Movement and Dispersion Parameters Characterizing the Group Behavior of Drosophila melanogaster in Micro-Areas of an Observation Arena
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Rearing and Observation
2.2. Detection and Parameter Extraction
2.3. Parameter Measurements in Micro-Area
2.4. Statistical Analysis
3. Results
3.1. Overall Movement Positions and Parameter Frequencies
3.2. Duration Rates for the Micro-Areas
3.3. Dispersion Parameter Measurements
3.4. Comparison of the Parameters Between Micro-Areas
- A peak during the early photoperiod followed by a minimum during the scotoperiod for the duration rate, stop numbers, and stop time in the edge area (Figure 13a,e,f);
- A peak during the early photoperiod along with a minimum during the scotoperiod for the duration rate, stop numbers, and stop time in the edge area (Figure 13a,e,f).
- A peak during the early photoperiod followed by a minimum during the scotoperiod for MC and the SSI in the edge area (Figure 13i,j);
3.5. Data Variability and Statistical Differentiation
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MC | Mean crowding |
SSI | Social space index |
SIN | Social interaction network |
UAS | Upstream activating sequence |
DCR | Direction change rate |
CV | Coefficient of variation |
Inter. | Intermediate |
Loco. Rate | Locomotory rate |
Sinu. | Sinuosity |
St. no. | Stop number |
St. ti. | Stop time |
Appendix A
References
- Rohlfs, M.; Hoffmeister, T.S. Spatial aggregation across ephemeral resource patches in insect communities: An adaptive response to natural enemies? Oecologia 2004, 140, 654–661. [Google Scholar] [CrossRef] [PubMed]
- Simon, A.F.; Chou, M.T.; Salazar, E.D.; Nicholson, T.; Saini, N.; Metchev, S.; Krantz, D.E. A simple assay to study social behavior in Drosophila: Measurement of social space within a group. Genes. Brain Behav. 2012, 11, 243–252. [Google Scholar] [CrossRef] [PubMed]
- Bartelt, R.J.; Schaner, A.M.; Jackson, L.L. cis-Vaccenyl acetate as an aggregation pheromone in Drosophila melanogaster. J. Chem. Ecol. 1985, 11, 1747–1756. [Google Scholar] [CrossRef]
- Liu, W.; Liang, X.; Gong, J.; Yang, Z.; Zhang, Y.H.; Zhang, J.X.; Rao, Y. Social regulation of aggression by pheromonal activation of Or65a olfactory neurons in Drosophila. Nat. Neurosci. 2011, 14, 896–902. [Google Scholar] [CrossRef]
- Agrawal, P.; Kao, D.; Chung, P.; Looger, L.L. The neuropeptide Drosulfakinin regulates social isolation-induced aggression in Drosophila. J. Exp. Biol. 2020, 223, 2. [Google Scholar]
- Ramdya, P.; Lichocki, P.; Cruchet, S.; Frisch, L.; Tse, W.; Floreano, D.; Benton, R. Mechanosensory interactions drive collective behaviour in Drosophila. Nature 2015, 519, 233–236. [Google Scholar] [CrossRef]
- Ferreira, C.H.; Moita, M.A. What can a non-eusocial insect tell us about the neural basis of group behaviour? Curr. Opin. Insect. Sci. 2019, 36, 118–124. [Google Scholar] [CrossRef]
- Chen, S.; Lee, A.Y.; Bowens, N.M.; Huber, R.; Kravitz, E.A. Fighting fruit flies: A model system for the study of aggression. Proc. Natl. Acad. Sci. USA 2002, 99, 5664–5668. [Google Scholar] [CrossRef]
