Individual Mechanical Energy Expenditure Regimens Vary Seasonally with Weather, Sex, Age and Body Condition in a Generalist Carnivore Population: Support for Inter-Individual Tactical Diversity
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Processing Accelerometry Data
2.3. Seasonal Drivers of ODBA and Activity
2.4. Inter-Individual Environmental Response Heterogeneity
2.5. Intra-Individual Consistency (Activity Types)
3. Results
3.1. Individual and Seasonal Variation in ODBA and Activity Patterns
3.2. Seasonal Drivers of Daily ODBA/Activity
3.2.1. Weather Drivers
3.2.2. Intrinsic Drivers of ODBA and Activity
3.3. Inter-Individual Response Variability: Explanatory Factors
3.4. Intra-Individual Activity Consistency
3.5. Diet
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sih, A.; Ferrari, M.C.O.; Harris, D.J. Evolution and Behavioural Responses to Human-Induced Rapid Environmental Change. Evol. Appl. 2011, 4, 367–387. [Google Scholar] [CrossRef] [PubMed]
- Fuller, A.; Dawson, T.; Helmuth, B.; Hetem, R.S.; Mitchell, D.; Maloney, S.K. Physiological Mechanisms in Coping with Climate Change. Physiol. Biochem. Zool. 2010, 83, 713–720. [Google Scholar] [CrossRef]
- Pearson, R.G.; Dawson, T.P. Predicting the Impacts of Climate Change on the Distribution of Species: Are Bioclimate Envelope Models Useful? Glob. Ecol. Biogeogr. 2003, 12, 361–371. [Google Scholar] [CrossRef]
- Darwin, C. On the Origin of Species by Means of Natural Selection, or, the Preservation of Favoured Races in the Struggle for Life; John Murray: London, UK, 1859. [Google Scholar]
- Mayr, E. The Objects of Selection. Proc. Natl. Acad. Sci. USA 1997, 94, 2091–2094. [Google Scholar] [CrossRef]
- Chimienti, M.; Desforges, J.-P.; Beumer, L.T.; Nabe-Nielsen, J.; van Beest, F.M.; Schmidt, N.M. Energetics as Common Currency for Integrating High Resolution Activity Patterns into Dynamic Energy Budget-Individual Based Models. Ecol. Modell. 2020, 434, 109250. [Google Scholar] [CrossRef]
- Bolnick, D.I.; Svanbäck, R.; Araújo, M.S.; Persson, L. Comparative Support for the Niche Variation Hypothesis That More Generalized Populations Also Are More Heterogeneous. Proc. Natl. Acad. Sci. USA 2007, 104, 10075–10079. [Google Scholar] [CrossRef] [PubMed]
- Mcnab, B.K. The Influence of Body Size on the Energetics and Distribution of Fossorial and Burrowing Mammals. Ecology 1979, 60, 1010–1021. [Google Scholar] [CrossRef]
- Speakman, J.R. Body Size, Energy Metabolism and Lifespan. J. Exp. Biol. 2005, 208, 1717–1730. [Google Scholar] [CrossRef]
- González-Suárez, M.; Gómez, A.; Revilla, E. Which Intrinsic Traits Predict Vulnerability to Extinction Depends on the Actual Threatening Processes. Ecosphere 2013, 4, 76. [Google Scholar] [CrossRef]
- Diserens, T.A.; Bubnicki, J.W.; Schutgens, E.; Rokx, K.; Kowalczyk, R.; Kuijper, D.P.J.; Churski, M. Fossoriality in a Risky Landscape: Badger Sett Use Varies with Perceived Wolf Risk. J. Zool. 2021, 313, 76–85. [Google Scholar] [CrossRef]
- Monteith, K.L.; Stephenson, T.R.; Bleich, V.C.; Conner, M.M.; Pierce, B.M.; Bowyer, R.T. Risk-Sensitive Allocation in Seasonal Dynamics of Fat and Protein Reserves in a Long-Lived Mammal. J. Anim. Ecol. 2013, 82, 377–388. [Google Scholar] [CrossRef] [PubMed]
- Bright Ross, J.G.; Markham, A.; Buesching, C.D.; Hambly, C.; Speakman, J.R.; Macdonald, D.W.; Newman, C. Links between Energy Budgets, Somatic Condition, and Life History Reveal Heterogeneous Energy Management Tactics in a Group-living Mesocarnivore. Mov. Ecol. 2024, 12, 24. [Google Scholar] [CrossRef] [PubMed]
- Weiner, J. Physiological Limits to Sustainable Energy Budgets in Birds and Mammals: Ecological Implications. Trends Ecol. Evol. 1992, 7, 384–388. [Google Scholar] [CrossRef]
- Artacho, P.; Nespolo, R.F. Natural Selection Reduces Energy Metabolism in the Garden Snail, Helix aspersa (Cornu aspersum). Evolution 2009, 63, 1044–1050. [Google Scholar] [CrossRef]
- Zhu, W.; Mu, Y.; Liu, J.; Wang, Z. Energy Requirements during Lactation in Female Apodemus chevrieri (Mammalia: Rodentia: Muridae) in the Hengduan Mountain Region. Ital. J. Zool. 2015, 82, 165–171. [Google Scholar] [CrossRef]
