Characterisation of the Gastrointestinal Microbiome of Green Sea Turtles (Chelonia mydas): A Systematic Review
Simple Summary
Abstract
1. Introduction
2. Methodology
2.1. Searching Strategy
2.2. Inclusion and Exclusion Criteria
2.3. Categorisation and Data Extraction
2.3.1. Categorisation of Animals
2.3.2. Data Extraction
2.3.3. Data Analysis
3. Results and Discussion
3.1. An Overview of Qualitative and Quantitative Features of Evaluated Studies on the Gut Microbiome of Green Sea Turtles
3.2. Represented Geographical Locations in Studies on Gut Microbiome of Green Sea Turtles
3.3. Comparative Analysis of Gut Microbiome in Wild and Captive Green Sea Turtles
3.3.1. Bacillota
3.3.2. Bacteroidota
3.3.3. Verrucomicrobiota
3.3.4. Pseudomonadota
3.4. Comparative Analysis of the Gut Microbiome in Captive and Wild Green Sea Turtles Across Health Conditions
4. Limitations of the Study
5. Conclusions and Future Perspectives
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Scott, R.; Hodgson, D.J.; Witt, M.J.; Coyne, M.S.; Adnyana, W.; Blumenthal, J.M.; Broderick, A.C.; Canbolat, A.F.; Catry, P.; Ciccione, S. Global analysis of satellite tracking data shows that adult green turtles are significantly aggregated in Marine Protected Areas. Glob. Ecol. Biogeogr. 2012, 21, 1053–1061. [Google Scholar] [CrossRef]
- Drane, K.; Huerlimann, R.; Power, M.; Whelan, A.; Ariel, E.; Sheehan, M.; Kinobe, R. Testudines as sentinels for monitoring the dissemination of antibiotic resistance in marine environments: An integrative review. Antibiotics 2021, 10, 775. [Google Scholar] [CrossRef] [PubMed]
- Aguirre, A.A.; Tabor, G.M. Introduction: Marine vertebrates as sentinels of marine ecosystem health. EcoHealth 2004, 1, 236–238. [Google Scholar] [CrossRef]
- Poloczanska, E.S.; Limpus, C.J.; Hays, G.C. Vulnerability of marine turtles to climate change. Adv. Mar. Biol. 2009, 56, 151–211. [Google Scholar]
- Goatley, C.H.; Hoey, A.; Bellwood, D.R. The Role of Turtles as Coral Reef Macroherbivores. PLoS ONE 2012, 7, e39979. [Google Scholar] [CrossRef]
- Stokes, K.L. Ecology of Marine Turtles Under Climate Change. Ph.D. Thesis, University of Exeter, Exeter, UK, 2016. [Google Scholar]
- Hernandez, D.; Claudett, A. Diet and Captive Care of Sea Turtles: A Literature Review; University of Veterinary Medicine: Budapest, Hungary, 2021. [Google Scholar]
- Vanderklift, M.A.; Pillans, R.D.; Rochester, W.; Stubbs, J.L.; Skrzypek, G.; Tucker, A.D.; Whiting, S.D. Ontogenetic changes in green turtle (Chelonia mydas) diet and home range in a tropical lagoon. Front. Ecol. Evol. 2023, 11, 1139441. [Google Scholar] [CrossRef]
- Domiciano, I.G.; Domit, C.; Bracarense, A.P.F.R.L. The green turtle Chelonia mydas as a marine and coastal environmental sentinels: Anthropogenic activities and diseases. Semin. Ciênc. Agrár. 2017, 38, 3417–3434. [Google Scholar] [CrossRef]
- Arienzo, M. Progress on the Impact of Persistent Pollutants on Marine Turtles: A Review. J. Mar. Sci. Eng. 2023, 11, 266. [Google Scholar] [CrossRef]
- Ahasan, M.S.; Waltzek, T.B.; Huerlimann, R.; Ariel, E. Comparative analysis of gut bacterial communities of green turtles (Chelonia mydas) pre-hospitalization and post-rehabilitation by high-throughput sequencing of bacterial 16S rRNA gene. Microbiol. Res. 2018, 207, 91–99. [Google Scholar] [CrossRef]
- Díaz-Abad, L.; Bacco-Mannina, N.; Miguel Madeira, F.; Serrao, E.A.; Regalla, A.; Patrício, A.R.; Frade, P.R. Red, Gold and Green: Microbial Contribution of Rhodophyta and Other Algae to Green Turtle (Chelonia mydas) Gut Microbiome. Microorganisms 2022, 10, 1988. [Google Scholar] [CrossRef]