- Trannoy, S.; Penn, J.; Lucey, K.; Popovic, D.; Kravitz, E.A. Short and long-lasting behavioral consequences of agonistic encounters between male Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 2016, 113, 4818–4823. [Google Scholar] [CrossRef]
- Chowdhury, B.; Wang, M.; Gnerer, J.P.; Dierick, H.A. The Divider Assay is a high-throughput pipeline for aggression analysis in Drosophila. Commun. Biol. 2021, 4, 85. [Google Scholar] [CrossRef]
- Penn, J.K.; Zito, M.F.; Kravitz, E.A. A single social defeat reduces aggression in a highly aggressive strain of Drosophila. Proc. Natl. Acad. Sci. USA 2010, 107, 12682–12686. [Google Scholar] [CrossRef] [PubMed]
- Rohde, P.D.; Gaertner, B.; Ward, K.; Sørensen, P.; Mackay, T.F. Genomic analysis of genotype-by-social environment interaction for Drosophila melanogaster aggressive behavior. Genetics 2017, 206, 1969–1984. [Google Scholar] [CrossRef]
- Chouhan, N.S.; Mohan, K.; Ghose, A. cAMP signaling mediates behavioral flexibility and consolidation of social status in Drosophila aggression. J. Exp. Biol. 2017, 220, 4502–4514. [Google Scholar]
- Edwards, A.C.; Rollmann, S.M.; Morgan, T.J.; Mackay, T.F.C. Quantitative genomics of aggressive behavior in Drosophila melanogaster. PLoS Genet. 2006, 2, e154. [Google Scholar] [CrossRef]
- Dierick, H.A.; Greenspan, R.J. Molecular analysis of flies selected for aggressive behavior. Nat. Genet. 2006, 38, 1023–1031. [Google Scholar] [CrossRef]
- Saltz, J.B. Genetic variation in social environment construction influences the development of aggressive behavior in Drosophila melanogaster. Heredity 2017, 118, 340–347. [Google Scholar] [CrossRef]
- Zhou, C.; Rao, Y.; Rao, Y. A subset of octopaminergic neurons are important for Drosophila aggression. Nat. Neurosci. 2008, 11, 1059–1067. [Google Scholar] [CrossRef]
- Alekseyenko, O.V.; Kravitz, E.A. Serotonin and the search for the anatomical substrate of aggression. Fly 2014, 8, 200–205. [Google Scholar] [CrossRef]
- Hoopfer, E.D. Neural control of aggression in Drosophila. Curr. Opin. Neurobiol. 2016, 38, 109–118. [Google Scholar] [CrossRef]
- Moran, C.N.; Kyriacou, C.P. Functional neurogenomics of the courtship song of male Drosophila melanogaster. Cortex 2009, 45, 18–34. [Google Scholar] [CrossRef]
- Wu, S.; Guo, C.; Zhao, H.; Sun, M.; Chen, J.; Han, C.; Peng, Q.; Qiao, H.; Peng, P.; Liu, Y.; et al. Drosulfakinin signaling in fruitless circuitry antagonizes P1 neurons to regulate sexual arousal in Drosophila. Nat. Commun. 2019, 10, 4770. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, D.; Sato, K.; Koganezawa, M. Neuroethology of male courtship in Drosophila: From the gene to behavior. J. Comp. Physiol. A 2014, 200, 251–264. [Google Scholar] [CrossRef] [PubMed]
- Shao, L.; Chung, P.; Wong, A.; Siwanowicz, I.; Kent, C.F.; Long, X.; Heberlein, U. A neural circuit encoding the experience of copulation in female Drosophila. Neuron 2019, 102, 1025–1036. [Google Scholar] [CrossRef]