- Even, P.C.; Rolland, V.; Roseau, S.; Bouthegourd, J.-C.; Tomé, D. Prediction of Basal Metabolism from Organ Size in the Rat: Relationship to Strain, Feeding, Age, and Obesity. Am. J. Physiol. 2001, 280, R1887–R1896. [Google Scholar] [CrossRef]
- Wright, J.; Bolstad, G.H.; Araya-Ajoy, Y.G.; Dingemanse, N.J. Life-History Evolution under Fluctuating Density-Dependent Selection and the Adaptive Alignment of Pace-of-Life Syndromes. Biol. Rev. 2019, 94, 230–247. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, A.A.; Sgrò, C.M. Climate Change and Evolutionary Adaptation. Nature 2011, 470, 479–485. [Google Scholar] [CrossRef]
- Williams, C.T.; Wilsterman, K.; Kelley, A.D.; Breton, A.R.; Stark, H.; Humphries, M.M.; McAdam, A.G.; Barnes, B.M.; Boutin, S.; Buck, C.L. Light Loggers Reveal Weather-Driven Changes in the Daily Activity Patterns of Arboreal and Semifossorial Rodents. J. Mammal. 2014, 95, 1230–1239. [Google Scholar] [CrossRef]
- Humphries, M.M.; Thomas, D.W.; Kramer, D.L. The Role of Energy Availability in Mammalian Hibernation: A Cost-Benefit Approach. Physiol. Biochem. Zool. 2003, 76, 165–179. [Google Scholar] [CrossRef]
- Rueffler, C.; Van Dooren, T.J.M.; Leimar, O.; Abrams, P.A. Disruptive Selection and Then What? Trends Ecol. Evol. 2006, 21, 238–245. [Google Scholar] [CrossRef]
- Rajon, E.; Desouhant, E.; Chevalier, M.; Débias, F.; Menu, F. The Evolution of Bet Hedging in Response to Local Ecological Conditions. Am. Nat. 2014, 184, E1–E15. [Google Scholar] [CrossRef] [PubMed]
- Schindler, D.E.; Armstrong, J.B.; Reed, T.E. The Portfolio Concept in Ecology and Evolution. Front. Ecol. Environ. 2015, 13, 257–263. [Google Scholar] [CrossRef]
- Bright Ross, J.G.; Newman, C.; Buesching, C.D.; Connolly, E.; Nakagawa, S.; Macdonald, D.W. A Fat Chance of Survival: Body Condition Provides Life-History Dependent Buffering of Environmental Change in a Wild Mammal Population. Clim. Change Ecol. 2021, 2, 100022. [Google Scholar] [CrossRef]
- Segan, D.B.; Murray, K.A.; Watson, J.E.M. A Global Assessment of Current and Future Biodiversity Vulnerability to Habitat Loss-Climate Change Interactions. Glob. Ecol. Conserv. 2016, 5, 12–21. [Google Scholar] [CrossRef]
- Jump, A.S.; Peñuelas, J. Running to Stand Still: Adaptation and the Response of Plants to Rapid Climate Change. Ecol. Lett. 2005, 8, 1010–1020. [Google Scholar] [CrossRef] [PubMed]
- Schloss, C.A.; Nuñez, T.A.; Lawler, J.J. Dispersal Will Limit Ability of Mammals to Track Climate Change in the Western Hemisphere. Proc. Natl. Acad. Sci. USA 2012, 109, 8606–8611. [Google Scholar] [CrossRef]
- Campbell, R.D.; Nouvellet, P.; Newman, C.; Macdonald, D.W.; Rosell, F. The Influence of Mean Climate Trends and Climate Variance on Beaver Survival and Recruitment Dynamics. Glob. Change Biol. 2012, 18, 2730–2742. [Google Scholar] [CrossRef]
- Byrne, A.W.; Fogarty, U.; O’Keeffe, J.; Newman, C. In Situ Adaptive Response to Climate and Habitat Quality Variation: Spatial and Temporal Variation in European Badger (Meles meles) Body Weight. Glob. Change Biol. 2015, 21, 3336–3346. [Google Scholar] [CrossRef]
- Merilä, J.; Hendry, A.P. Climate Change, Adaptation, and Phenotypic Plasticity: The Problem and the Evidence. Evol. Appl. 2013, 7, 1–14. [Google Scholar] [CrossRef]
- De Meester, L.; Stoks, R.; Brans, K.I. Genetic Adaptation as a Biological Buffer against Climate Change: Potential and Limitations. Integr. Zool. 2018, 13, 372–391. [Google Scholar] [CrossRef] [PubMed]
- Chevin, L.M.; Lande, R.; Mace, G.M. Adaptation, Plasticity, and Extinction in a Changing Environment: Towards a Predictive Theory. PLoS Biol. 2010, 8, e1000357. [Google Scholar] [CrossRef] [PubMed]
- Fuller, A.; Mitchell, D.; Maloney, S.K.; Hetem, R.S.; Fonsêca, V.F.C.; Meyer, L.C.R.; van de Ven, T.M.F.N.; Snelling, E.P. How Dryland Mammals Will Respond to Climate Change: The Effects of Body Size, Heat Load and a Lack of Food and Water. J. Exp. Biol. 2021, 224, jeb238113. [Google Scholar] [CrossRef] [PubMed]
