Genome-Wide Association Analysis of Flavor Precursor Traits in Chengkou Mountain Chicken
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Statement
2.2. Phenotypic Measurement
2.3. Blood Collection and DNA Extraction
2.4. Low-Depth Resequencing and Accuracy Evaluation
2.5. GWAS and SNP Annotation
2.6. Haplotype Construction and Association Analysis
3. Results
3.1. Description of Phenotypic Data
3.2. Correlation Analysis of Traits
3.3. Sequencing Results and Accuracy Evaluation
3.4. GWAS and SNP Annotation Results
3.5. Association Analysis of Haplotypes with Traits
4. Discussion
4.1. Phenotypic Analysis
4.2. GWAS Analysis
4.3. Gene Function Enrichment Analysis
4.4. Potential Application of the Research Results
4.5. Research Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Breslin, P.A.S. An Evolutionary Perspective on Food and Human Taste. Curr. Biol. 2013, 23, 409–418. [Google Scholar] [CrossRef] [PubMed]
- Jayasena, D.D.; Ahn, D.U.; Nam, K.C.; Jo, C. Flavour chemistry of chicken meat: A review. Asian-Australas. J. Anim. Sci. 2013, 26, 732–742. [Google Scholar] [CrossRef]
- Khan, M.I.; Jo, C.; Tariq, M.R. Meat flavor precursors and factors influencing flavor precursors—A systematic review. Meat Sci. 2015, 110, 278–284. [Google Scholar] [CrossRef]
- Xu, C.; Yin, Z. Unraveling the flavor profiles of chicken meat: Classes, biosynthesis, influencing factors in flavor development, and sensory evaluation. Compr. Rev. Food Sci. Food Saf. 2024, 23, e13391. [Google Scholar] [CrossRef]
- Bassam, S.M.; Noleto-Dias, C.; Farag, M.A. Dissecting grilled red and white meat flavor: Its characteristics, production mechanisms, influencing factors and chemical hazards. Food Chem. 2022, 371, 131139. [Google Scholar] [CrossRef] [PubMed]
- Bleicher, J.; Ebner, E.E.; Bak, K.H. Formation and Analysis of Volatile and Odor Compounds in Meat—A Review. Molecules 2022, 27, 6703. [Google Scholar] [CrossRef]
- Shahidi, F.; Samaranayaka, A.G.P.; Pegg, R.B. Cooking of Meat|Maillard Reaction and Browning. In Encyclopedia of Meat Sciences, 2nd ed; Dikeman, M., Devine, C., Eds.; Academic Press: Oxford, MS, USA, 2014; pp. 391–403. [Google Scholar]
- Resconi, V.C.; Escudero, A.; Campo, M.M. The Development of Aromas in Ruminant Meat. Molecules 2013, 18, 6748–6781. [Google Scholar] [CrossRef] [PubMed]
- Ramalingam, V.; Song, Z.; Hwang, I. The potential role of secondary metabolites in modulating the flavor and taste of the meat. Food Res. Int. 2019, 122, 174–182. [Google Scholar] [CrossRef]
- Kim, M.; Munyaneza, J.P.; Cho, E.; Jang, A.; Jo, C.; Nam, K.-C.; Choo, H.J.; Lee, J.H. Genome-Wide Association Study on the Content of Nucleotide-Related Compounds in Korean Native Chicken Breast Meat. Animals 2023, 13, 2966. [Google Scholar] [CrossRef]
- Kim, M.; Cho, E.; Munyaneza, J.P.; Ediriweera, T.K.; Cha, J.; Jin, D.; Cho, S.; Lee, J.H. Genome-wide association study for the free amino acid and nucleotide components of breast meat in an F(2) crossbred chicken population. J. Anim. Sci. Technol. 2023, 65, 57–68. [Google Scholar] [CrossRef]
- Cho, E.; Kim, M.; Cho, S.; So, H.J.; Lee, K.T.; Cha, J.; Jin, D.; Lee, J.H. A genome-wide association study for the fatty acid composition of breast meat in an F2 crossbred chicken population. J. Anim. Sci. Technol. 2023, 65, 735–747. [Google Scholar] [CrossRef] [PubMed]