- Flint, H.J.; Scott, K.P.; Louis, P.; Duncan, S.H. The role of the gut microbiota in nutrition and health. Nat. Rev. Gastroenterol. Hepatol. 2012, 9, 577–589. [Google Scholar] [CrossRef] [PubMed]
- Hooper, L.V.; Littman, D.R.; Macpherson, A.J. Interactions between the microbiota and the immune system. Science 2012, 336, 1268–1273. [Google Scholar] [CrossRef] [PubMed]
- LeBlanc, J.G.; Milani, C.; De Giori, G.S.; Sesma, F.; Van Sinderen, D.; Ventura, M. Bacteria as vitamin suppliers to their host: A gut microbiota perspective. Curr. Opin. Biotechnol. 2013, 24, 160–168. [Google Scholar] [CrossRef]
- Sommer, F.; Bäckhed, F. The gut microbiota—Masters of host development and physiology. Nat. Rev. Microbiol. 2013, 11, 227–238. [Google Scholar] [CrossRef]
- Ahasan, M.S.; Waltzek, T.B.; Owens, L.; Ariel, E. Characterisation and comparison of the mucosa-associated bacterial communities across the gastrointestinal tract of stranded green turtles, Chelonia mydas. AIMS Microbiol. 2020, 6, 361. [Google Scholar]
- Ivanov, I.I.; Honda, K. Intestinal commensal microbes as immune modulators. Cell Host Microbe 2012, 12, 496–508. [Google Scholar] [CrossRef]
- Bloodgood, J.C.; Hernandez, S.M.; Isaiah, A.; Suchodolski, J.S.; Hoopes, L.A.; Thompson, P.M.; Waltzek, T.B.; Norton, T.M. The effect of diet on the gastrointestinal microbiome of juvenile rehabilitating green turtles (Chelonia mydas). PLoS ONE 2020, 15, e0227060. [Google Scholar] [CrossRef]
- Campos, P.; Guivernau, M.; Prenafeta-Boldú, F.X.; Cardona, L. Fast acquisition of a polysaccharide fermenting gut microbiome by juvenile green turtles Chelonia mydas after settlement in coastal habitats. Microbiome 2018, 6, 69. [Google Scholar] [CrossRef]
- Ahasan, M.S.; Waltzek, T.B.; Huerlimann, R.; Ariel, E. Fecal bacterial communities of wild-captured and stranded green turtles (Chelonia mydas) on the Great Barrier Reef. FEMS Microbiol. Ecol. 2017, 93, fix139. [Google Scholar] [CrossRef]
- McDermid, K.J.; Kittle, R.P., III; Veillet, A.; Plouviez, S.; Muehlstein, L.; Balazs, G.H. Identification of gastrointestinal microbiota in Hawaiian green turtles (Chelonia mydas). Evol. Bioinform. 2020, 16, 1176934320914603. [Google Scholar] [CrossRef]
- Gomes, I.B.; Maillard, J.-Y.; Simões, L.C.; Simões, M. Emerging contaminants affect the microbiome of water systems—Strategies for their mitigation. NPJ Clean Water 2020, 3, 39. [Google Scholar] [CrossRef]
- Baquero, F.; Martínez, J.-L.; Cantón, R. Antibiotics and antibiotic resistance in water environments. Curr. Opin. Biotechnol. 2008, 19, 260–265. [Google Scholar] [CrossRef] [PubMed]
- Delli Paoli Carini, A.; Ariel, E.; Picard, J.; Elliott, L. Antibiotic resistant bacterial isolates from captive green turtles and in vitro sensitivity to bacteriophages. Int. J. Microbiol. 2017, 2017, 5798161. [Google Scholar] [CrossRef]
- Kuschke, S.G. What lives on and in the sea turtle? A literature review of sea turtle bacterial microbiota. Anim. Microbiome 2022, 4, 52. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; the PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Ann. Intern. Med. 2009, 151, 264–269. [Google Scholar] [CrossRef]
- Foyle, L.; Burnett, M.; Creaser, A.; Hens, R.; Keough, J.; Madin, L.; Price, R.; Smith, H.; Stone, S.; Kinobe, R.T. Prevalence and distribution of antimicrobial resistance in effluent wastewater from animal slaughter facilities: A systematic review. Environ. Pollut. 2023, 318, 120848. [Google Scholar] [CrossRef]
- Hirth, H.F. Synopsis of the Biological Data on the Green Turtle Chelonia Mydas (Linnaeus 1758); U.S. Department of the Interior: Washington, DC, USA, 1997.
