRef] [PubMed]
- Giers, J.; Bartel, A.; Kirsch, K.; Müller, S.F.; Horstmann, S.; Gehlen, H. Blood-based assessment of oxidative stress, inflammation, endocrine and metabolic adaptations in eventing horses accounting for plasma volume shift after exercise. Veter. Med. Sci. 2024, 10, e1409. [Google Scholar] [CrossRef]
- Rump-Dierig, I.; Jensen, C.; Liedtke, A.; Gehlen, H. Evaluating rider self-reports–challenges in monitoring equine adaptation to training and competition in eventing by self-reports. Pferdeheilkunde Equine Med. 2024, 40, 556–566. [Google Scholar] [CrossRef]
- Frenzel, C.; Jensen, K.C.; Gehlen, H. Gewebedopplerechokardiographische Untersuchung der Myokardfunktion und Kardialen Ermüdung (Cardiac Fatigue) Beim Vielseitigkeitspferd. Pferdeheilkunde 2024, 40, 440–448; [Google Scholar] [CrossRef]
- Fédération Equestre Internationale. FEI Database. Available online: https://data.fei.org/Horse/Search.aspx (accessed on 11 November 2022).
- van den Hoven, R.; Bauer, A.; Hackl, S.; Zickl, M.; Spona, J.; Zentek, J. Changes in intramuscular amino acid levels in submaximally exercised horses—A pilot study. J. Anim. Physiol. Anim. Nutr. 2010, 94, 455–464. [Google Scholar] [CrossRef]
- Dunstan, R.H.; Macdonald, M.M.; Thorn, B.; Wood, D.; Roberts, T.K. Modelling of amino acid turnover in the horse during training and racing: A basis for developing a novel supplementation strategy. PLoS ONE 2020, 15, e0226988. [Google Scholar] [CrossRef]
- van den Hoven, R.; Bauer, A.; Hackl, S.; Zickl, M.; Spona, J.; Zentek, J. A preliminary study on the changes in some potential markers of muscle-cell degradation in sub-maximally exercised horses supplemented with a protein and amino acid mixture. J. Anim. Physiol. Anim. Nutr. 2011, 95, 664–675. [Google Scholar] [CrossRef]
- Kirschvink, N.; de Moffarts, B.; Lekeux, P. The oxidant/antioxidant equilibrium in horses. Veter. J. 2008, 177, 178–191. [Google Scholar] [CrossRef]
- Deaton, C.M.; Marlin, D.J.; Smith, N.C.; Roberts, C.A.; Harris, P.A.; Schroter, R.C.; Kelly, F.J. Antioxidant and inflammatory responses of healthy horses and horses affected by recurrent airway obstruction to inhaled ozone. Equine Veter. J. 2005, 37, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Xu, N.; Chen, G.; Liu, H. Antioxidative categorization of twenty amino acids based on experimental evaluation. Molecules 2017, 22, 2066. [Google Scholar] [CrossRef]
- Lee, S.; Olsen, T.; Vinknes, K.J.; Refsum, H.; Gulseth, H.L.; Birkeland, K.I.; Drevon, C.A. Plasma sulphur-containing amino acids, physical exercise and insulin sensitivity in overweight dysglycemic and normal weight normoglycemic men. Nutrients 2018, 11, 10. [Google Scholar] [CrossRef]
- Henry, M.L.; Velez-Irizarry, D.; Pagan, J.D.; Sordillo, L.; Gandy, J.; Valberg, S.J. The impact of N-acetyl cysteine and coenzyme Q10 supplementation on skeletal muscle antioxidants and proteome in fit Thoroughbred horses. Antioxidants 2021, 10, 1739. [Google Scholar] [CrossRef]
- Valberg, S.J.; Perumbakkam, S.; McKenzie, E.C.; Finno, C.J. Proteome and transcriptome profiling of equine myofibrillar myopathy identifies diminished peroxiredoxin 6 and altered cysteine metabolic pathways. Physiol. Genom. 2018, 50, 1036–1050. [Google Scholar] [CrossRef]