- Hertel, A.G.; Niemelä, P.T.; Dingemanse, N.J.; Mueller, T. A Guide for Studying Among-Individual Behavioral Variation from Movement Data in the Wild. Mov. Ecol. 2020, 8, 30. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, W.; Kaneko, Y.; Newman, C.; Liao, Z.; Zhu, X.; Buesching, C.D.; Xie, Z.; Macdonald, D.W. Seasonal Dietary Shifts and Food Resource Exploitation by the Hog Badger (Arctonyx collaris) in a Chinese Subtropical Forest. Eur. J. Wildl. Res. 2015, 61, 125–133. [Google Scholar] [CrossRef]
- Gleiss, A.C.; Wilson, R.P.; Shepard, E.L.C. Making Overall Dynamic Body Acceleration Work: On the Theory of Acceleration as a Proxy for Energy Expenditure. Methods Ecol. Evol. 2011, 2, 23–33. [Google Scholar] [CrossRef]
- Miwa, M.; Oishi, K.; Nakagawa, Y.; Maeno, H.; Anzai, H.; Kumagai, H.; Okano, K.; Tobioka, H.; Hirooka, H. Application of Overall Dynamic Body Acceleration as a Proxy for Estimating the Energy Expenditure of Grazing Farm Animals: Relationship with Heart Rate. PLoS ONE 2015, 10, e0128042. [Google Scholar] [CrossRef]
- Elliott, K.H.; Le Vaillant, M.; Kato, A.; Speakman, J.R.; Ropert-Coudert, Y. Accelerometry Predicts Daily Energy Expenditure in a Bird with High Activity Levels. Biol. Lett. 2013, 9, 20120919. [Google Scholar] [CrossRef]
- Dalton, A.J.M.; Rosen, D.A.S.; Trites, A.W. Season and Time of Day Affect the Ability of Accelerometry and the Doubly Labeled Water Methods to Measure Energy Expenditure in Northern Fur Seals (Callorhinus ursinus). J. Exp. Mar. Bio. Ecol. 2014, 452, 125–136. [Google Scholar] [CrossRef]
- Wilson, R.P.; Williams, H.; Geraldi, N.R.; Börger, L.; Holton, M.D.; Scantlebury, D.M.; Gómez-Laich, A.; Quintana, F.; Rosell, F.; Graf, P.M.; et al. Estimates for Energy Expenditure in Free-living Animals Using Acceleration Proxies: A Reappraisal. J. Anim. Ecol. 2020, 89, 161–172. [Google Scholar] [CrossRef]
- Qasem, L.; Cardew, A.; Wilson, A.; Griffiths, I.; Halsey, L.G.; Shepard, E.L.C.; Gleiss, A.C.; Wilson, R. Tri-Axial Dynamic Acceleration as a Proxy for Animal Energy Expenditure; Should We Be Summing Values or Calculating the Vector? PLoS ONE 2012, 7, e31187. [Google Scholar] [CrossRef] [PubMed]
- Noonan, M.J.; Newman, C.; Markham, A.C.; Bilham, K.; Buesching, C.D. In Situ Behavioral Plasticity as Compensation for Weather Variability: Implications for Future Climate Change. Clim. Change 2018, 149, 457–471. [Google Scholar] [CrossRef]
- Bartra Cabré, L. Disentangling the Drivers of European Badger (Meles meles) Activity at Multiple Temporal Scales. Master’s Thesis, Norwegian University of Life Sciences, Ås, Norway, 2020. [Google Scholar]
- Elliott, S.; O’Brien, J.; Hayden, T.J. Impact of Human Land Use Patterns and Climatic Variables on Badger (Meles meles) Foraging Behaviour in Ireland. Mammal Res. 2015, 60, 331–342. [Google Scholar] [CrossRef]
- Bright Ross, J.G.; Newman, C.; Buesching, C.D.; Macdonald, D.W. Preserving Identity in Capture-Mark-Recapture Studies: Increasing the Accuracy of Minimum Number Alive (MNA) Estimates by Incorporating Inter-Census Trapping Efficiency Variation. Mamm. Biol. 2022, 102, 567–580. [Google Scholar] [CrossRef]
- Tsunoda, M.; Newman, C.; Buesching, C.D.; Macdonald, D.W.; Kaneko, Y. Badger Setts Provide Thermal Refugia, Buffering Changeable Surface Weather Conditions. J. Therm. Biol. 2018, 74, 226–233. [Google Scholar] [CrossRef]
- Williams, C.T.; Wilsterman, K.; Zhang, V.; Moore, J.; Barnes, B.M.; Buck, C.L. The Secret Life of Ground Squirrels: Accelerometry Reveals Sex-Dependent Plasticity in above-Ground Activity. R. Soc. Open Sci. 2016, 3, 160404. [Google Scholar] [CrossRef] [PubMed]
- Noonan, M.J.; Markham, A.; Newman, C.; Trigoni, N.; Buesching, C.D.; Ellwood, S.A.; Macdonald, D.W. Climate and the Individual: Inter-Annual Variation in the Autumnal Activity of the European Badger (Meles meles). PLoS ONE 2014, 9, e83156. [Google Scholar] [CrossRef]
- Macdonald, D.W.; Newman, C. Population Dynamics of Badgers (Meles meles) in Oxfordshire, U.K.: Numbers, Density and Cohort Life Histories, and a Possible Role of Climate Change in Population Growth. J. Zool. 2002, 256, 121–138. [Google Scholar] [CrossRef]
- Johnson, D.D.P.; Jetz, W.; Macdonald, D.W. Environmental Correlates of Badger Social Spacing across Europe. J. Biogeogr. 2002, 29, 411–425. [Google Scholar] [CrossRef]