- Witherington, B.; Kubilis, P.; Brost, B.; Meylan, A. Decreasing annual nest counts in a globally important loggerhead sea turtle population. Ecol. Appl. 2009, 19, 30–54. [Google Scholar] [CrossRef]
- Ahasan, M.S.; Kinobe, R.; Elliott, L.; Owens, L.; Scott, J.; Picard, J.; Huerlimann, R.; Ariel, E. Bacteriophage versus antibiotic therapy on gut bacterial communities of juvenile green turtle, Chelonia mydas. Environ. Microbiol. 2019, 21, 2871–2885. [Google Scholar] [CrossRef]
- Scheelings, T.F.; Moore, R.J.; Van, T.T.H.; Klaassen, M.; Reina, R.D. Microbial symbiosis and coevolution of an entire clade of ancient vertebrates: The gut microbiota of sea turtles and its relationship to their phylogenetic history. Anim. Microbiome 2020, 2, 17. [Google Scholar] [CrossRef]
- Price, J.T.; Paladino, F.V.; Lamont, M.M.; Witherington, B.E.; Bates, S.T.; Soule, T. Characterization of the juvenile green turtle (Chelonia mydas) microbiome throughout an ontogenetic shift from pelagic to neritic habitats. PLoS ONE 2017, 12, e0177642. [Google Scholar] [CrossRef]
- Forbes, Z.R.; Scro, A.K.; Patel, S.H.; Dourdeville, K.M.; Prescott, R.L.; Smolowitz, R.M. Fecal and cloacal microbiomes of cold-stunned loggerhead Caretta caretta, Kemp’s ridley Lepidochelys kempii, and green sea turtles Chelonia mydas. Endanger. Species Res. 2023, 50, 93–105. [Google Scholar] [CrossRef]
- Chen, Y.; Xia, Z.; Li, H. Comparative analysis of the fecal bacterial communities of hawksbill sea turtles (Eretmochelys imbricata) and green sea turtles (Chelonia mydas). FEMS Microbiol. Lett. 2022, 369, fnac073. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Xia, Z.; Li, H. Metagenomic comparison of gut communities between hawksbills (Eretmochelys imbricata) and green sea turtles (Chelonia mydas). Arch. Microbiol. 2022, 204, 450. [Google Scholar] [CrossRef]
- Guo, Y.; Chen, H.; Liu, P.; Wang, F.; Li, L.; Ye, M.; Zhao, W.; Chen, J. Microbial composition of carapace, feces, and water column in captive juvenile green sea turtles with carapacial ulcers. Front. Vet. Sci. 2022, 9, 1039519. [Google Scholar] [CrossRef]
- Escobedo-Bonilla, C.M.; Quiros-Rojas, N.M.; Rudín-Salazar, E. Rehabilitation of Marine Turtles and Welfare Improvement by Application of Environmental Enrichment Strategies. Animals 2022, 12, 282. [Google Scholar] [CrossRef]
- Arthur, K.E.; Boyle, M.C.; Limpus, C.J. Ontogenetic changes in diet and habitat use in green sea turtle (Chelonia mydas) life history. Mar. Ecol. Prog. Ser. 2008, 362, 303–311. [Google Scholar] [CrossRef]
- Scheelings, T.F.; Moore, R.J.; Van, T.T.H.; Klaassen, M.; Reina, R.D. The gut bacterial microbiota of sea turtles differs between geographically distinct populations. Endanger. Species Res. 2020, 42, 95–108. [Google Scholar] [CrossRef]
- Biagi, E.; D’Amico, F.; Soverini, M.; Angelini, V.; Barone, M.; Turroni, S.; Rampelli, S.; Pari, S.; Brigidi, P.; Candela, M. Faecal bacterial communities from Mediterranean loggerhead sea turtles (Caretta caretta). Environ. Microbiol. Rep. 2019, 11, 361–371. [Google Scholar] [CrossRef]
