Effects of Dietary Fiber Fermentation and Protein Digestion Properties on Growth Performance and Microbial Metabolites in Weaned Pigs
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. In Vitro Assay
2.1.1. In Vitro Assay of Protein Digestion
2.1.2. In Vitro Microbial Fermentation
- (1)
- Configure the medium
- (2)
- Prepare the inoculum
- (3)
- In vitro microbial fermentation
- (4)
- Gas production kinetics
2.1.3. Collection and Analysis of the Samples
2.2. In Vivo Assay
2.2.1. Experimental Design, Animals and Diets
2.2.2. Growth Performance and Diarrhea Incidence
2.2.3. Samples Collection and SCFA Determination
2.2.4. Statistical Analysis
3. Results
3.1. In Vitro Protein Digestibility
3.2. In Vitro Microbial Fermentation of Fiber Components
3.3. Effects of Protein Digestion and Fiber Fermentation Speeds on Growth Performance and Diarrhea Incidence of Weaned Pigs
3.4. Effects of Protein Digestion and Fiber Fermentation Speeds on Fecal SCFA Concentrations
4. Discussion
4.1. In Vitro Protein Digestion and Fiber Fermentation Properties
4.2. In Vitro Microbial Composition
4.3. Growth Performance
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huting, A.M.S.; Middelkoop, A.; Guan, X.; Molist, F. Using nutritional strategies to shape the gastro-intestinal tracts of suckling and weaned piglets. Animals 2021, 11, 402. [Google Scholar] [CrossRef] [PubMed]
- Connolly, K.R.; Sweeney, T.; O’Doherty, J.V. Sustainable nutritional strategies for gut health in weaned pigs: The role of reduced dietary crude protein, organic acids and butyrate production. Animals 2025, 15, 66. [Google Scholar] [CrossRef] [PubMed]
- Jiao, A.; Diao, H.; Yu, B.; He, J.; Yu, J.; Zheng, P.; Luo, Y.; Luo, J.; Wang, Q.; Wang, H.; et al. Infusion of short-chain fatty acids in the ileum improves the carcass traits, meat quality and lipid metabolism of growing pigs. Anim. Nutr. 2021, 7, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Yin, J.; Tan, B.; Chen, J.; Zhang, H.; Li, Z.; Ma, X. Physiological function and application of dietary fiber in pig nutrition. Anim. Nutr. 2021, 7, 259–267. [Google Scholar] [CrossRef]
- Reis de Souza, T.C.; Landín, G.M.; Celis, U.M.; Valeriano, T.H.; Gómez-Soto, J.G.; Briones, C.N. Supplementation with potato protein concentrate and Saccharomyces boulardii to an antibiotic-free diet improves intestinal health in weaned piglets. Animals 2025, 15, 985. [Google Scholar] [CrossRef]
- Feng, L.; Luo, Z.; Wang, J.; Wu, K.; Wang, W.; Li, J.; Ma, X.; Tan, B. Fermentation characteristics of different sources of dietary fiber in vitro and impacts on growth performance, nutrient digestibility and blood parameters of piglets. J Funct Foods 2023, 108, 105761. [Google Scholar] [CrossRef]
- Li, J.; Cao, Y.; Yu, X.; Huang, J.; Jiang, R.; Huang, M.; Zhao, J.; Han, D.; Wang, J. Digestion kinetics of protein feed ingredients and their impact on nitrogen utilization in growing pigs. Anim. Nutr. 2025, 21, 292–301. [Google Scholar] [CrossRef]
