Egg Quality and Laying Performance of Rhode Island Red Hens Fed with Black Soldier Fly Larvae and Microalgae Meal as an Alternative Diet
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals, Diets, and Management
2.2. Laying Performance Determination
2.3. Chemical Analysis of Diets
2.4. Egg Quality Analysis
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kleyn, F.; Ciacciariello, M. Future demands of the poultry industry: Will we meet our commitments sustainably in developed and developing economies? World’s Poult. Sci. J. 2021, 77, 267–278. [Google Scholar] [CrossRef]
- Daghir, N.; Diab-El-Harake, M.; Kharroubi, S. Poultry production and its effects on food security in the Middle Eastern and North African region. J. Appl. Poult. Res. 2021, 30, 100110. [Google Scholar] [CrossRef]
- Patra, A.K. Advances in Poultry Nutrition Research; BoD–Books on Demand: Norderstedt, Germany, 2021. [Google Scholar]
- Ravindran, V. Disponibilidad de piensos y nutrición de aves de corral en paises en desarrollo-2. Revisión Desarro. Avícola 2013, 62–66. [Google Scholar]
- Van der Aar, P.; Doppenberg, J.; Kwakernaak, C. Which feedstuffs will be used in the future? In Sustainable Poultry Production in Europe; Burton, E., Gatcliffe, J., O’Neill, H.M., Scholey, D., Eds.; CABI: Wallingford, UK, 2016; pp. 103–111. [Google Scholar]
- Mohamed, I.A.; Emhimad, A.A.; Ubedullah, K.; Muhammad Abdul, B. Nontraditional Feedstuffs as an Alternative in Poultry Feed. In Advances in Poultry Nutrition Research; Amlan Kumar, P., Ed.; IntechOpen: Rijeka, Croatia, 2021; ch. 2; pp. 1–2. [Google Scholar]
- Lalander, C.; Diener, S.; Zurbrugg, C.; Vinneras, B. Effects of feedstock on larval development and process efficiency in waste treatment with black soldier fly (Hermetia illucens). J. Clean. Prod. 2019, 208, 211–219. [Google Scholar] [CrossRef]
- Spranghers, T.; Ottoboni, M.; Klootwijk, C.; Ovyn, A.; Deboosere, S.; De Meulenaer, B.; Michiels, J.; Eeckhout, M.; De Clercq, P.; De Smet, S. Nutritional composition of black soldier fly (Hermetia illucens) prepupae reared on different organic waste substrates. J. Sci. Food Agric. 2017, 97, 2594–2600. [Google Scholar] [CrossRef]
- Yu, G.; Chen, Y.; Yu, Z.; Cheng, P. Research progress on the larvae and prepupae of black soldier fly Hermetia illucens used as animal feedstuff. Chin. Bull. Entomol. 2009, 46, 41–45. [Google Scholar]
- Tran, G. INRA-CIRAD-AFZ; Association Francaise de Zootechnie: Paris, France, 2020. [Google Scholar]
- El-Hack, M.A.; Abdelnour, S.A.; Shafi, M.; Shehata, A.M. Black soldier fly (Hermetia illucens) meal as a promising feed ingredient for poultry: A comprehensive review. Agriculture 2020, 10, 339. [Google Scholar] [CrossRef]
- Marono, S.; Loponte, R.; Lombardi, P.; Vassalotti, G.; Pero, M.; Russo, F.; Gasco, L.; Parisi, G.; Piccolo, G.; Nizza, S.; et al. Productive performance and blood profiles of laying hens fed Hermetia illucens larvae meal as total replacement of soybean meal from 24 to 45 weeks of age. Poult. Sci. 2017, 96, 1783–17900. [Google Scholar] [CrossRef] [PubMed]
- Secci, G.; Bovera, F.; Nizza, S.; Baronti, N.; Gasco, L.; Conte, G.; Serra, A.; Bonelli, A.; Parisi, G. Quality of eggs from Lohmann Brown Classic laying hens fed black soldier fly meal as substitute for soya bean. Animal 2018, 10, 2191–2197. [Google Scholar] [CrossRef]