- Olsen, T.; Sollie, O.; Nurk, E.; Turner, C.; Jernerén, F.; Ivy, J.L.; Vinknes, K.J.; Clauss, M.; Refsum, H.; Jensen, J. Exhaustive exercise and post-exercise protein plus carbohydrate supplementation affect plasma and urine concentrations of sulfur amino acids, the ratio of methionine to homocysteine and glutathione in elite male cyclists. Front. Physiol. 2020, 11, 609335. [Google Scholar] [CrossRef]
- Farris, J.W.; Hinchcliff, K.W.; McKeever, K.H.; Lamb, D.R.; Thompson, D.L. Effect of tryptophan and of glucose on exercise capacity of horses. J. Appl. Physiol. 1998, 85, 807–816. [Google Scholar] [CrossRef]
- Staniszewska, M.; Kowalik, S.; Sadok, I.; Kędzierski, W. The influence of exercise intensity on tryptophan metabolites in Thoroughbred horses. Pharmaceuticals 2023, 16, 107. [Google Scholar] [CrossRef]
- Blomstrand, E.; Celsing, F.; Newsholme, E.A. Changes in plasma concentrations of aromatic and branched-chain amino acids during sustained exercise in man and their possible role in fatigue. Acta Physiol. Scand. 1988, 133, 115–121. [Google Scholar] [CrossRef]
- Blomstrand, E.; Eliasson, J.; Karlsson, H.K.R.; Köhnke, R. Branched-chain amino acids activate key enzymes in protein synthesis after physical exercise. J. Nutr. 2006, 136 (Suppl. S1), 269S–273S. [Google Scholar] [CrossRef]
- Pösö, A.; Essen-Gustavsson, B.; Lindholm, A.; Persson, S. Exercise-induced changes in muscle and plasma amino acid levels in the Standardbred horse. Equine Exer. Physiol. 1991, 3, 202–208. [Google Scholar]
- Wagenmakers, A.J. Protein and amino acid metabolism in human muscle. Adv. Exp. Med. Biol. 1998, 441, 307–319. [Google Scholar] [CrossRef]
- Wagenmakers, A.J.; Brookes, J.H.; Coakley, J.H.; Reilly, T.; Edwards, R.H. Exercise-induced activation of the branched-chain 2-oxo acid dehydrogenase in human muscle. Eur. J. Appl. Physiol. Occup. Physiol. 1989, 59, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Wagenmakers, A.J.; Beckers, E.J.; Brouns, F.; Kuipers, H.; Soeters, P.B.; van der Vusse, G.J.; Saris, W.H. Carbohydrate supplementation, glycogen depletion, and amino acid metabolism during exercise. Am. J. Physiol. 1991, 260, E883–E890. [Google Scholar] [CrossRef] [PubMed]
- Gibala, M.J. Regulation of skeletal muscle amino acid metabolism during exercise. Int. J. Sport Nutr. Exerc. Metab. 2001, 11, 87–108. [Google Scholar] [CrossRef]
- Räsänen, L.A.; Lampinen, K.J.; Pösö, A.R. Responses of blood and plasma lactate and plasma purine concentrations to maximal exercise and their relation to performance in standardbred trotters. Am. J. Veter. Res. 1995, 56, 1651–1656. [Google Scholar] [CrossRef]
- Jackson, M.; Johnson, K.R.; Leatherwood, J.L.; Bradbery, A. 28 blood lactate response of yearling horses on a progressive workload. J. Anim. Sci. 2022, 100 (Suppl. S1), 48–49. [Google Scholar] [CrossRef]
- Tkaczenko, H.; Kurhaluk, N.; Aksonov, I.; Tkachova, I. Exercise-induced changes in some blood biochemical indices in horses involved in recreational horseback riding. STBIAS 2024, 131, 253–261. [Google Scholar] [CrossRef]