- Gilly, A.; Ritchie, G.R.; Southam, L.; Farmaki, A.E.; Tsafantakis, E.; Dedoussis, G.; Zeggini, E. Very low-depth sequencing in a founder population identifies a cardioprotective APOC3 signal missed by genome-wide imputation. Hum. Mol. Genet. 2016, 25, 2360–2365. [Google Scholar] [CrossRef] [PubMed]
- Badke, Y.M.; Bates, R.O.; Ernst, C.W.; Fix, J.; Steibel, J.P. Accuracy of estimation of genomic breeding values in pigs using low-density genotypes and imputation. G3 Genes Genomes Genet. 2014, 4, 623–631. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Ma, P.; Zhang, Z.; Wang, Z.; Wang, Q.; Pan, Y. The construction of a haplotype reference panel using extremely low coverage whole genome sequences and its application in genome-wide association studies and genomic prediction in Duroc pigs. Genomics 2022, 114, 340–350. [Google Scholar] [CrossRef]
- Yang, R.; Guo, X.; Zhu, D.; Tan, C.; Bian, C.; Ren, J.; Huang, Z.; Zhao, Y.; Cai, G.; Liu, D.; et al. Accelerated deciphering of the genetic architecture of agricultural economic traits in pigs using a low-coverage whole-genome sequencing strategy. Gigascience 2021, 10, giab048. [Google Scholar] [CrossRef]
- Huang, J.; Wang, C.; Ouyang, J.; Tang, H.; Zheng, S.; Xiong, Y.; Gao, Y.; Wu, Y.; Wang, L.; Yan, X.; et al. Identification of Key Candidate Genes for Beak Length Phenotype by Whole-Genome Resequencing in Geese. Front. Vet. Sci. 2022, 9, 847481. [Google Scholar] [CrossRef]
- Ouyang, J.; Wu, Y.; Li, Y.; Miao, J.; Zheng, S.; Tang, H.; Wang, C.; Xiong, Y.; Gao, Y.; Wang, L.; et al. Identification of key candidate genes for wing length-related traits by whole-genome resequencing in 772 geese. Br. Poult. Sci. 2022, 63, 747–753. [Google Scholar] [CrossRef]
- Xiong, H.L.; Li, W.D.; Wang, L.C.; Wang, X.C.; Tang, B.C.; Cui, Z.F.; Liu, L.B. Whole transcriptome analysis revealed the regulatory network and related pathways of non-coding RNA regulating ovarian atrophy in broody hens. Front. Vet. Sci. 2024, 11, 1399776. [Google Scholar] [CrossRef]
- NRC. Nutrient Requirements of Poultry, 9th ed.; National Academies Press: Washington, DC, USA, 1994. [Google Scholar]
- QB/T 4356-2012; Determination of Free Amino Acids in Chinese Rice Wine High Performance Liquid Chromatography. China National Technical Standards Committee: Beijing, China, 2012.
- GB 5009.168-2016; National Food Safety Standard—Determination of Fatty Acids in Foods. China National Technical Standards Committee: Beijing, China, 2016.
- GB 5009.6-2016; National Food Safety Standard—Determination of Fat in Foods. China National Technical Standards Committee: Beijing, China, 2016.
- Gao, G.; Zhang, K.; Huang, P.; Zhao, X.; Li, Q.; Xie, Y.; Yin, C.; Li, J.; Wang, Z.; Zhong, H.; et al. Identification of SNPs Associated with Goose Meat Quality Traits Using a Genome-Wide Association Study Approach. Animals 2023, 13, 2089. [Google Scholar] [CrossRef]
- He, X.; Xu, J.; Liu, Y.; Guo, X.; Wei, W.; Xing, C.; Zhang, H.; Wang, H.; Liu, M.; Jiang, R. Explorations on Key Module and Hub Genes Affecting IMP Content of Chicken Pectoralis Major Muscle Based on WGCNA. Animals 2024, 14, 402. [Google Scholar] [CrossRef]