- Newman, C.; Zhou, Y.; Buesching, C.D.; Kaneko, Y.; Macdonald, D.W. Contrasting Sociality in Two Widespread, Generalist, Mustelid Genera, Meles and Martes. Mammal Study 2011, 36, 169–188. [Google Scholar] [CrossRef]
- McClune, D.W.; Kostka, B.; Delahay, R.J.; Montgomery, W.I.; Marks, N.J.; Scantlebury, D.M. Winter Is Coming: Seasonal Variation in Resting Metabolic Rate of the European Badger (Meles meles). PLoS ONE 2015, 10, e0135920. [Google Scholar] [CrossRef] [PubMed]
- Sugianto, N.A.; Heistermann, M.; Newman, C.; Macdonald, D.W.; Buesching, C.D. Alternative Reproductive Strategies Provide a Flexible Mechanism for Assuring Mating Success in the European Badgers (Meles meles): An Investigation from Hormonal Measures. Gen. Comp. Endocrinol. 2021, 310, 113823. [Google Scholar] [CrossRef] [PubMed]
- Buesching, C.D.; Heistermann, M.; Macdonald, D.W. Seasonal and Inter-Individual Variation in Testosterone Levels in Badgers Meles meles: Evidence for the Existence of Two Endocrinological Phenotypes. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 2009, 195, 865–871. [Google Scholar] [CrossRef] [PubMed]
- Nouvellet, P.; Newman, C.; Buesching, C.D.; Macdonald, D.W. A Multi-Metric Approach to Investigate the Effects of Weather Conditions on the Demographic of a Terrestrial Mammal, the European Badger (Meles meles). PLoS ONE 2013, 8, e68116. [Google Scholar] [CrossRef]
- Macdonald, D.W. Predation on Earthworms by Terrestrial Vertebrates. In Earthworm Ecology; Satchell, J.E., Ed.; Springer: Dordrecht, The Netherlands, 1983; pp. 393–414. [Google Scholar]
- Gebremedhin, K.G. Effect of Animal Orientation with Respect to Wind Direction on Convective Heat Loss. Agric. For. Meteorol. 1987, 40, 199–206. [Google Scholar] [CrossRef]
- Macdonald, D.; Newman, C. The Badgers of Wytham Woods: A Model for Behaviour, Ecology, and Evolution; Oxford University Press: Oxford, UK, 2022. [Google Scholar]
- McLaren, G.W.; Thornton, P.D.; Newman, C.; Buesching, C.D.; Baker, S.E.; Mathews, F.; Macdonald, D.W. The Use and Assessment of Ketamine-Medetomidine-Butorphanol Combinations for Field Anaesthesia in Wild European Badgers (Meles meles). Vet. Anaesth. Analg. 2005, 32, 367–372. [Google Scholar] [CrossRef]
- Labocha, M.K.; Schutz, H.; Hayes, J.P. Which Body Condition Index Is Best? Oikos 2014, 123, 111–119. [Google Scholar] [CrossRef]
- Dugdale, H.L.; Davison, D.; Baker, S.E.; Ellwood, S.A.; Newman, C.; Buesching, C.D.; Macdonald, D.W. Female Teat Size Is a Reliable Indicator of Annual Breeding Success in European Badgers: Genetic Validation. Mamm. Biol. 2011, 76, 716–721. [Google Scholar] [CrossRef]
- Stefanie, M.; Schäfer; Pallett, D. ECN Terrestrial Site T08. Unpublished Dataset.
- Kaneko, Y.; Maruyama, N.; Macdonald, D.W. Food Habits and Habitat Selection of Suburban Badgers (Meles meles) in Japan. J. Zool. 2006, 270, 78–89. [Google Scholar] [CrossRef]
- Cleary, G.P.; Corner, L.A.L.; O’Keeffe, J.; Marples, N.M. The Diet of the Badger Meles meles in the Republic of Ireland. Mamm. Biol. 2009, 74, 438–447. [Google Scholar] [CrossRef]
- Stiegler, J.; Pahl, J.; Guillen, R.A.; Ullmann, W.; Blaum, N. The Heat Is on: Impacts of Rising Temperature on the Activity of a Common European Mammal. Front. Ecol. Evol. 2023, 11, 1193861. [Google Scholar] [CrossRef]
- Halsey, L.G.; Green, J.A.; Wilson, R.P.; Frappell, P.B. Accelerometry to Estimate Energy Expenditure during Activity: Best Practice with Data Loggers. Physiol. Biochem. Zool. 2009, 82, 396–404. [Google Scholar] [CrossRef] [PubMed]
- Tuyttens, F.A.M.; Macdonald, D.W.; Roddam, A.W. Effects of Radio-Collars on European Badgers (Meles meles). J. Zool. 2002, 257, 37–42. [Google Scholar] [CrossRef]
- Wood, S.; Scheipl, F. gamm4: Generalized Additive Mixed Models Using “mgcv” and “lme4”. 2020. Available online: https://search.r-project.org/CRAN/refmans/gamm4/html/gamm4.html (accessed on 13 April 2025).
- Eager, C.D. Standardize: Tools for Standardizing Variables for Regression in R. 2017. Available online: https://github.com/CDEager/standardize (accessed on 13 April 2025).