Horse | Age | Breed | Sex | Competitions During Season 2022 |
---|---|---|---|---|
1 | 7 | Holsteiner | Mare | 4 |
2 | 7 | Oldenburger | Mare | 6 |
3 | 7 | Hanoverian | Mare | 6 |
4 | 8 | Oldenburger | Mare | 7 |
5 | 8 | Westphalian | Gelding | 4 |
6 | 9 | Hanoverian | Gelding | 7 |
7 | 9 | German Sport Horse | Mare | 4 |
8 | 10 | Polish Horse Breeders Association | Mare | 7 |
9 | 10 | Irish Sport Horse | Gelding | 4 |
10 | 11 | Hanoverian | Gelding | 5 |
11 | 11 | Holsteiner | Gelding | 6 |
12 | 12 | Stud Book du Cheval Selle Francais | Mare | 6 |
13 | 12 | Hanoverian | Gelding | 6 |
14 | 12 | Irish Sport Horse | Gelding | 6 |
15 | 12 | Hanoverian | Mare | 7 |
16 | 14 | Hanoverian | Gelding | 6 |
17 | 14 | Holsteiner | Gelding | 3 |
18 | 15 | Hanoverian | Mare | 5 |
19 | 15 | Rheinlander | Mare | 2 |
20 | 15 | Hanoverian | Gelding | 8 |
M (SD) TP0 | M (SD) TP1 | M (SD) TP2 | M (SD) TP3 | p | |
---|---|---|---|---|---|
Alanine [µmol/L] | 213.30 (59.70) | 525.00 (143.86) | 533.77 (138.03) | 215.10 (70.18) | <0.001 A |
Arginine [µmol/L] | 91.88 (20.25) | 105.38 (18.57) | 105.49 (22.13) | 84.47 (21.59) | 0.051 D |
Asparagine [µmol/L] | 34.47 (19.91) | 33.30 (14.94) | 40.26 (17.73) | 34.98 (21.97) | 0.140 A |
Citrulline [µmol/L] | 74.61 (20.47) | 81.59 (34.00) | 81.28 (16.35) | 70.76 (28.48) | 0.120 D |
Cysteine [µmol/L] | 17.99 (10.57) | 11.73 (10.09) | 14.31 (8.92) | 18.89 (11.35) | 0.004 C |
Glutamine [µmol/L] | 310.69 (90.23) | 342.02 (94.66) | 355.43 (103.88) | 290.85 (94.84) | <0.001 A |
Glutamate [µmol/L] | 30.66 (22.57) | 46.58 (19.10) | 41.12 (17.79) | 28.52 (15.88) | 0.033 D |
Glycine [µmol/L] | 489.77 (120.30) | 494.65 (106.87) | 508.80 (105.75) | 430.00 (114.03) | <0.001 A |
Histidine [µmol/L] | 78.44 (14.81) | 79.71 (18.12) | 89.36 (12.28) | 75.98 (17.83) | 0.077 D |
Isoleucine [µmol/L] | 56.35 (13.58) | 72.97 (19.61) | 68.49 (16.74) | 52.31 (17.64) | 0.020 A |
Leucine [µmol/L] | 98.34 (23.86) | 142.63 (27.33) | 134.50 (36.98) | 90.59 (30.35) | <0.001 A |
Lysine [µmol/L] | 95.93 (25.01) | 122.80 (27.98) | 122.22 (29.07) | 86.36 (25.38) | 0.025 D |
Methionine [µmol/L] | 29.24 (5.73) | 37.75 (10.43) | 41.09 (10.88) | 28.78 (7.64) | <0.001 A |
1-Methylhistidine [µmol/L] | 19.56 (8.79) | 22.31 (13.18) | 22.03 (8.76) | 20.66 (15.61) | 0.145 D |
Ornithine [µmol/L] | 59.30 (14.67) | 74.44 (17.24) | 69.70 (20.24) | 54.79 (14.15) | 0.017 D |
Phenylalanine [µmol/L] | 62.73 (10.94) | 82.94 (11.17) | 84.81 (16.38) | 59.15 (14.48) | <0.001 A |
Proline [µmol/L] | 113.19 (28.29) | 144.30 (61.32) | 176.18 (67.52) | 125.96 (47.13) | 0.455 D |
Serine [µmol/L] | 246.14 (57.35) | 250.56 (53.97) | 258.23 (58.67) | 229.82 (58.29) | 0.004 A |
Taurine [µmol/L] | 31.45 (8.83) | 59.65 (29,41) | 58.25 (32.02) | 29.20 (7.45) | 0.036 D |
Threonine [µmol/L] | 134.21 (30.67) | 157.24 (31.73) | 171.46 (38.23) | 125.01 (26.82) | <0.001 A |
Tryptophan [µmol/L] | 72.08 (13.88) | 66.87 (11.80) | 78.44 (12.70) | 67.89 (14.45) | <0.001 A |
Tyrosine [µmol/L] | 62.05 (11.95) | 75.84 (13.21) | 85.77 (14.02) | 58.59 (14.43) | <0.001 A |