- Macelline, S.P.; Chrystal, P.V.; Liu, S.Y.; Selle, P.H. The dynamic conversion of dietary protein and amino acids into chicken-meat protein. Animals 2021, 11, 2288. [Google Scholar] [CrossRef]
- Boukrouh, S.; Noutfia, A.; Moula, N.; Avril, C.; Louvieaux, J.; Hornick, J.L.; Cabaraux, J.F.; Chentouf, M. Growth performance, carcass characteristics, fatty acid profile, and meat of male goat kids supplemented by alternative feed resources: Bitter and sorghum grains. Arch. Anim. Breed 2024, 67, 81–492. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, L.; Yang, L.; Yang, G.; Zeng, X.; Qiao, S. Different dietary starch patterns in low-protein diets: Effect on nitrogen efficiency, nutrient metabolism, and intestinal flora in growing pigs. J. Anim. Sci. Biotechnol. 2022, 13, 78. [Google Scholar] [CrossRef]
- Li, Z.; Li, Y.; Zhao, Y.; Wang, G.; Liu, R.; Li, Y.; Aftab, Q.; Sun, Z.; Zhong, Q. Effects of the kinetic pattern of dietary glucose release on nitrogen utilization, the portal amino acid profile, and nutrient transporter expression in intestinal enterocytes in piglets. J. Anim. Sci. Biotechnol. 2024, 15, 49. [Google Scholar] [CrossRef] [PubMed]
- Jezierny, D.; Mosenthin, R.; Sauer, N.; Roth, S.; Piepho, H.P.; Rademacher, M.; Eklund, M. Chemical composition and standardised ileal digestibilities of crude protein and amino acids in grain legumes for growing pigs. Livest. Sci. 2011, 138, 229–243. [Google Scholar] [CrossRef]
- Ørskov, E.R.; McDonald, I. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J. Agric. Sci. 1979, 92, 499–503. [Google Scholar] [CrossRef]
- Menke, K.H.; Steingass, H. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. Dev. 1988, 28, 7–55. [Google Scholar]
- Groot, J.C.J.; Cone, J.W.; Williams, B.A.; Debersaques, F.M.A.; Lantinga, E.A. Multiphasic analysis of gas production kinetics for in vitro fermentation of ruminant feeds. Anim. Feed Sci. Technol. 1996, 64, 77–89. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis, 18th ed.; AOAC Int.: Arlington, VA, USA, 2006. [Google Scholar]
- Zhao, J.; Liu, P.; Wu, Y.; Guo, P.; Liu, L.; Ma, N.; Levesque, C.; Chen, Y.; Zhao, J.; Zhang, J.; et al. Dietary fiber increases butyrate-producing bacteria and improves the growth performance of weaned piglets. J. Agric. Food Chem. 2018, 66, 7995–8004. [Google Scholar] [CrossRef]
- National Research Council (NRC). Nutrient Requirements of Swine, 11th revised ed.; National Academies Press: Washington, DC, USA, 2012. [Google Scholar]
- Carini, E.; Gigliotti, M.; Marinaro, G.; Severini, C.; Derossi, A.; Lamacchia, C. Deepening the understanding of Gluten Friendly technology: Thermal properties, molecular mobility and starch digestibility of wheat flour from ancient and modern cultivars. Food Biosci. 2025, 63, 105774. [Google Scholar] [CrossRef]