- Bai, S.; Zhang, P.; Zhang, C.; Du, J.; Du, X.; Zhu, C.; Liu, J.; Xie, P.; Li, S. Comparative study of the gut microbiota among four different marine mammals in an aquarium. Front. Microbiol. 2021, 12, 769012. [Google Scholar] [CrossRef]
- Uffen, R. Xylan degradation: A glimpse at microbial diversity. J. Ind. Microbiol. Biotechnol. 1997, 19, 1–6. [Google Scholar] [CrossRef]
- Uz, I.; Ogram, A.V. Cellulolytic and fermentative guilds in eutrophic soils of the Florida Everglades. FEMS Microbiol. Ecol. 2006, 57, 396–408. [Google Scholar] [CrossRef] [PubMed]
- Fouad, A.F.; Kum, K.Y.; Clawson, M.; Barry, J.; Abenoja, C.; Zhu, Q.; Caimano, M.; Radolf, J. Molecular characterization of the presence of Eubacterium spp. and Streptococcus spp. in endodontic infections. Oral Microbiol. Immunol. 2003, 18, 249–255. [Google Scholar] [CrossRef]
- Murphy, E.C.; Frick, I.-M. Gram-positive anaerobic cocci–commensals and opportunistic pathogens. FEMS Microbiol. Rev. 2013, 37, 520–553. [Google Scholar] [CrossRef]
- Cherington, M. Botulism: Update and review. In The Seminars in Neurology; Thieme Medical Publishers: New York, NY, USA, 2004; pp. 155–163. [Google Scholar]
- Ahasan, M.S. Gut Bacterial Communities in Healthy and Compromised Green Turtles (Chelonia mydas) and an Alternative Treatment for Gastrointestinal Disorders. Ph.D. Thesis, James Cook University, Townsville, Australia, 2017. [Google Scholar]
- Thomas, F.; Hehemann, J.-H.; Rebuffet, E.; Czjzek, M.; Michel, G. Environmental and gut bacteroidetes: The food connection. Front. Microbiol. 2011, 2, 93. [Google Scholar] [CrossRef]
- Zhang, Y.; Gao, Y.; Li, C.; Zhang, Y.-A.; Lu, Y.; Ye, J.; Liu, X. Parabacteroides distasonis regulates the infectivity and pathogenicity of SVCV at different water temperatures. Microbiome 2024, 12, 128. [Google Scholar]
- Tsukinowa, E.; Karita, S.; Asano, S.; Wakai, Y.; Oka, Y.; Furuta, M.; Goto, M. Fecal microbiota of a dugong (Dugong dugong) in captivity at Toba Aquarium. J. Gen. Appl. Microbiol. 2008, 54, 25–38. [Google Scholar] [CrossRef]
- Hong, P.-Y.; Wheeler, E.; Cann, I.K.; Mackie, R.I. Phylogenetic analysis of the fecal microbial community in herbivorous land and marine iguanas of the Galápagos Islands using 16S rRNA-based pyrosequencing. ISME J. 2011, 5, 1461–1470. [Google Scholar] [CrossRef]
- Nelson, T.M.; Rogers, T.L.; Brown, M.V. The gut bacterial community of mammals from marine and terrestrial habitats. PLoS ONE 2013, 8, e83655. [Google Scholar] [CrossRef]
- Jiang, Y.; Xie, C.; Yang, G.; Gong, X.; Chen, X.; Xu, L.; Bao, B. Cellulase-producing bacteria of Aeromonas are dominant and indigenous in the gut of Ctenopharyngodon idellus (Valenciennes). Aquac. Res. 2011, 42, 499–505. [Google Scholar] [CrossRef]
- Ye, C.; Geng, S.; Zhang, Y.; Qiu, H.; Zhou, J.; Zeng, Q.; Zhao, Y.; Wu, D.; Yu, G.; Gong, H. The impact of culture systems on the gut microbiota and gut metabolome of bighead carp (Hypophthalmichthys nobilis). Anim. Microbiome 2023, 5, 20. [Google Scholar] [CrossRef]