- Mwaniki, Z.; Shoveller, A.K.; Huber, L.A.; Kiarie, E.G. Complete replacement of soybean meal with defatted black soldier fly larvae meal in Shaver White hens feeding program (28–43 wks of age): Impact on egg production, egg quality, organ weight, and apparent retention of components. Poult. Sci. 2020, 99, 959–965. [Google Scholar] [CrossRef]
- Mehariya, S.; Goswami, R.K.; Karthikeysan, O.P.; Verma, P. Microalgae for high-value products: A way towards green nutraceutical and pharmaceutical compounds. Chemosphere 2021, 280, 130553. [Google Scholar] [CrossRef] [PubMed]
- Sajjadi, B.; Chen, W.-Y.; Raman, A.A.A.; Ibrahim, S. Microalgae lipid and biomass for biofuel production: A comprehensive review on lipid enhancement strategies and their effects on fatty acid composition. Renew. Sustain. Energy Rev. 2018, 97, 200–232. [Google Scholar] [CrossRef]
- Manor, M.; Derksen, T.; Magnuson, A.; Raza, F.; Lei, X. Inclusion of Dietary Defatted Microalgae Dose-Dependently Enriches ω-3 Fatty Acids in Egg Yolk and Tissues of Laying Hens. J. Nutr. 2019, 149, 942–950. [Google Scholar] [CrossRef]
- Buono, S.; Langellotti, A.L.; Martello, A.; Rinna, F.; Fogliano, V. Functional ingredients from microalgae. Food Funct. 2014, 5, 1669–1685. [Google Scholar] [CrossRef]
- Chacón-Lee, T.L.; González-Mariño, G.E. Microalgae for “Healthy” Foods—Possibilities and Challenges. Compr. Rev. Food Sci. Food Saf. 2010, 9, 655–675. [Google Scholar] [CrossRef]
- Sun, X.M.; Ren, L.J.; Zhao, Q.Y.; Ji, X.J.; Huang, H. Microalgae for the production of lipid and carotenoids: A review with focus on stress regulation and adaptation. Biotechnol. Biofuels 2018, 11, 272. [Google Scholar] [CrossRef] [PubMed]
- Krienitz, L.; Wirth, M. The high content of polyunsaturated fatty acids in Nannochloropsis limnetica (Eustigmatophyceae) and its implication for food web interactions, freshwater aquaculture and biotechnology. Limnologica 2006, 36, 204–210. [Google Scholar] [CrossRef]
- Wu, Y.; Li, L.; Wen, Z.; Yan, H.; Yang, P.; Tang, J.; Xie, M.; Hou, S. Dual functions of eicosapentaenoic acid-rich microalgae: Enrichment of yolk with n-3 polyunsaturated fatty acids and partial replacement for soybean meal in diet of laying hens. Poult. Sci. 2018, 98, 350–357. [Google Scholar] [CrossRef]
- Mens, A.; van Krimpen, M.; Kar, S.; Guiscafre, F.; Sijtsma, L. Enriching table eggs with n-3 polyunsaturated fatty acids through dietary supplementation with the phototrophically grown green algae Nannochloropsis limnetica: Effects of microalgae on nutrient retention, performance, egg characteristics and health parameters. Poult. Sci. 2022, 101, 101869. [Google Scholar]
- Tahamtani, F.M.; Ivarsson, E.; Wiklicky, V.; Lalander, C.; Wall, H.; Rodenburg, T.B.; Tuyttens, F.A.M.; Hernandez, C.E. Feeding live Black Soldier Fly larvae (Hermetia illucens) to laying hens: Effects on feed consumption, hen health, hen behavior, and egg quality. Poult. Sci. 2021, 100, 101400. [Google Scholar] [CrossRef]
- Ginzberg, A.; Cohen, M.; Sod-Moriah, U.A.; Shany, S.; Rosenshtrauch, A.; Arad, S. Chickens fed with biomass of the red microalga Porphyridium sp. have reduced blood cholesterol level and modified fatty acid composition in egg yolk. J. Appl. Phycol. 2000, 12, 325–330. [Google Scholar] [CrossRef]