- Zuur, A.F.; Saveliev, A.A.; Ieno, E.N. A Beginner’s Guide to Generalised Additive Mixed Models with R; Highland Statistics: Newburgh, UK, 2014. [Google Scholar]
- Barton, K.A. MuMIn: Multi-Model Inference, R Package Version 1.43.6. 2019. Available online: http://CRAN.R-project.org/package=MuMIn (accessed on 13 April 2025).
- Benoit, T.; Achraf, E. suncalc: Compute Sun Position, Sunlight Phases, Moon Position and Lunar Phase, R Package Version 0.5.0. 2019. Available online: https://cran.r-project.org/web/packages/suncalc/suncalc.pdf (accessed on 13 April 2025).
- Nakagawa, S.; Schielzeth, H. Repeatability for Gaussian and Non-Gaussian Data: A Practical Guide for Biologists. Biol. Rev. 2010, 85, 935–956. [Google Scholar] [CrossRef] [PubMed]
- Long, R.A.; Bowyer, R.T.; Porter, W.P.; Mathewson, P.; Monteith, K.L.; Kie, J.G. Behavior and Nutritional Condition Buffer a Large-Bodied Endotherm against Direct and Indirect Effects of Climate. Ecol. Monogr. 2014, 84, 513–532. [Google Scholar] [CrossRef]
- Webb, D.R.; King, J.R. Effects of Wetting of Insulation of Bird and Mammal Coats. J. Therm. Biol. 1984, 9, 189–191. [Google Scholar] [CrossRef]
- Speakman, J.R.; Król, E. Maximal Heat Dissipation Capacity and Hyperthermia Risk: Neglected Key Factors in the Ecology of Endotherms. J. Anim. Ecol. 2010, 79, 726–746. [Google Scholar] [CrossRef]
- Marino, F.E. Anticipatory Regulation and Avoidance of Catastrophe during Exercise-Induced Hyperthermia. Comp. Biochem. Physiol. Part B 2004, 139, 561–569. [Google Scholar] [CrossRef]
- Nybo, L.; Rasmussen, P.; Sawka, M.N. Performance in the Heat--Physiological Factors of Importance for Hyperthermia-Induced Fatigue. Compr. Physiol. 2014, 4, 657–689. [Google Scholar] [CrossRef]
- Macy, D.W.; Macy, C.A.; Scott, R.J.; Gillette, E.L.; Speer, J.F. Physiological Studies of Whole-Body Hyperthermia of Dogs. Cancer Res. 1985, 45, 2769–2773. [Google Scholar]
- Madurell-Malapeira, J.; Alba, D.M.; Marmi, J.; Aurell, J.; Moyà-Solà, S. The Taxonomic Status of European Plio-Pleistocene Badgers. J. Vertebr. Paleontol. 2011, 31, 885–894. [Google Scholar] [CrossRef]
- Henry, C. Eco-Éthologie de l’alimentation Du Blaireau Européen (Meles meles L.) Dans Une Forêt Du Centre de La France. Mammalia 1984, 48, 489–504. [Google Scholar] [CrossRef]
- Bright Ross, J.G.; Newman, C.; Buesching, C.D.; Macdonald, D.W. What Lies beneath? Population Dynamics Conceal Pace-of-life and Sex Ratio Variation, with Implications for Resilience to Environmental Change. Glob. Change Biol. 2020, 26, 3307–3324. [Google Scholar] [CrossRef]
- Woodroffe, R.; Macdonald, D.W. Costs of Breeding Status in the European Badger, Meles meles. J. Zool. Lond. 1995, 235, 237–245. [Google Scholar] [CrossRef]
- Fell, R.J.; Buesching, C.D.; Macdonald, D.W. The Social Integration of European Badger (Meles meles) Cubs into Their Natal Group. Behaviour 2006, 143, 683–700. [Google Scholar] [CrossRef]
- Agrell, J.; Wolff, J.O.; Ylönen, H. Counter-Strategies to Infanticide in Mammals: Costs and Consequences. Oikos 1998, 83, 507–517. [Google Scholar] [CrossRef]
- Macdonald, D.W.; Newman, C.; Buesching, C.D. Badgers in the Rural Landscape—Conservation Paragon or Farmland Pariah? Lessons from the Wytham Badger Project. In Wildlife Conservation on Farmland; Macdonald, D.W., Feber, R.E., Eds.; Oxford University Press: Oxford, UK, 2015; pp. 65–96. [Google Scholar]
- Sugianto, N.A.; Dehnhard, M.; Newman, C.; Macdonald, D.W.; Buesching, C.D. A Non-Invasive Method to Assess the Reproductive Status of the European Badger (Meles meles) from Urinary Sex-Steroid Metabolites. Gen. Comp. Endocrinol. 2021, 301, 113655. [Google Scholar] [CrossRef]
- Wascher, C.A.F.; Kotrschal, K.; Arnold, W. Free-Living Greylag Geese Adjust Their Heart Rates and Body Core Temperatures to Season and Reproductive Context. Sci. Rep. 2018, 8, 2142. [Google Scholar] [CrossRef] [PubMed]
- Ellwood, S.A.; Newman, C.; Montgomery, R.A.; Nicosia, V.; Buesching, C.D.; Markham, A.; Mascolo, C.; Trigoni, N.; Pasztor, B.; Dyo, V.; et al. An Active-Radio-Frequency-Identification System Capable of Identifying Co-Locations and Social-Structure: Validation with a Wild Free-Ranging Animal. Methods Ecol. Evol. 2017, 8, 1822–1831. [Google Scholar] [CrossRef]