- Tinette, S.; Zhang, L.; Robichon, A. Cooperation between Drosophila flies in searching behavior. Genes Brain Behav. 2004, 3, 39–50. [Google Scholar] [CrossRef]
- Kacsoh, B.Z.; Bozler, J.; Ramaswami, M.; Bosco, G. Social communication of predator-induced changes in Drosophila behavior and germ line physiology. eLife 2015, 4, e07423. [Google Scholar] [CrossRef]
- Lihoreau, M.; Clarke, I.M.; Buhl, C.; Sumpter, D.J.; Simpson, S.J. Collective selection of food patches in Drosophila. J. Exp. Biol. 2016, 219, 668–675. [Google Scholar] [CrossRef]
- Kretzschmar, D.; Tschäpe, J.; Bettencourt, D.C.A.; Asan, E.; Poeck, B.; Strauss, R.; Pflugfelder, G.O. Glial and neuronal expression of polyglutamine proteins induce behavioral changes and aggregate formation in Drosophila. Glia 2005, 49, 59–72. [Google Scholar] [CrossRef]
- Schneider, J.; Dickinson, M.H.; Levine, J.D. Social structures depend on innate determinants and chemosensory processing in Drosophila. Proc. Natl. Acad. Sci. USA 2012, 109 (Suppl. S2), 17174–17179. [Google Scholar] [CrossRef]
- Sun, Y.; Qiu, R.; Li, X.; Cheng, Y.; Gao, S.; Kong, F.; Liu, L.; Zhu, Y. Social attraction in Drosophila is regulated by the mushroom body and serotonergic system. Nat. Commun. 2020, 11, 5350. [Google Scholar] [CrossRef]
- Dankert, H.; Wang, L.; Hoopfer, E.D.; Anderson, D.J.; Perona, P. Automated monitoring and analysis of social behavior in Drosophila. Nat. Methods 2009, 6, 297–303. [Google Scholar] [CrossRef]
- Wang, L.; Han, X.; Mehren, J.; Hiroi, M.; Billeter, J.C.; Miyamoto, T.; Amrein, H.; Levine, J.D.; Anderson, D.J. Hierarchical chemosensory regulation of male-male social interactions in Drosophila. Nat. Neurosci. 2011, 14, 757–762. [Google Scholar] [CrossRef] [PubMed]
- Schneider, J.; Atallah, J.; Levine, J.D. Social structure and indirect genetic effects: Genetics of social behaviour. Biol. Rev. 2017, 92, 1027–1038. [Google Scholar] [CrossRef]
- Palavicino-Maggio, C.B.; Trannoy, S.; Holton, K.M.; Song, X.; Li, K.; Nevo, E. Aggression and courtship differences found in Drosophila melanogaster from two different microclimates at Evolution Canyon, Israel. Sci. Rep. 2019, 9, 4084. [Google Scholar] [CrossRef]
- Burg, E.D.; Langan, S.T.; Nash, H.A. Drosophila social clustering is disrupted by anesthetics and in narrow abdomen ion channel mutants. Genes Brain Behav. 2013, 12, 338–347. [Google Scholar] [CrossRef]
- Ramdya, P.; Schneider, J.; Levine, J.D. The neurogenetics of group behavior in Drosophila melanogaster. J. Exp. Biol. 2017, 220, 35–41. [Google Scholar] [CrossRef]
- Jiang, L.; Cheng, Y.; Gao, S.; Zhong, Y.; Ma, C.; Wang, T.; Zhu, Y. Emergence of social cluster by collective pairwise encounters in Drosophila. eLife 2020, 9, e51921. [Google Scholar] [CrossRef]
- Simon, J.C.; Dickinson, M.H. A new chamber for studying the behavior of Drosophila. PLoS ONE 2010, 5, e8793. [Google Scholar] [CrossRef]
- Jezovit, J.A.; Rooke, R.; Schneider, J.; Levine, J.D. Behavioral and environmental contributions to drosophilid social networks. Proc. Natl. Acad. Sci. USA 2020, 117, 11573–11583. [Google Scholar] [CrossRef]