- Lee, S.A.; Ahn, J.Y.; Son, A.R.; Kim, B.G. Standardized ileal digestibility of amino acids in cereal grains and co-products in growing pigs. Asian-Australas J. Anim. Sci. 2020, 33, 1148–1155. [Google Scholar] [CrossRef]
- Zhuo, Y.; Zou, X.; Wang, Y.; Jiang, X.; Sun, M.; Xu, S.; Lin, Y.; Hua, L.; Li, J.; Feng, B.; et al. Standardized ileal digestibility of amino acids in cottonseed meal fed to pregnant and non-pregnant sows. J. Anim. Sci. 2023, 101, skad132. [Google Scholar] [CrossRef]
- Boukrouh, S.; Noutfia, A.; Moula, N.; Avril, C.; Louvieaux, J.; Hornick, J.L.; Chentouf, M.; Cabaraux, J.F. Ecological, morpho-agronomical, and nutritional characteristics of Sulla flexuosa (L.) Medik. Ecotypes. Sci. Rep. 2023, 13, 13300. [Google Scholar] [CrossRef]
- Lin, D.; Ning, H.; Liu, Y.; Qin, W.; Liu, J.; Loy, D.A. Mechanism of promoting okara insoluble to soluble dietary fiber by high-pressure homogenization-microbial fermentation. Bioresour. Technol. 2025, 416, 131774. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Zhang, X.; Ying, X.; Ma, A.; Li, Z.; Liu, H.; Guo, Q. Fermentation properties and prebiotic potential of different pectins and their corresponding enzymatic hydrolysates. Food Hydrocoll. 2023, 143, 108878. [Google Scholar] [CrossRef]
- Wang, C.; Wang, Y.; Shan, W.; Han, Y.; Li, X. Solid-state fermentation with lactic acid bacteria of citric acid degrading for hawthorn fruit improvement: Sensory, flavor, antioxidant properties. Food Biosci. 2024, 62, 105402. [Google Scholar] [CrossRef]
- Khan, N.A.; Khan, M.; Sufyan, A.; Saeed, A.; Sun, L.; Wang, S.; Nazar, M.; Tan, Z.; Liu, Y.; Tang, S. Biotechnological processing of sugarcane bagasse through solid-state fermentation with white rot fungi into nutritionally rich and digestible ruminant feed. Fermentation 2024, 10, 181. [Google Scholar] [CrossRef]
- Wu, S.; Bhat, Z.F.; Gounder, R.S.; Mohamed Ahmed, I.A.; Al-Juhaimi, F.Y.; Ding, Y.; Bekhit, A.E.D.A. Effect of dietary protein and processing on gut microbiota—A systematic review. Nutrients 2022, 14, 453. [Google Scholar] [CrossRef]
- Oami, T.; Shimazui, T.; Yumoto, T.; Otani, S.; Hayashi, Y.; Coopersmith, C.M. Gut integrity in intensive care: Alterations in host permeability and the microbiome as potential therapeutic targets. J. Intensive Care 2025, 13, 16. [Google Scholar] [CrossRef]
- Lavelle, A.; Sokol, H. Gut microbiota-derived metabolites as key actors in inflammatory bowel disease. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 223–237. [Google Scholar] [CrossRef]
- Kaur, P.; Dudeja, P.K. Pathophysiology of enteropathogenic Escherichia coli-induced diarrhea. Newborn 2023, 2, 102–113. [Google Scholar] [CrossRef]
- Li, M.; van Esch, B.C.A.M.; Wagenaar, G.T.M.; Garssen, J.; Folkerts, G.; Henricks, P.A.J. Pro- and anti-inflammatory effects of short-chain fatty acids on immune and endothelial cells. Eur. J. Pharmacol. 2018, 831, 52–59. [Google Scholar] [CrossRef]