- Horowitz, M.; Hales, J.R.S. Pathophysiology of Hyperthermia. In Physiology and Pathophysiology of Temperature Regulation; Blatteis, C.M., Ed.; World Scientific Publishing: Singapore, 1998; pp. 229–245. [Google Scholar]
- Terrien, J.; Perret, M.; Aujard, F. Behavioral Thermoregulation in Mammals: A Review. Front. Biosci. 2011, 16, 1428–1444. [Google Scholar] [CrossRef]
- Goldberg, M.B.; Langman, V.A.; Taylor, C.R. Panting in Dogs: Paths of Air Flow in Response to Heat and Exercise. Respir. Physiol. 1981, 43, 327–338. [Google Scholar] [CrossRef] [PubMed]
- Rosalino, L.M.; Loureiro, F.; Macdonald, D.W.; Santos-Reis, M. Dietary Shifts of the Badger (Meles meles) in Mediterranean Woodlands: An Opportunistic Forager with Seasonal Specialisms. Mamm. Biol. 2005, 70, 12–23. [Google Scholar] [CrossRef]
- Levy, O.; Dayan, T.; Porter, W.P.; Kronfeld-Schor, N. Time and Ecological Resilience: Can Diurnal Animals Compensate for Climate Change by Shifting to Nocturnal Activity? Ecol. Monogr. 2019, 89, e01334. [Google Scholar] [CrossRef]
- Robertshaw, D. Mechanisms for the Control of Respiratory Evaporative Heat Loss in Panting Animals. J. Appl. Physiol. 2006, 101, 664–668. [Google Scholar] [CrossRef]
- Kovats, R.S.; Hajat, S. Heat Stress and Public Health: A Critical Review. Annu. Rev. Public Health 2008, 29, 41–55. [Google Scholar] [CrossRef]
- McKinley, M.J.; Martelli, D.; Pennington, G.L.; Trevaks, D.; McAllen, R.M. Integrating Competing Demands of Osmoregulatory and Thermoregulatory Homeostasis. Physiology 2018, 33, 170–181. [Google Scholar] [CrossRef]
- Kowalczyk, R.; Jędrzejewska, B.; Zalewski, A. Annual and Circadian Activity Patterns of Badgers (Meles meles) in Białowieża Primeval Forest (Eastern Poland) Compared with Other Palaearctic Populations. J. Biogeogr. 2003, 30, 463–472. [Google Scholar] [CrossRef]
- Reinhardt, K.D.; Vyazovskiy, V.V.; Hernandez-Aguilar, R.A.; Imron, M.A.; Nekaris, K.A.-I. Environment Shapes Sleep Patterns in a Wild Nocturnal Primate. Sci. Rep. 2019, 9, 9939. [Google Scholar] [CrossRef] [PubMed]
- Wilson, D.F. Programming and Regulation of Metabolic Homeostasis. Am. J. Physiol.-Endocrinol. Metab. 2015, 308, E506–E517. [Google Scholar] [CrossRef]
- Cutrera, A.P.; Zenuto, R.R.; Luna, F.; Antenucci, C.D. Mounting a Specific Immune Response Increases Energy Expenditure of the Subterranean Rodent Ctenomys talarum (Tuco-Tuco): Implications for Intraspecific and Interspecific Variation in Immunological Traits. J. Exp. Biol. 2010, 213, 715–724. [Google Scholar] [CrossRef]
- Oelkrug, R.; Polymeropoulos, E.T.; Jastroch, M. Brown Adipose Tissue: Physiological Function and Evolutionary Significance. J. Comp. Physiol. B Biochem. Syst. Environ. Physiol. 2015, 185, 587–606. [Google Scholar] [CrossRef] [PubMed]
- Allison, C.D. Factors Affecting Forage Intake by Range Ruminants: A Review. J. Range Manag. 1985, 38, 305–311. [Google Scholar] [CrossRef]
- Careau, V.; Bininda-Emonds, O.R.P.; Thomas, D.W.; Réale, D.; Humphries, M.M. Exploration Strategies Map along Fast-Slow Metabolic and Life-History Continua in Muroid Rodents. Funct. Ecol. 2009, 23, 150–156. [Google Scholar] [CrossRef]
- Schino, G. Grooming, Competition and Social Rank among Female Primates: A Meta-Analysis. Anim. Behav. 2001, 62, 265–271. [Google Scholar] [CrossRef]
- Ord, T.J. Costs of Territoriality: A Review of Hypotheses, Meta-Analysis, and Field Study. Oecologia 2021, 197, 615–631. [Google Scholar] [CrossRef]
- Buesching, C.D.; Newman, C. Putting a Price on Honesty: Methods to Evaluate the Costs of Olfactory Signalling. In Proceedings of the Chemical Signals in Vertebrates 15, Beijing, China, 4–6 December 2021; Schaal, B., Rekow, D., Keller, M., Damon, F., Eds.; Springer: Cham, Switzerland, 2023. [Google Scholar]
- Boyles, J.G.; Johnson, J.S.; Blomberg, A.; Lilley, T.M. Optimal Hibernation Theory. Mamm. Rev. 2020, 50, 91–100. [Google Scholar] [CrossRef]
- Walker, J.M.; Berger, R.J. Sleep as an Adaptation for Energy Conservation Functionally Related to Hibernation and Shallow Torpor. Prog. Brain Res. 1980, 53, 255–278. [Google Scholar]