- Qie, M.; Li, Y.; Hu, X.; Zhaxi, C.; Zhao, S.; Zhang, Z.; Yang, X.; Bai, L.; Zhao, Y. A New and Effective Method to Trace Tibetan Chicken by Amino Acid Profiling. Foods 2023, 12, 876. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Nie, S.; Li, C.; Xiang, H.; Zhao, Y.; Chen, S.; Li, L.; Wu, Y. Application of Untargeted Metabolomics to Reveal the Taste-Related Metabolite Profiles during Mandarin Fish (Siniperca chuatsi) Fermentation. Foods 2022, 11, 11070944. [Google Scholar] [CrossRef] [PubMed]
- Bachmanov, A.A.; Bosak, N.P.; Lin, C.; Matsumoto, I.; Ohmoto, M.; Reed, D.R.; Nelson, T.M. Genetics of taste receptors. Curr. Pharm. Des. 2014, 20, 2669–2683. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Chang, Y.; Sun, Z.; Deng, J.; Jin, Y.; Shi, M.; Zhang, J.; Miao, Z. Effects of Chinese Yam Polysaccharide on Intramuscular Fat and Fatty Acid Composition in Breast and Thigh Muscles of Broilers. Foods 2023, 12, 1479. [Google Scholar] [CrossRef]
- Cui, H.-X.; Liu, R.-R.; Zhao, G.-P.; Zheng, M.-Q.; Chen, J.-L.; Wen, J. Identification of differentially expressed genes and pathways for intramuscular fat deposition in pectoralis major tissues of fast-and slow-growing chickens. BMC Genom. 2012, 13, 213. [Google Scholar] [CrossRef]
- Lee, H.; Jo, C.; Nam, K.-C.; Lee, K. Quality Attributes of Fat-free Sausage Made of Chicken Breast and Liquid Egg White. Korean J. Food Nutr. 2016, 29, 449–455. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, X.; Liu, Y.; Gao, M.; Wang, M.; Wang, Y.; Wang, X.; Guo, Y. Assessment of the dietary amino acid profiles and the relative biomarkers for amino acid balance in the low-protein diets for broiler chickens. J. Anim. Sci. Biotechnol. 2024, 15, 157. [Google Scholar] [CrossRef]
- De Paola, I.; Pirone, L.; Palmieri, M.; Balasco, N.; Esposito, L.; Russo, L.; Mazzà, D.; Di Marcotullio, L.; Di Gaetano, S.; Malgieri, G.; et al. Cullin3-BTB interface: A novel target for stapled peptides. PLoS ONE 2015, 10, e0121149. [Google Scholar] [CrossRef]
- Shetty, A.C.; Sivinski, J.; Cornell, J.; Sadzewicz, L.; Mahurkar, A.; Wang, X.Q.; Colloca, L.; Lin, W.; Kane, M.A.; Seneviratne, C. Peripheral blood transcriptomic profiling indicates molecular mechanisms commonly regulated by binge-drinking and placebo-effects. medRxiv 2023, medRxiv: 23287501. [Google Scholar]
- Hsu, J.-W.; Nien, C.-Y.; Chen, H.-W.; Tsai, F.-Y.; Yeh, S.-C.; Kao, Y.-H.; Tsou, T.-C. Di(2-ethylhexyl)phthalate exposure exacerbates metabolic disorders in diet-induced obese mice. Food Chem. Toxicol. 2021, 156, 112439. [Google Scholar] [CrossRef]
- Li, H.; Liu, G.; Wan, X.; Zhou, L.; Qin, Z.B.; Ma, X.H.; Su, K.; Liu, Y.J.; Yuan, J.; Wei, C.C.; et al. The zinc finger and BTB domain containing protein ZBTB20 regulates plasma triglyceride metabolism by repressing lipoprotein lipase gene transcription in hepatocytes. Hepatology 2022, 75, 1169–1180. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Zhou, L.; Zhang, H.; Chen, R.; Zhang, Y.; Li, L.; Lu, J.Y.; Jiang, H.; Liu, D.; Qi, S.; et al. Regulation of hepatic lipogenesis by the zinc finger protein Zbtb20. Nat. Commun. 2017, 8, 14824. [Google Scholar] [CrossRef] [PubMed]