- Ye, H.; Yu, W. Different influences of dietary fiber from various sources on the in vitro digestibility of casein as uncovered by the study of protein-dietary fiber interactions. Food Res. Int. 2024, 176, 113845. [Google Scholar] [CrossRef]
- Koopman, R.; Crombach, N.; Gijsen, A.P.; Walrand, S.; Fauquant, J.; Kies, A.K.; Lemosquet, S.; Saris, W.H.; Boirie, Y.; van Loon, L.J. Ingestion of a protein hydrolysate is accompanied by an accelerated in vivo digestion and absorption rate when compared with its intact protein. Am. J. Clin. Nutr. 2009, 90, 106–115. [Google Scholar] [CrossRef] [PubMed]
- Yong, F.; Liu, B.; Li, H.; Hao, H.; Fan, Y.; Datsomor, O.; Han, R.; Jiang, H.; Che, D. Relationship between dietary fiber physicochemical properties and feedstuff fermentation characteristics and their effects on nutrient utilization, energy metabolism, and gut microbiota in growing pigs. J. Anim. Sci. Biotechnol. 2025, 16, 1. [Google Scholar] [CrossRef] [PubMed]
- Nikolaki, M.D.; Kasti, A.N.; Katsas, K.; Petsis, K.; Lambrinou, S.; Patsalidou, V.; Stamatopoulou, S.; Karlatira, K.; Kapolos, J.; Papadimitriou, K.; et al. The low-FODMAP diet, IBS, and BCFAs: Exploring the positive, negative, and less desirable aspects—A literature review. Microorganisms 2023, 11, 2387. [Google Scholar] [CrossRef] [PubMed]
Items | Soybean Meal | Cottonseed Protein | Wheat Protein Powder | Potato Protein Powder | Orange Pomace | Sugarcane Bagasse | Hawthorn Powder |
---|---|---|---|---|---|---|---|
GE, MJ/kg | 17.26 | 18.61 | 21.73 | 20.65 | 16.23 | 15.85 | 15.98 |
DM | 89.23 | 89.68 | 92.63 | 93.26 | 91.42 | 90.52 | 90.45 |
CP | 43.69 | 56.42 | 67.86 | 78.45 | 5.71 | 2.59 | 3.85 |
TDF | 19.04 | 8.03 | 7.85 | 3.65 | 43.7 | 91.5 | 67.3 |
SDF | 2.41 | 1.36 | 1.04 | 0.45 | 10.9 | 12.4 | 2.1 |
IDF | 16.63 | 6.67 | 6.81 | 3.2 | 32.8 | 79.1 | 65.2 |
NDF | 12.44 | 7.85 | 6.13 | 3.02 | 28.8 | 75.9 | 66.43 |
ADF | 5.82 | 2.12 | 2.89 | 2.55 | 18.5 | 50.7 | 42.65 |
EE | 1.12 | 0.45 | 1.42 | 2.53 | 0.91 | 0.65 | 0.53 |
Ash | 5.23 | 2.99 | 1.97 | 1.28 | 5.94 | 4.52 | 4.57 |
Items | Dietary Treatments | |||
---|---|---|---|---|
Fast Protein + Fast Fiber | Fast Protein + Slow Fiber | Slow Protein + Fast Fiber | Slow Protein + Slow Fiber | |
Corn | 60.50 | 60.50 | 59.89 | 59.89 |
Soybean meal | 7.50 | 7.50 | ||
Cottonseed protein | 6.50 | 6.50 | ||
Potato protein powder | 5.00 | 5.00 | ||
Wheat protein powder | 5.00 | 5.00 | ||
Orange pomace | 5.00 | 5.00 | ||
Sugarcane bagasse | 5.00 | 5.00 | ||
Soy protein concentrate | 5.00 | 5.00 | 5.00 | 5.00 |
Extruded full-fat soybean | 6.00 | 6.00 | 6.00 | 6.00 |
Whey powder, 3.8% | 5.00 | 5.00 | 5.00 | 5.00 |
Soy oil | 2.50 | 2.50 | 2.50 | 2.50 |
Dicalcium phosphate | 1.40 | 1.40 | 1.40 | 1.40 |
Limestone | 1.00 | 1.00 | 1.00 | 1.00 |
NaCl | 0.30 | 0.30 | 0.30 | 0.30 |
L-Lysine HCl | 0.84 | 0.84 | 0.57 | 0.57 |