- Lesku, J.A.; Roth, T.C., II; Amlaner, C.J.; Lima, S.L. A Phylogenetic Analysis of Sleep Architecture in Mammals: The Integration of Anatomy, Physiology, and Ecology. Am. Nat. 2006, 168, 441–453. [Google Scholar] [CrossRef]
- Hume, D.J.; Yokum, S.; Stice, E. Low Energy Intake plus Low Energy Expenditure (Low Energy Flux), Not Energy Surfeit, Predicts Future Body Fat Gain. Am. J. Clin. Nutr. 2016, 103, 1389–1396. [Google Scholar] [CrossRef]
- Van Valen, L. Morphological Variation and Width of Ecological Niche. Am. Nat. 1965, 99, 377–390. [Google Scholar] [CrossRef]
- Sheppard, C.E.; Inger, R.; McDonald, R.A.; Barker, S.; Jackson, A.L.; Thompson, F.J.; Vitikainen, E.I.K.; Cant, M.A.; Marshall, H.H. Intragroup Competition Predicts Individual Foraging Specialisation in a Group-Living Mammal. Ecol. Lett. 2018, 21, 665–673. [Google Scholar] [CrossRef] [PubMed]
- Svanbäck, R.; Persson, L. Individual Diet Specialization, Niche Width and Population Dynamics: Implications for Trophic Polymorphisms. J. Anim. Ecol. 2004, 73, 973–982. [Google Scholar] [CrossRef]
- Beever, E.A.; Hall, L.E.; Varner, J.; Loosen, A.E.; Dunham, J.B.; Gahl, M.K.; Smith, F.A.; Lawler, J.J. Behavioral Flexibility as a Mechanism for Coping with Climate Change. Front. Ecol. Environ. 2017, 15, 299–308. [Google Scholar] [CrossRef]
- Wolf, M.; van Doorn, G.S.; Leimar, O.; Weissing, F.J. Life-History Trade-Offs Favour the Evolution of Animal Personalities. Nature 2007, 447, 581–584. [Google Scholar] [CrossRef]
- Pintor, L.M.; McGhee, K.E.; Roche, D.P.; Bell, A.M. Individual Variation in Foraging Behavior Reveals a Trade-off between Flexibility and Performance of a Top Predator. Behav. Ecol. Sociobiol. 2014, 68, 1711–1722. [Google Scholar] [CrossRef]
- Machovsky-Capuska, G.E.; Senior, A.M.; Simpson, S.J.; Raubenheimer, D. The Multidimensional Nutritional Niche. Trends Ecol. Evol. 2016, 31, 355–365. [Google Scholar] [CrossRef]
- Prugh, L.R.; Arthur, S.M.; Ritland, C.E. Use of Faecal Genotyping to Determine Individual Diet. Wildlife Biol. 2008, 14, 318–330. [Google Scholar] [CrossRef]
- Dammhahn, M.; Dingemanse, N.J.; Niemelä, P.T.; Réale, D. Pace-of-Life Syndromes: A Framework for the Adaptive Integration of Behaviour, Physiology and Life History. Behav. Ecol. Sociobiol. 2018, 72, 62. [Google Scholar] [CrossRef]
- Careau, V.; Thomas, D.; Humphries, M.M.; Réale, D. Energy Metabolism and Animal Personality. Oikos 2008, 117, 641–653. [Google Scholar] [CrossRef]
- Réale, D.; Garant, D.; Humphries, M.M.; Bergeron, P.; Careau, V.; Montiglio, P.-O. Personality and the Emergence of the Pace-of-Life Syndrome Concept at the Population Level. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 4051–4063. [Google Scholar] [CrossRef]
- Sugianto, N.A.; Newman, C.; Macdonald, D.W.; Buesching, C.D. Heterochrony of Puberty in the European Badger (Meles meles) Can Be Explained by Growth Rate and Group-Size: Evidence for Two Endocrinological Phenotypes. PLoS ONE 2019, 14, e0203910. [Google Scholar] [CrossRef] [PubMed]
- Kentie, R.; Clegg, S.M.; Tuljapurkar, S.; Gaillard, J.; Coulson, T. Life-history Strategy Varies with the Strength of Competition in a Food-limited Ungulate Population. Ecol. Lett. 2020, 23, 811–820. [Google Scholar] [CrossRef]
- Starrfelt, J.; Kokko, H. Bet-Hedging a Triple Trade-off between Means, Variances and Correlations. Biol. Rev. 2012, 87, 742–755. [Google Scholar] [CrossRef] [PubMed]
- Bell, G. Fluctuating Selection: The Perpetual Renewal of Adaptation in Variable Environments. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 87–97. [Google Scholar] [CrossRef] [PubMed]
- Grémillet, D.; Lescroël, A.; Ballard, G.; Dugger, K.M.; Massaro, M.; Porzig, E.L.; Ainley, D.G. Energetic Fitness: Field Metabolic Rates Assessed via 3D Accelerometry Complement Conventional Fitness Metrics. Funct. Ecol. 2018, 32, 1203–1213. [Google Scholar] [CrossRef]
- Pélabon, C.; Hansen, T.F.; Carter, A.J.R.; Houle, D. Evolution of Variation and Variability under Fluctuating, Stabilizing, and Disruptive Selection. Evolution 2010, 64, 1912–1925. [Google Scholar] [CrossRef]
- Silva, A.P.; Curveira-Santos, G.; Kilshaw, K.; Newman, C.; Macdonald, D.W.; Simões, L.G.; Rosalino, L.M. Climate and Anthropogenic Factors Determine Site Occupancy in Scotland’s Northern-Range Badger Population: Implications of Context-Dependent Responses under Environmental Change. Divers. Distrib. 2017, 23, 627–639. [Google Scholar] [CrossRef]