- Sexton, O.J.; Stalker, H.D. Spacing patterns of female Drosophila paramelanica. Anim. Behav. 1961, 9, 77–81. [Google Scholar] [CrossRef]
- Navarro, J.; del Solar, E. Pattern of spatial distribution in Drosophila melanogaster. Behav. Genet. 1975, 5, 9–16. [Google Scholar] [CrossRef]
- Branson, K.; Robie, A.A.; Bender, J.; Perona, P.; Dickinson, M.H. High-throughput ethomics in large groups of Drosophila. Nat. Methods 2009, 6, 451–457. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.Y.; Armstrong, J.D.; Vilinsky, I.; Strausfeld, N.J.; Kaiser, K. Subdivision of the Drosophila mushroom bodies by enhancer-trap expression patterns. Neuron 1995, 15, 45–54. [Google Scholar] [CrossRef]
- O’Dell, K.M.; Armstrong, J.D.; Yang, M.Y.; Kaiser, K. Functional dissection of the Drosophila mushroom bodies by selective feminization of genetically defined subcompartments. Neuron 1995, 15, 55–62. [Google Scholar] [CrossRef]
- Colomb, J.; Brembs, B. Sub-strains of Drosophila Canton-S differ markedly in their locomotor behavior. F1000Research 2015, 3, 176. [Google Scholar] [CrossRef]
- Strilbytska, O.; Strutynska, T.; Semaniuk, U.; Burdyliyk, N.; Bubalo, V.; Lushchak, O. Dietary sucrose determines stress resistance, oxidative damages, and antioxidant defense system in Drosophila. Scientifica 2022, 1, 7262342. [Google Scholar] [CrossRef]
- Edgecomb, R.S.; Harth, C.E.; Schneiderman, A.M. Regulation of feeding behavior in adult Drosophila melanogaster varies with feeding regime and nutritional state. J. Exp. Biol. 1994, 197, 215–235. [Google Scholar] [CrossRef]
- What Is YOLOv8? A Complete Guide. Available online: https://blog.roboflow.com/what-is-yolov8/ (accessed on 1 January 2025).
- Choi, K.H.; Kim, J.S.; Kim, Y.S.; Yoo, M.A.; Chon, T.S. Pattern detection of movement behaviors in genotype variation of Drosophila melanogaster by using self-organizing map. Ecol. Inform. 2006, 1, 219–228. [Google Scholar] [CrossRef]
- Liu, Y.; Chon, T.S.; Baek, H.; Do, Y.; Choi, J.H.; Chung, Y.D. Paired permutation entropy applied to movement behaviors of Drosophila melanogaster. Mod. Phys. Lett. B 2011, 25, 1133–1142. [Google Scholar] [CrossRef]
- Eom, H.J.; Liu, Y.; Kwak, G.S.; Heo, M.; Song, K.S.; Chung, Y.D.; Chon, T.S.; Choi, J. Inhalation toxicity of indoor air pollutants in Drosophila melanogaster using integrated transcriptomics and computational behavior analyses. Sci. Rep. 2017, 7, 46473. [Google Scholar] [CrossRef]
- Benhamou, S. How to reliably estimate the tortuosity of an animal’s path: Straightness, sinuosity, or fractal dimension? J. Theor. Biol. 2004, 229, 209–220. [Google Scholar] [CrossRef]
- Campello, R.J.; Moulavi, D.; Sander, J. Density-based clustering based on hierarchical density estimates. In Advances in Knowledge Discovery and Data Mining; Springer: Berlin/Heidelberg, Germany, 2013; pp. 160–172. [Google Scholar]
- Johnson, R.B.; Zimmer, W.J. A more powerful test for dispersion using distance measurements. Ecology 1985, 66, 1669–1675. [Google Scholar] [CrossRef]