DL-Methionine | 0.14 | 0.14 | 0.11 | 0.11 |
L-Threonine | 0.27 | 0.27 | 0.18 | 0.18 |
L-Tryptophan | 0.05 | 0.05 | 0.05 | 0.05 |
Premix (1) | 0.50 | 0.50 | 0.50 | 0.50 |
Total | 100.00 | 100.00 | 100.00 | 100.00 |
Nutrient levels, % (2) | ||||
Gross energy, MJ/kg | 16.85 | 16.73 | 16.77 | 16.62 |
Crude protein | 19.11 | 19.27 | 19.51 | 19.43 |
Total dietary fiber | 9.35 | 11.32 | 9.56 | 11.14 |
Soluble dietary fiber | 1.03 | 1.12 | 0.93 | 1.22 |
Insoluble dietary fiber | 8.32 | 10.20 | 8.63 | 9.92 |
Neutral detergent fiber | 9.21 | 10.88 | 9.37 | 10.59 |
Acid detergent fiber | 4.24 | 5.12 | 4.73 | 4.94 |
Ether extract | 4.63 | 4.89 | 4.44 | 4.71 |
Items (1) | Soybean Meal | Cottonseed Protein | Wheat Gluten Meal | Potato Protein Powder | SEM | p-Value (2) |
---|---|---|---|---|---|---|
P (%/g) | 85.45 b | 93.73 a | 92.75 a | 52.56 c | 2.531 | 0.032 |
V0–30 (%/min) | 0.586 ab | 0.818 a | 0.719 a | 0.316 b | 0.044 | 0.045 |
V30–P (%/min) | 0.198 | 0.15 | 0.116 | 0.115 | 0.023 | 0.450 |
k | 0.032 | 0.028 | 0.035 | 0.019 | 0.002 | 0.092 |
Items (1) | Orange Pomace | Sugarcane Bagasse | Hawthorn Powder | SEM | p-Value (2) |
---|---|---|---|---|---|
A, mL | 140.66 b | 81.82 c | 245.96 a | 10.27 | 0.01 |
B | 2.18 a | 1.27 b | 1.22 b | 0.17 | 0.01 |
C, h | 10.67 c | 15.80 b | 25.70 a | 1.25 | 0.01 |
Items (1) | Orange Pomace | Hawthorn Powder | Sugarcane Bagasse | SEM | p-Value |
---|---|---|---|---|---|
In vitro microbial fermentation | |||||
Fermentability, % | 82.65 a | 37.16 b | 46.85 b | 3.65 | 0.012 |
Concentration, mmol/L | |||||
Acetate | 19.94 a | 14.04 ab | 10.46 b | 1.67 | 0.016 |
Propionate | 2.87 | 2.04 | 1.87 | 0.43 | 0.138 |
Butyrate | 2.05 | 1.57 | 1.10 | 0.39 | 0.221 |
Valerate | 0.51 | 0.39 | 0.27 | 0.24 | 0.442 |
Total SCFA | 25.38 a | 18.05 ab | 13.70 b | 1.92 | 0.011 |
Proportion, % | |||||
Acetate | 78.57 | 77.81 | 76.37 | 3.53 | 0.835 |
Propionate | 11.31 | 11.30 | 13.62 | 1.25 | 0.429 |
Butyrate | 8.09 | 8.72 | 8.00 | 0.84 | 0.957 |
Valerate | 2.02 | 2.18 | 2.00 | 0.23 | 0.883 |
Items (1) | Protein Digestion Speed | Fiber Fermentation Speed | SEM | p-Value (2) | ||||
---|---|---|---|---|---|---|---|---|
Fast Protein | Slow Protein | Fast Fiber | Slow Fiber | Protein Digestion Speed | Fiber Fermentation Speed | Interaction | ||
Body weight, kg | ||||||||
d 0 after weaning | 6.80 | 6.80 | 6.80 | 6.80 | 0.18 | 0.995 | 0.993 | 0.982 |
d 14 after weaning | 11.19 | 11.33 | 11.42 | 11.11 | 0.26 | 0.755 | 0.444 | 0.684 |
d 28 after weaning | 17.25 | 17.50 | 17.69 | 17.06 | 0.42 | 0.524 | 0.187 | 0.795 |
ADFI, g/d | ||||||||
d 0–14 | 477 | 491 | 500 | 468 | 13.85 | 0.315 | 0.086 | 0.423 |
d 14–28 | 735 | 749 | 755 | 729 | 17.32 | 0.365 | 0.168 | 0.637 |
d 0–28 | 606 | 620 | 628 | 599 | 15.26 | 0.337 | 0.122 | 0.568 |
ADG, g/d | ||||||||
d 0–14 | 314 | 324 | 330 | 308 | 8.13 | 0.533 | 0.063 | 0.624 |