- Bovera, F.; Loponte, R.; Pero, M.; Cutrignelli, M.I.; Calabro, S.; Musco, N.; Vassalotti, G.; Panettieri, V.; Lombardi, P.; Piccolo, G.; et al. Laying performance, blood profiles, nutrient digestibility and inner organs traits of hens fed an insect meal from Hermetia illucens larvae. Res. Vet. Sci. 2018, 120, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Kawasaki, K.; Miyawaki, H.; Hirayasu, H.; Izumo, A.; Iwase, S.-i.; Kasai, K. Egg quality and laying performance of Julia laying hens fed with black soldier fly (Hermetia illucens) larvae meal as a long-term substitute for fish meal. Poult. Sci. 2022, 101, 101986. [Google Scholar] [CrossRef]
- Kawasaki, K.; Hashimoto, Y.; Hori, A.; Kawasaki, T.; Hirayasu, H.; Iwase, S.-i.; Hashizume, A.; Ido, A.; Miura, C.; Miura, T.; et al. Evaluation of Black Soldier Fly (Hermetia illucens) Larvae and Pre-Pupae Raised on Household Organic Waste, as Potential Ingredients for Poultry Feed. Animals 2019, 9, 98. [Google Scholar] [CrossRef] [PubMed]
- Makkar, H.P.S.; Tran, G.; Heuzé, V.; Ankers, P. State-of-the-art on use of insects as animal feed. Anim. Feed Sci. Technol. 2014, 197, 1–33. [Google Scholar] [CrossRef]
- Haugh, R.R. The Haugh unit for measuring egg quality. U. S. Egg Poult. Mag. 1937, 43, 552–555. [Google Scholar]
- Mine, Y. Egg Bioscience and Biotechnology; Wiley: Hoboken, NJ, USA, 2008. [Google Scholar]
- Berkhoff, J.; Alvarado-Gilis, C.; Keim, J.P.; Alcalde, J.A.; Vargas-Bello-Pérez, E.; Gandarillas, M. Consumer preferences and sensory characteristics of eggs from family farms. Poult. Sci. 2020, 99, 6239–6246. [Google Scholar] [CrossRef]
- Réhault-Godbert, S.; Guyot, N.; Nys, Y. The golden egg: Nutritional value, bioactivities, and emerging benefits for human health. Nutrients 2019, 11, 684. [Google Scholar] [CrossRef]
- Heuel, M.; Sandrock, C.; Leiber, F.; Mathys, A.; Gold, M.; Zurbrügg, C.; Gangnat, I.D.M.; Kreuzer, M.; Terranova, M. Black soldier fly larvae meal and fat can completely replace soybean cake and oil in diets for laying hens. Poult. Sci. 2021, 100, 101034. [Google Scholar] [CrossRef]
- Ohse, S.; Derner, R.B.; Ozório, R.Á.; Corrêa, R.G.; Furlong, E.B.; Cunha, P.C.R. Lipid content and fatty acid profiles in ten species of microalgae. Idesia 2015, 33, 93–101. [Google Scholar] [CrossRef]
Ingredients (%) | Growth (6–13 Weeks of Age) | Development (13–18 Weeks of Age) | Laying (18 Weeks of Age Onwards) | |||
---|---|---|---|---|---|---|
A | B | A | B | A | B | |
BSFL | 10 | 10 | 10 | 10 | 10 | 10 |
MA | 0 | 2 | 0 | 2 | 0 | 2 |
Maize | 45.4 | 48.2 | 38.9 | 40.6 | 43.3 | 38.2 |
Corn gluten | 5.5 | 5 | 0 | 0 | 0 | 0 |
Wheat bran | 39.1 | 34.8 | 40 | 40 | 40 | 38.1 |
Soybean meal | 0 | 0 | 11.1 | 7.4 | 6.7 | 5.9 |
Growth Stage | Development Stage | |||
---|---|---|---|---|
Diet A | Diet B | Diet A | Diet B | |
Moisture (%) | 14.316 | 16.74 | 16.939 | 20.453 |
Ash (%) | 4.529 | 4.374 | 4.325 | 4.569 |
Lipids (%) | 7.327 | 6.171 | 5.865 | 6.345 |
Energy Brute (kcal/g) | 4.592 | 4.571 | 3.263 | 3.538 |
Carbohydrates (%) | 55.732 | 60.72 | 65.535 | 69.744 |
Protein (%) | 17.541 | 17.315 | 17.252 | 17.106 |
Ca (mg/g) | 0.071 | 0.093 | 0.074 | 0.085 |
Mg (mg/g) | 2.051 | 1.932 | 2.14 | 1.856 |
Na (mg/g) | 0.153 | 0.146 | 0.158 | 0.142 |