Valine [µmol/L] | 186.79 (36.19) | 216.45 (59.13) | 227.77 (51.58) | 179.92 (53.12) | 0.032 A |
Ammonia [µmol/L] | 95.44 (44.28) | 157.97 (70.35) | 140.10 (64.66) | 102.82 (45.78) | 0.317 D |
Urea [µmol/L] | 4836.50 (933.60) | 5389.68 (842.86) | 5415.54 (1072.58) | 5144.07 (1088.35) | 0.003 A |
Lactate [mmol/L] | 0.63 (0.26) | 10.37 (6.14) | 4.03 (3.13) | 0.71 (0.31) |
p (TP0–TP1) | p (TP0–TP2) | p (TP0–TP3) | p (TP1–TP2) | p (TP1–TP3) | p (TP2–TP3) | |
---|---|---|---|---|---|---|
Alanine | <0.001 | <0.001 | 0.172 | 0.685 | <0.001 | <0.001 |
Arginine | <0.001 | 0.004 | 0.584 | 0.495 | <0.001 | 0.010 |
Asparagine | 0.700 | 0.129 | 0.780 | 0.066 | 0.509 | 0.423 |
Citrulline | 0.100 | 0.001 | 0.968 | 0.781 | 0.004 | 0.146 |
Cysteine | <0.001 | 0.158 | 0.365 | <0.001 | <0.001 | 0.118 |
Glutamine | 0.009 | 0.001 | 0.460 | 0.299 | 0.001 | 0.001 |
Glutamate | <0.001 | 0.012 | 0.758 | 0.001 | <0.001 | 0.001 |
Glycine | 0.370 | 0.031 | 0.027 | 0.273 | 0.005 | <0.001 |
Histidine | 0.863 | <0.001 | 0.715 | 0.018 | 0.893 | 0.003 |
Isoleucine | <0.001 | 0.001 | 0.627 | 0.122 | <0.001 | 0.004 |
Leucine | <0.001 | <0.001 | 0.576 | 0.142 | <0.001 | <0.001 |
Lysine | <0.001 | <0.001 | 0.172 | 0.762 | <0.001 | <0.001 |
Methionine | <0.001 | <0.001 | 0.689 | 0.105 | <0.001 | <0.001 |
1-Methylhistidine | 0.132 | 0.001 | 0.203 | 0.595 | 0.931 | 0.669 |
Ornithine | <0.001 | 0.007 | 0.569 | 0.115 | <0.001 | 0.023 |
Phenylalanine | <0.001 | <0.001 | 0.992 | 0.434 | <0.001 | <0.001 |
Proline | 0.001 | <0.001 | 0.002 | <0.001 | 0.038 | <0.001 |
Serine | 0.204 | 0.026 | 0.605 | 0.266 | 0.069 | 0.022 |
Taurine | <0.001 | <0.001 | 0.325 | 0.447 | <0.001 | <0.001 |
Threonine | <0.001 | <0.001 | 0.153 | 0.005 | <0.001 | <0.001 |
Tryptophan | 0.023 | 0.001 | 0.714 | <0.001 | 0.193 | 0.008 |
Tyrosine | <0.001 | <0.001 | 0.842 | <0.001 | <0.001 | <0.001 |
Valine | 0.012 | <0.001 | 0.962 | 0.280 | 0.004 | <0.001 |
Ammonia | <0.001 | <0.001 | 0.008 | 0.282 | <0.001 | <0.001 |
Urea | <0.001 | 0.001 | 0.046 | 0.560 | 0.200 | 0.080 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reemtsma, F.P.; Giers, J.; Horstmann, S.; Stoeckle, S.D.; Gehlen, H. Concentration Changes in Plasma Amino Acids and Their Metabolites in Eventing Horses During Cross-Country Competitions. Animals 2025, 15, 1840. https://doi.org/10.3390/ani15131840
Reemtsma FP, Giers J, Horstmann S, Stoeckle SD, Gehlen H. Concentration Changes in Plasma Amino Acids and Their Metabolites in Eventing Horses During Cross-Country Competitions. Animals. 2025; 15(13):1840. https://doi.org/10.3390/ani15131840
Chicago/Turabian StyleReemtsma, Flora Philine, Johanna Giers, Stephanie Horstmann, Sabita Diana Stoeckle, and Heidrun Gehlen. 2025. "Concentration Changes in Plasma Amino Acids and Their Metabolites in Eventing Horses During Cross-Country Competitions" Animals 15, no. 13: 1840. https://doi.org/10.3390/ani15131840
APA StyleReemtsma, F. P., Giers, J., Horstmann, S., Stoeckle, S. D., & Gehlen, H. (2025). Concentration Changes in Plasma Amino Acids and Their Metabolites in Eventing Horses During Cross-Country Competitions. Animals, 15(13), 1840. https://doi.org/10.3390/ani15131840