d 14–28 | 433 | 441 | 448 | 425 | 9.97 | 0.732 | 0.093 | 0.473 |
d 0–28 | 373 | 383 | 389 | 367 | 9.08 | 0.662 | 0.087 | 0.526 |
FCR | ||||||||
d 0–14 | 1.52 | 1.52 | 1.52 | 1.52 | 0.01 | 0.821 | 0.726 | 0.425 |
d 14–28 | 1.70 | 1.70 | 1.69 | 1.72 | 0.02 | 0.763 | 0.633 | 0.591 |
d 0–28 | 1.63 | 1.62 | 1.62 | 1.63 | 0.02 | 0.795 | 0.752 | 0.535 |
Diarrhea incidence, % | ||||||||
d 0–14 | 8.74 | 8.09 | 10.64 a | 6.20 b | 1.52 | 0.685 | 0.015 | 0.488 |
d 14–28 | 11.46 | 13.18 | 14.75 a | 9.90 b | 1.71 | 0.449 | 0.033 | 0.523 |
d 0–28 | 10.10 | 10.64 | 12.69 a | 8.05 b | 1.66 | 0.621 | 0.011 | 0.515 |
Items (1) | Protein Digestion Speed | Fiber Fermentation Speed | SEM | p-Value (2) | ||||
---|---|---|---|---|---|---|---|---|
Fast Protein | Slow Protein | Fast Fiber | Slow Fiber | Protein Digestion Speed | Fiber Fermentation Speed | Interaction | ||
d 14 | ||||||||
Acetate | 14.11 | 13.48 | 15.05 b | 12.53 a | 1.02 | 0.832 | 0.045 | 0.651 |
Propionate | 6.45 | 6.50 | 6.58 | 6.37 | 0.56 | 0.943 | 0.832 | 0.871 |
Butyrate | 4.06 | 3.72 | 4.15 | 3.64 | 0.41 | 0.425 | 0.917 | 0.768 |
Valerate | 0.95 | 0.70 | 0.85 | 0.80 | 0.16 | 0.575 | 0.934 | 0.424 |
Branched SCFAs | 1.92 | 1.96 | 1.84 | 2.04 | 0.69 | 0.891 | 0.819 | 0.425 |
Total SCFAs | 27.48 | 26.35 | 28.46 | 25.37 | 1.67 | 0.628 | 0.179 | 0.773 |
d 28 | ||||||||
Acetate | 15.83 | 16.17 | 18.13 a | 13.87 b | 1.35 | 0.878 | 0.034 | 0.731 |
Propionate | 8.33 b | 10.96 a | 9.21 | 10.07 | 0.82 | 0.043 | 0.563 | 0.621 |
Butyrate | 5.16 | 6.73 | 5.61 | 6.28 | 0.57 | 0.073 | 0.283 | 0.826 |
Valerate | 0.95 b | 1.94 a | 1.29 b | 1.60 a | 0.18 | 0.022 | 0.013 | 0.338 |
Branched SCFAs | 2.21 b | 3.68 a | 2.68 | 3.20 | 0.43 | 0.017 | 0.425 | 0.852 |
Total SCFAs | 32.46 | 39.47 | 36.91 | 35.01 | 1.89 | 0.065 | 0.448 | 0.769 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, J.; Sun, Z.; Zhu, Q.; Zhang, F.; Lai, C.; Zhao, J. Effects of Dietary Fiber Fermentation and Protein Digestion Properties on Growth Performance and Microbial Metabolites in Weaned Pigs. Animals 2025, 15, 1669. https://doi.org/10.3390/ani15111669
Huang J, Sun Z, Zhu Q, Zhang F, Lai C, Zhao J. Effects of Dietary Fiber Fermentation and Protein Digestion Properties on Growth Performance and Microbial Metabolites in Weaned Pigs. Animals. 2025; 15(11):1669. https://doi.org/10.3390/ani15111669
Chicago/Turabian StyleHuang, Jingyi, Zhiqiang Sun, Qi Zhu, Fudong Zhang, Changhua Lai, and Jinbiao Zhao. 2025. "Effects of Dietary Fiber Fermentation and Protein Digestion Properties on Growth Performance and Microbial Metabolites in Weaned Pigs" Animals 15, no. 11: 1669. https://doi.org/10.3390/ani15111669
APA StyleHuang, J., Sun, Z., Zhu, Q., Zhang, F., Lai, C., & Zhao, J. (2025). Effects of Dietary Fiber Fermentation and Protein Digestion Properties on Growth Performance and Microbial Metabolites in Weaned Pigs. Animals, 15(11), 1669. https://doi.org/10.3390/ani15111669