Diet A | Diet B | Diet C | |
---|---|---|---|
Moisture (%) | 10.8 | 15.0 | 7.267 |
Ash (%) | 4.525 | 4.369 | 15.019 |
Lipids (%) | 5.678 | 5.325 | 3.251 |
Energy Brute (kcal/g) | 3.263 | 3.538 | 3.432 |
Carbohydrates (%) | 65.536 | 67.589 | 48.498 |
Protein (%) | 16.563 | 16.452 | 16.895 |
Ca (mg/g) | 0.02 | 0.06 | 1.104 |
Mg (mg/g) | 2.09 | 1.98 | 2.854 |
Na (mg/g) | 0.1 | 0.1 | 0.195 |
Diet A | Diet B | Diet C | SEM | p-Value | |
---|---|---|---|---|---|
Weekly growth rate (kg/day) | 0.028 a | 0.034 b | 0.026 a | 0.001 | 0.021 |
Survival (%) | 51.666 a | 59.340 ab | 61.250 b | 1.748 | 0.058 |
Laying age (week) | 21 | 20 | 23 | ||
Eggs | |||||
Total weight (g) | 49.985 a | 51.208 b | 49.998 a | 0.511 | 0.155 |
Yolk weight (g) | 13.527 a | 14.728 a | 14.332 b | 0.530 | 0.283 |
Albumen weight (g) | 23.670 a | 22.850 a | 23.765 a | 1.394 | 0.878 |
Yolk height (mm) | 11.422 a | 12.6256 b | 12.9578 b | 0.411 | 0.035 |
Albumen height (mm) | 4.105 a | 3.716 a | 4.186 a | 0.258 | 0.402 |
Equatorial diameter | 40.314 a | 41.155 a | 40.828 a | 0.505 | 0.505 |
Polar maximum | 53.037 a | 54.027 a | 53.630 a | 0.713 | 0.620 |
Shape index | 76.022 a | 76.222 a | 76.188 a | 0.834 | 0.983 |
Yolk color l* | 84.866 b | 80.225 a | 83.352 ab | 1.535 | 0.114 |
Yolk color a | 13.343 a | 19.017 b | 17.522 b | 0.596 | 0.000 |
Yolk color b | 75.122 a | 70.846 a | 75.527 a | 1.828 | 0.155 |
Eggshell color l* | 75.805 a | 73.701 a | 74.057 a | 2.687 | 0.840 |
Eggshell color a | 12.501 a | 11.826 a | 11.560 a | 0.753 | 0.665 |
Eggshell color b | 27.354 a | 26.718 a | 25.197 a | 1.033 | 0.333 |
Yolk protein (%DM) | 28.32 a | 28.185 a | 28.893 a | 1.310 | 0.922 |
Albumen protein (%DM) | 74.080 a | 76.546 a | 75.277 a | 1.382 | 0.561 |
Yolk lipids (%DM) | 51.074 a | 52.434 a | 51.770 a | 1.830 | 0.873 |
Albumen lipids (%DM) | 0.479 a | 0.451 a | 0.506 a | 0.128 | 0.954 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tovar-Ramírez, M.M.; Oviedo-Olvera, M.V.; Nieto-Ramirez, M.I.; Parra-Pacheco, B.; Feregrino-Pérez, A.A.; Garcia-Trejo, J.F. Egg Quality and Laying Performance of Rhode Island Red Hens Fed with Black Soldier Fly Larvae and Microalgae Meal as an Alternative Diet. Animals 2025, 15, 1540. https://doi.org/10.3390/ani15111540
Tovar-Ramírez MM, Oviedo-Olvera MV, Nieto-Ramirez MI, Parra-Pacheco B, Feregrino-Pérez AA, Garcia-Trejo JF. Egg Quality and Laying Performance of Rhode Island Red Hens Fed with Black Soldier Fly Larvae and Microalgae Meal as an Alternative Diet. Animals. 2025; 15(11):1540. https://doi.org/10.3390/ani15111540
Chicago/Turabian StyleTovar-Ramírez, Marta Montserrat, Mónica Vanessa Oviedo-Olvera, Maria Isabel Nieto-Ramirez, Benito Parra-Pacheco, Ana Angelica Feregrino-Pérez, and Juan Fernando Garcia-Trejo. 2025. "Egg Quality and Laying Performance of Rhode Island Red Hens Fed with Black Soldier Fly Larvae and Microalgae Meal as an Alternative Diet" Animals 15, no. 11: 1540. https://doi.org/10.3390/ani15111540
APA StyleTovar-Ramírez, M. M., Oviedo-Olvera, M. V., Nieto-Ramirez, M. I., Parra-Pacheco, B., Feregrino-Pérez, A. A., & Garcia-Trejo, J. F. (2025). Egg Quality and Laying Performance of Rhode Island Red Hens Fed with Black Soldier Fly Larvae and Microalgae Meal as an Alternative Diet. Animals, 15(11), 1540. https://doi.org/10.3390/ani15111540