- Lee, S.H.; Ji, C.W.; Chon, T.S. Change in spatial dispersion of Daphnia magna (Cladocera: Daphniidae) populations exposed to organophosphorus insecticide, diazinon. Environ. Anal. Health. Toxicol. 2009, 24, 231–240. [Google Scholar]
- Lloyd, M. Mean crowding’. J. Anim. Ecol. 1967, 36, 1–30. [Google Scholar] [CrossRef]
- Wade, M.J.; Fitzpatrick, C.L.; Lively, C.M. 50-year anniversary of Lloyd’s “mean crowding”: Ideas on patchy distributions. J. Anim. Ecol. 2018, 87, 1221–1226. [Google Scholar] [CrossRef]
- Mogilner, A.; Edelstein-Keshet, L. Spatio-angular order in populations of self-aligning objects: Formation of oriented patches. Phys. D 1996, 89, 346–367. [Google Scholar] [CrossRef]
- Sokal, R.R.; Rohlf, F.J. Biometry; W.H. Freeman and Company: New York City, NY, USA, 1981; Volume 14. [Google Scholar]
- Kwak, S.G.; Kim, J.H. Central limit theorem: The cornerstone of modern statistics. Korean J. Anesthesiol. 2017, 70, 144–156. [Google Scholar] [CrossRef]
- Freund, R.J.; Wilson, W.J.; Mohr, D.L. Statistical Methods, Students Solutions Manual; Academic Press: Cambridge, MA, USA, 2010. [Google Scholar]
- Siegel, S.; Castellan, N.J., Jr. Nonparametric Statistics for the Behavioral Sciences, 2nd ed.; Mcgraw-Hill Book Company: New York City, NY, USA, 1988. [Google Scholar]
- McGuire, S.E.; Le, P.T.; Davis, R.L. The role of Drosophila mushroom body signaling in olfactory memory. Science 2001, 293, 1330–1333. [Google Scholar] [CrossRef]
- Brenman-Suttner, D.B.; Long, S.Q.; Kamesan, V.; de Belle, J.N.; Yost, R.T.; Kanippayoor, R.L.; Simon, A.F. Progeny of old parents have increased social space in Drosophila melanogaster. Sci. Rep. 2018, 8, 3673. [Google Scholar] [CrossRef]
- Mackay, T.F. Mutations and quantitative genetic variation: Lessons from Drosophila. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 1229–1239. [Google Scholar] [CrossRef] [PubMed]
- Griffith, L.C.; Ejima, A. Courtship learning in Drosophila melanogaster: Diverse plasticity of a reproductive behavior. Learn. Mem. 2009, 16, 743–750. [Google Scholar] [CrossRef]
- Watanabe, L.P.; Gordon, C.; Momeni, M.Y.; Riddle, N.C. Genetic networks underlying natural variation in basal and induced activity levels in Drosophila melanogaster. G3 Genes Genomes Genet. 2020, 10, 1247–1260. [Google Scholar] [CrossRef] [PubMed]
- Mast, J.D.; De Moraes, C.M.; Alborn, H.T.; Lavis, L.D.; Stern, D.L. Evolved differences in larval social behavior mediated by novel pheromones. eLife 2014, 3, e04205. [Google Scholar] [CrossRef]
- Mueller, J.M.; Zhang, N.; Carlson, J.M.; Simpson, J.H. Variation and variability in Drosophila grooming behavior. Front. Behav. Neurosci. 2022, 15, 769372. [Google Scholar] [CrossRef]
- Thane, M.; Paisios, E.; Stöter, T.; Krüger, A.R.; Gläß, S.; Dahse, A.K.; Scholz, N.; Gerber, B.; Lehmann, D.J.; Schleyer, M. High-resolution analysis of individual Drosophila melanogaster larvae uncovers individual variability in locomotion and its neurogenetic modulation. Open Biol. 2023, 13, 220308. [Google Scholar] [CrossRef]
- Makino, T.; Kawata, M. Habitat variability correlates with duplicate content of Drosophila genomes. Mol. Biol. Evol. 2012, 29, 3169–3179. [Google Scholar] [CrossRef]