- Xu, K.; Zheng, P.; Zhao, S.; Wang, J.; Feng, J.; Ren, Y.; Zhong, Q.; Zhang, H.; Chen, X.; Chen, J.; et al. LRFN5 and OLFM4 as novel potential biomarkers for major depressive disorder: A pilot study. Transl. Psychiatry 2023, 13, 188. [Google Scholar] [CrossRef] [PubMed]
- Wani, A.L.; Bhat, S.A.; Ara, A. Omega-3 fatty acids and the treatment of depression: A review of scientific evidence. Integr. Med. Res. 2015, 4, 132–141. [Google Scholar] [CrossRef]
- Yang, H.; Arif, M.; Yuan, M.; Li, X.; Shong, K.; Türkez, H.; Nielsen, J.; Uhlén, M.; Borén, J.; Zhang, C.; et al. A network-based approach reveals the dysregulated transcriptional regulation in non-alcoholic fatty liver disease. iScience 2021, 24, 103222. [Google Scholar] [CrossRef]
- Wang, H.; Duan, S.; Du, J.; Li, X.; Xu, Y.; Zhang, Z.; Wang, Y.; Huang, G.; Feng, G.; He, L. Transmission disequilibrium test provides evidence of association between promoter polymorphisms in 22q11 gene DGCR14 and schizophrenia. J. Neural Transm. 2006, 113, 1551–1561. [Google Scholar] [CrossRef]
- Arioka, Y.; Shishido, E.; Kushima, I.; Suzuki, T.; Saito, R.; Aiba, A.; Mori, D.; Ozaki, N. Chromosome 22q11.2 deletion causes PERK-dependent vulnerability in dopaminergic neurons. EBioMedicine 2021, 63, 103138. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, Q.; Meng, Y.; Zhao, T.; Mu, C.; Fu, C.; Deng, C.; Feng, J.; Du, S.; Liu, W.; et al. Saturated fatty acids increase LPI to reduce FUNDC1 dimerization and stability and mitochondrial function. EMBO Rep. 2023, 24, e54731. [Google Scholar] [CrossRef]
- Li, S.; Ghosh, C.; Xing, Y.; Sun, Y. Phosphatidylinositol 4,5-bisphosphate in the Control of Membrane Trafficking. Int. J. Biol. Sci. 2020, 16, 2761–2774. [Google Scholar] [CrossRef]
- Bridges, D.; Saltiel, A.R. Phosphoinositides: Key modulators of energy metabolism. Biochim. Biophys. Acta 2015, 1851, 857–866. [Google Scholar] [CrossRef]
- Hille, B.; Dickson, E.J.; Kruse, M.; Vivas, O.; Suh, B.C. Phosphoinositides regulate ion channels. Biochim. Biophys. Acta 2015, 1851, 844–856. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.-S.; Wu, T.; Wu, Y.-D.; Li, X.-H.; Tan, J.; Shen, C.-H.; Xiong, S.-J.; Feng, Z.-Q.; Gao, S.-F.; Li, H.; et al. Long-term statins administration exacerbates diabetic nephropathy via ectopic fat deposition in diabetic mice. Nat. Commun. 2023, 14, 390. [Google Scholar] [CrossRef] [PubMed]
Age in Days | Temperature | Humidity | Lighting |
---|---|---|---|
Incubation period | 37–38 °C | 65% | - |
0–7 d | 35 °C | 60% | 24 h |
8–20 d | 30 °C | 60% | 24 h |
21–30 d | 26 °C | 60% | 18 h |
31–60 d | 26 °C | 56% | 16 h |
61–90 d | 20 °C | 56% | 16 h |
91–120 d | 20 °C | 56% | 16 h |
Trait | SNP | Phenotype (Genotype) | p-Value | ||
---|---|---|---|---|---|
C20:2 | 1_53118405 | 0.0097 ± 0.0033 a (TT) | 0.0092 ± 0.0029 ab (CT) | 0.0079 ± 0.0024 b (CC) | 0.026 * |
1_53120150 | 0.0096 ± 0.0032 a (TT) | 0.0089 ± 0.0032 b (AT) | 0.0073 ± 0.0020 b (AA) | 0.032 * | |
1_53448483 | 0.0096 ± 0.0033 a (CC) | 0.0089 ± 0.0026 a (TC) | 0.0069 ± 0.0022 a (TT) | 0.068 | |
1_53450834 | 0.0096 ± 0.0033 a (TT) | 0.0087 ± 0.0027 b (CT) | 0.0069 ± 0.0022 b (CC) | 0.025 * | |
1_53799797 | 0.0096 ± 0.0033 a (AA) | 0.0094 ± 0.0027 a (GA) | 0.0077 ± 0.0042 a (GG) | 0.689 | |