- Bridel, S.; Bourgeon, F.; Marie, A.; Saulnier, D.; Pasek, S.; Nicolas, P.; Bernardet, J.-F.; Duchaud, E. Genetic diversity and population structure of Tenacibaculum maritimum, a serious bacterial pathogen of marine fish: From genome comparisons to high throughput MALDI-TOF typing. Vet. Res. 2020, 51, 60. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Garcia, M.; Brazel, D.M.; Swan, B.K.; Arnosti, C.; Chain, P.S.; Reitenga, K.G.; Xie, G.; Poulton, N.J.; Gomez, M.L.; Masland, D.E. Capturing single cell genomes of active polysaccharide degraders: An unexpected contribution of Verrucomicrobia. PLoS ONE 2012, 7, e35314. [Google Scholar] [CrossRef] [PubMed]
- Ouwerkerk, J.P.; Koehorst, J.J.; Schaap, P.J.; Ritari, J.; Paulin, L.; Belzer, C.; de Vos, W.M. Complete genome sequence of Akkermansia glycaniphila strain PytT, a mucin-degrading specialist of the reticulated python gut. Genome Announc. 2017, 5, e01098-16. [Google Scholar] [CrossRef]
- Rawski, M.; Kierończyk, B.; Długosz, J.; Świątkiewicz, S.; Józefiak, D. Dietary probiotics affect gastrointestinal microbiota, histological structure and shell mineralization in turtles. PLoS ONE 2016, 11, e0147859. [Google Scholar] [CrossRef]
- Xu, Y.; Duan, J.; Wang, D.; Liu, J.; Chen, X.; Qin, X.-Y.; Yu, W. Akkermansia muciniphila alleviates persistent inflammation, immunosuppression, and catabolism syndrome in mice. Metabolites 2023, 13, 194. [Google Scholar] [CrossRef]
- Rodrigues, V.F.; Elias-Oliveira, J.; Pereira, Í.S.; Pereira, J.A.; Barbosa, S.C.; Machado, M.S.G.; Carlos, D. Akkermansia muciniphila and gut immune system: A good friendship that attenuates inflammatory bowel disease, obesity, and diabetes. Front. Immunol. 2022, 13, 934695. [Google Scholar] [CrossRef]
- Panzetta, M.E.; Valdivia, R.H. Akkermansia in the gastrointestinal tract as a modifier of human health. Gut Microbes 2024, 16, 2406379. [Google Scholar] [CrossRef]
- McMaken, C.M.; Burkholder, D.A.; Milligan, R.J.; Lopez, J.V. Potential impacts of environmental bacteria on the microbiota of loggerhead (Caretta caretta) and green (Chelonia mydas) sea turtle eggs and their hatching success. MicrobiologyOpen 2023, 12, e1363. [Google Scholar] [CrossRef]
- Samuelson, M.M.; Pulis, E.E.; Ray, C.; Arias, C.R.; Samuelson, D.R.; Mattson, E.E.; Solangi, M. Analysis of the fecal microbiome in Kemp’s ridley sea turtles Lepidochelys kempii undergoing rehabilitation. Endanger. Species Res. 2020, 43, 121–131. [Google Scholar] [CrossRef]
- Shin, N.-R.; Whon, T.W.; Bae, J.-W. Proteobacteria: Microbial signature of dysbiosis in gut microbiota. Trends Biotechnol. 2015, 33, 496–503. [Google Scholar] [CrossRef]
- Chow, W.L.; Lee, Y.-K. Mucosal interactions and gastrointestinal microbiota. In Gastrointestinal Microbiology; CRC Press: Boca Raton, FL, USA, 2006; pp. 143–156. [Google Scholar]
- Wilson, M. Microbial Inhabitants of Humans: Their Ecology and Role in Health and Disease; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- López-Garcı́a, P.; Moreira, D. Metabolic symbiosis at the origin of eukaryotes. Trends Biochem. Sci. 1999, 24, 88–93. [Google Scholar] [CrossRef] [PubMed]