- Balestrieri, A.; Remonti, L.; Prigioni, C. Exploitation of food resources by the Eurasian badger (Meles meles) at the altitudinal limit of its Alpine range (NW Italy). Zool. Sci. 2009, 26, 821–827. [Google Scholar] [CrossRef]
- Buesching, C.D.; Newman, C.; Service, K.; Macdonald, D.W.; Riordan, P. Latrine marking patterns of badgers (Meles meles) with respect to population density and range size. Ecosphere 2016, 7, e01328. [Google Scholar] [CrossRef]
- Goszczyński, J.; Jędrzejewska, B.; Jędrzejewski, W. Diet composition of badgers (Meles meles) in a pristine forest and rural habitats of Poland compared to other European populations. J. Zool. 2000, 250, 495–505. [Google Scholar] [CrossRef]
- Kilshaw, K.; Newman, C.; Buesching, C.; Bunyan, J.; Macdonald, D.W. Coordinated latrine use by European badgers, Meles meles: Potential consequences for territory defense. J. Mammal. 2009, 90, 1188–1198. [Google Scholar] [CrossRef]
- Kruuk, H.; Parish, T. Feeding specialization of the European badger Meles meles in Scotland. J. Anim. Ecol. 1981, 50, 773–788. [Google Scholar] [CrossRef]
- Rennie, S.; Adamson, J.; Anderson, R.; Andrews, C.; Bater, J.; Bayfield, N.; Beaton, K.; Beaumont, D.; Benham, S.; Bowmaker, V.; et al. UK Environmental Change Network (ECN) Meteorology Data: 1991–2015. 2017. Available online: https://catalogue.ceh.ac.uk/documents/fc9bcd1c-e3fc-4c5a-b569-2fe62d40f2f5 (accessed on 13 April 2025).
- Wei, T.; Simko, V. R Package “Corrplot”: Visualization of a Correlation Matrix. 2017. Available online: https://www.maths.bris.ac.uk/R/web/packages/corrplot/corrplot.pdf (accessed on 13 April 2025).
- Zabala, J.; Zuberogoitia, I. Badger, Meles meles (Mustelidae, Carnivora), diet assessed through scat-analysis: A comparison and critique of different methods. Folia Zool. 2003, 52, 23–30. [Google Scholar]
Season | Date Deployed | Deployment Duration | # Deployed | # Recovered | # Returning Data | Avg. Data Returned |
---|---|---|---|---|---|---|
Spring | 21/05/18 | 7 days | 9 | 7 | 5 | 7.02 days |
Summer | 03/09/18 | 7–10 days | 10 | 10 | 10 | 6.62 days |
Summer | 09–10/09/18 | 65–82 days | 9 | 6 | 4 | 15.50 days |
Autumn | 13/11/18 | 6–8 days | 12 | 11 | 0 | 0 days |
Spring | 27/05/19 | 7–8 days | 12 | 12 | 12 | 7.04 days |
Summer | 02/09/19 | 7–9 days | 12 | 12 | 10 | 7.98 days |
Autumn | 13/11/19 | 6–8 days | 11 | 11 | 10 | 4.51 days |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bright Ross, J.G.; Markham, A.; Noonan, M.J.; Buesching, C.D.; Connolly, E.; Pallett, D.W.; Malhi, Y.; Macdonald, D.W.; Newman, C. Individual Mechanical Energy Expenditure Regimens Vary Seasonally with Weather, Sex, Age and Body Condition in a Generalist Carnivore Population: Support for Inter-Individual Tactical Diversity. Animals 2025, 15, 1560. https://doi.org/10.3390/ani15111560
Bright Ross JG, Markham A, Noonan MJ, Buesching CD, Connolly E, Pallett DW, Malhi Y, Macdonald DW, Newman C. Individual Mechanical Energy Expenditure Regimens Vary Seasonally with Weather, Sex, Age and Body Condition in a Generalist Carnivore Population: Support for Inter-Individual Tactical Diversity. Animals. 2025; 15(11):1560. https://doi.org/10.3390/ani15111560
Chicago/Turabian StyleBright Ross, Julius G., Andrew Markham, Michael J. Noonan, Christina D. Buesching, Erin Connolly, Denise W. Pallett, Yadvinder Malhi, David W. Macdonald, and Chris Newman. 2025. "Individual Mechanical Energy Expenditure Regimens Vary Seasonally with Weather, Sex, Age and Body Condition in a Generalist Carnivore Population: Support for Inter-Individual Tactical Diversity" Animals 15, no. 11: 1560. https://doi.org/10.3390/ani15111560
APA StyleBright Ross, J. G., Markham, A., Noonan, M. J., Buesching, C. D., Connolly, E., Pallett, D. W., Malhi, Y., Macdonald, D. W., & Newman, C. (2025). Individual Mechanical Energy Expenditure Regimens Vary Seasonally with Weather, Sex, Age and Body Condition in a Generalist Carnivore Population: Support for Inter-Individual Tactical Diversity. Animals, 15(11), 1560. https://doi.org/10.3390/ani15111560