1_53800443 | 0.0095 ± 0.0033 a (CC) | 0.0094 ± 0.0027 a (TC) | 0.0077 ± 0.0042 a (TT) | 0.695 | |
1_82838755 | 0.0097 ± 0.0032 a (GG) | 0.0089 ± 0.0028 a (AG) | / | 0.135 | |
1_82839388 | 0.0096 ± 0.0032 a (CC) | 0.0089 ± 0.0028 a (TC) | / | 0.147 | |
1_82839637 | 0.0096 ± 0.0032 a (CC) | 0.0090 ± 0.0028 a (TC) | / | 0.192 | |
5_58634269 | 0.0096 ± 0.0032 a (GG) | 0.0090 ± 0.0029 a (AG) | / | 0.359 | |
5_58634715 | 0.0096 ± 0.0032 a (TT) | 0.0090 ± 0.0029 a (GT) | / | 0.359 | |
5_58634833 | 0.0096 ± 0.0032 a (GG) | 0.0090 ± 0.0029 a (TG) | / | 0.359 | |
5_58635351 | 0.0096 ± 0.0032 a (TT) | 0.0089 ± 0.0029 a (CT) | / | 0.312 | |
5_58636964 | 0.0096 ± 0.0032 a (AA) | 0.0089 ± 0.0029 a (GA) | / | 0.306 | |
5_58637070 | 0.0096 ± 0.0032 a (GG) | 0.0089 ± 0.0029 a (AG) | / | 0.295 | |
5_59270334 | 0.0096 ± 0.0032 a (AA) | 0.0088 ± 0.0030 a (GA) | / | 0.166 | |
5_59270514 | 0.0096 ± 0.0032 a (TT) | 0.0088 ± 0.0030 a (CT) | / | 0.172 | |
5_59271443 | 0.0096 ± 0.0032 a (CC) | 0.0088 ± 0.0030 a (TC) | / | 0.172 | |
5_59280171 | 0.0096 ± 0.0032 a (GG) | 0.0089 ± 0.0031 a (AG) | / | 0.107 | |
5_59280446 | 0.0096 ± 0.0032 a (GG) | 0.0089 ± 0.0031 a (AG) | / | 0.107 |
Trait | Gene | Haplotype Combination | Number | Phenotype | p-Value |
---|---|---|---|---|---|
C20:2 | SYN3 | LD1 (TTTT) | 284 | 0.0098 ± 0.0033 a | 0.072 |
LD2 (CTTT) | 67 | 0.0093 ± 0.0028 a | |||
LD3 (CATT) | 51 | 0.0091 ± 0.0032 a | |||
LD4 (CACT) | 9 | 0.0080 ± 0.0027 a | |||
LD5 (CACA) | 4 | 0.0073 ± 0.0020 a | |||
ABTB3 | LD1 (CTCT) | 370 | 0.0096 ± 0.0032 a | 0.024 * | |
LD2 (TCCT) | 48 | 0.0087 ± 0.0027 b | |||
LD3 (TCTC) | 3 | 0.0069 ± 0.0022 b | |||
RFX4 | LD1 (ACAC) | 333 | 0.0096 ± 0.0033 a | 0.689 | |
LD2 (GTAC) | 81 | 0.0094 ± 0.0027 a | |||
LD3 (GTGT) | 4 | 0.0077 ± 0.0042 a | |||
ZBTB20 | LD1 (GCCGCC) | 374 | 0.0097 ± 0.0032 a | 0.178 | |
LD2 (ATTGCC) | 54 | 0.0090 ± 0.0028 a | |||
PRPF39 | LD1 (GTGTAGGTGTAG) | 376 | 0.0096 ± 0.0032 a | 0.310 | |
LD2 (AGTCGAGTGTAG) | 45 | 0.0089 ± 0.0029 a | |||
LRFN5 | LD1 (ATCATC) | 387 | 0.0096 ± 0.0032 a | 0.166 | |
LD2 (GCTATC) | 47 | 0.0088 ± 0.0030 a | |||
LD1 (GGGG) | 384 | 0.0096 ± 0.0032 a | 0.107 | ||
LD2 (AAGG) | 51 | 0.0089 ± 0.0030 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Huang, Y.; Liu, L.; Zhang, X.; Deng, D.; Wang, Z.; Gao, G.; Wang, Q. Genome-Wide Association Analysis of Flavor Precursor Traits in Chengkou Mountain Chicken. Animals 2025, 15, 1726. https://doi.org/10.3390/ani15121726
Wang H, Huang Y, Liu L, Zhang X, Deng D, Wang Z, Gao G, Wang Q. Genome-Wide Association Analysis of Flavor Precursor Traits in Chengkou Mountain Chicken. Animals. 2025; 15(12):1726. https://doi.org/10.3390/ani15121726
Chicago/Turabian StyleWang, Haiwei, Yu Huang, Lingbin Liu, Xin Zhang, Donghang Deng, Zhen Wang, Guangliang Gao, and Qigui Wang. 2025. "Genome-Wide Association Analysis of Flavor Precursor Traits in Chengkou Mountain Chicken" Animals 15, no. 12: 1726. https://doi.org/10.3390/ani15121726
APA StyleWang, H., Huang, Y., Liu, L., Zhang, X., Deng, D., Wang, Z., Gao, G., & Wang, Q. (2025). Genome-Wide Association Analysis of Flavor Precursor Traits in Chengkou Mountain Chicken. Animals, 15(12), 1726. https://doi.org/10.3390/ani15121726