- Bergey, D.H.; Garrity, G. Bergey’s Manual of Systematic Bacteriology: The Proteobacteria; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Ebani, V.V. Bacterial infections in sea turtles. Vet. Sci. 2023, 10, 333. [Google Scholar] [CrossRef] [PubMed]
- Imhoff, J.F. Enterobacteriales. In Bergey’s Manual® of Systematic Bacteriology; Springer: Berlin/Heidelberg, Germany, 2005; pp. 587–850. [Google Scholar]
- Chuen-Im, T.; Areekijseree, M.; Chongthammakun, S.; Graham, S.V. Aerobic bacterial infections in captive juvenile green turtles (Chelonia mydas) and hawksbill turtles (Eretmochelys imbricata) from Thailand. Chelonian Conserv. Biol. 2010, 9, 135–142. [Google Scholar] [CrossRef]
- Bocian-Ostrzycka, K.M.; Grzeszczuk, M.J.; Dziewit, L.; Jagusztyn-Krynicka, E.K. Diversity of the Epsilonproteobacteria Dsb (disulfide bond) systems. Front. Microbiol. 2015, 6, 570. [Google Scholar] [CrossRef]
- Soslau, G.; Russell, J.A.; Spotila, J.R.; Mathew, A.J.; Bagsiyao, P. Acinetobacter sp. HM746599 isolated from leatherback turtle blood. FEMS Microbiol. Lett. 2011, 322, 166–171. [Google Scholar] [CrossRef]
- Freestone, P.P.; Sandrini, S.M.; Haigh, R.D.; Lyte, M. Microbial endocrinology: How stress influences susceptibility to infection. Trends Microbiol. 2008, 16, 55–64. [Google Scholar] [CrossRef]
- Ahasan, M.S.; Picard, J.; Elliott, L.; Kinobe, R.; Owens, L.; Ariel, E. Evidence of antibiotic resistance in Enterobacteriales isolated from green sea turtles, Chelonia mydas on the Great Barrier Reef. Mar. Pollut. Bull. 2017, 120, 18–27. [Google Scholar] [CrossRef]
Region | Ranking of Top Four Dominant Phyla | References | |
---|---|---|---|
Australia | Captive (Two studies, n = 20) | Wild (Four studies, n = 30) | [11,17,21,31,32] |
|
| ||
USA | Captive (No reported study) | Wild (Three studies, n = 31) | [19,33,34] |
N/A |
| ||
China | Captive (Three studies, n = 31) | Wild (No reported study) | [35,36,37] |
| N/A | ||
Brazil | Captive (One study, n = 8) | Wild (One study, n = 16) | [20] |
|
| ||
Guinea-Bissau | Captive (No reported study) | Wild (One study, n = 7) | [12] |
N/A |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghafoor, D.; Hayakijkosol, O.; Ewels, C.; Kinobe, R. Characterisation of the Gastrointestinal Microbiome of Green Sea Turtles (Chelonia mydas): A Systematic Review. Animals 2025, 15, 1594. https://doi.org/10.3390/ani15111594
Ghafoor D, Hayakijkosol O, Ewels C, Kinobe R. Characterisation of the Gastrointestinal Microbiome of Green Sea Turtles (Chelonia mydas): A Systematic Review. Animals. 2025; 15(11):1594. https://doi.org/10.3390/ani15111594
Chicago/Turabian StyleGhafoor, Dawood, Orachun Hayakijkosol, Carla Ewels, and Robert Kinobe. 2025. "Characterisation of the Gastrointestinal Microbiome of Green Sea Turtles (Chelonia mydas): A Systematic Review" Animals 15, no. 11: 1594. https://doi.org/10.3390/ani15111594
APA StyleGhafoor, D., Hayakijkosol, O., Ewels, C., & Kinobe, R. (2025). Characterisation of the Gastrointestinal Microbiome of Green Sea Turtles (Chelonia mydas): A Systematic Review. Animals, 15(11), 1594. https://doi.org/10.3390/ani15111594