- MacMillan, H.A.; Nørgård, M.; MacLean, H.J.; Overgaard, J.; Williams, C.J. A critical test of Drosophila anaesthetics: Isoflurane and sevoflurane are benign alternatives to cold and CO2. J. Insect Physiol. 2017, 101, 97–106. [Google Scholar] [CrossRef]
(a) | |||||
Parameters | Canton-S | tab2201Y | |||
F | p | F | p | ||
Micro-area | Speed | 18.081 | 0.000 | 3.570 | 0.130 |
Locomotory rate | 14.823 | 0.000 | 3.741 | 0.121 | |
DCR | 1.085 | 0.349 | 1.026 | 0.398 | |
Sinuosity | 49.595 | 0.000 | 20.280 | 0.009 | |
Stop numbers | 20.880 | 0.001 | 19.156 | 0.000 | |
Stop time | 21.560 | 0.000 | 8.289 | 0.027 | |
Cluster numbers | 21.098 | 0.002 | 7.335 | 0.047 | |
I-index | 4.611 | 0.073 | 6.384 | 0.064 | |
MC | 3.247 | 0.081 | 7.111 | 0.017 | |
SSI | 19.411 | 0.000 | 4.809 | 0.043 | |
Light phase | Speed | 3.849 | 0.044 | 1.822 | 0.234 |
Locomotory rate | 3.702 | 0.049 | 1.832 | 0.234 | |
DCR | 1.846 | 0.185 | 0.077 | 0.904 | |
Sinuosity | 1.072 | 0.371 | 0.621 | 0.485 | |
Stop numbers | 7.812 | 0.002 | 1.094 | 0.380 | |
Stop time | 2.746 | 0.083 | 0.259 | 0.728 | |
Cluster numbers | 2.338 | 0.131 | 3.094 | 0.127 | |
I-index | 1.278 | 0.314 | 0.909 | 0.438 | |
MC | 2.254 | 0.135 | 1.219 | 0.345 | |
SSI | 4.643 | 0.040 | 1.194 | 0.347 | |
Micro-area × Light phase | Speed | 3.005 | 0.061 | 1.730 | 0.242 |
Locomotory rate | 2.960 | 0.066 | 1.443 | 0.295 | |
DCR | 1.257 | 0.320 | 1.360 | 0.310 | |
Sinuosity | 1.172 | 0.344 | 0.667 | 0.496 | |
Stop numbers | 8.314 | 0.000 | 1.852 | 0.208 | |
Stop time | 5.720 | 0.004 | 1.909 | 0.208 | |
Cluster numbers | 4.258 | 0.025 | 1.929 | 0.222 | |
I-index | 1.442 | 0.277 | 0.614 | 0.582 | |
MC | 1.724 | 0.196 | 3.108 | 0.106 | |
SSI | 6.865 | 0.006 | 1.378 | 0.308 | |
(b) | |||||
Parameters | Canton-S | tab2201Y | |||
F | p | F | p | ||
Speed | 107.083 | 0.000 | 9.199 | 0.039 | |
Locomotory rate | 122.142 | 0.000 | 10.330 | 0.032 | |
DCR | 1497.191 | 0.000 | 2190.677 | 0.000 | |
Sinuosity | 538.591 | 0.000 | 137.749 | 0.000 | |
Stop numbers | 38.702 | 0.001 | 71.848 | 0.001 | |
Stop time | 102.805 | 0.000 | 29.834 | 0.005 | |
Cluster numbers | 390.028 | 0.000 | 34.013 | 0.004 | |
I-index | 514.193 | 0.000 | 273.386 | 0.000 | |
MC | 84.686 | 0.000 | 12.144 | 0.025 | |
SSI | 253.027 | 0.000 | 24.261 | 0.008 |
(a) | ||||||||||||
Parameters | PI | PII | PIII | P-S | SI | SII | ||||||
χ2 | p | χ2 | p | χ2 | p | χ2 | p | χ2 | p | χ2 | P | |
Speed | 3.514 | 0.319 | 0.150 | 0.985 | 25.714 | 0.000 | 6.750 | 0.080 | 10.950 | 0.012 | 17.550 | 0.001 |
Locomotory rate | 3.514 | 0.319 | 3.150 | 0.369 | 8.550 | 0.036 | 7.350 | 0.062 | 9.900 | 0.019 | 13.350 | 0.004 |
DCR | 0.257 | 0.968 | 3.150 | 0.369 | 4.650 | 0.199 | 2.250 | 0.522 | 3.750 | 0.290 | 3.450 | 0.327 |
Sinuosity | 14.829 | 0.002 | 20.250 | 0.000 | 22.200 | 0.000 | 15.450 | 0.001 | 19.500 | 0.000 | 22.950 | 0.000 |
Stop numbers | 18.943 | 0.000 | 15.750 | 0.001 | 8.700 | 0.034 | 9.000 | 0.029 | 14.550 | 0.002 | 9.150 | 0.027 |
Stop time | 18.943 | 0.000 | 11.850 | 0.008 | 8.250 | 0.041 | 10.950 | 0.012 | 15.450 | 0.001 | 9.450 | 0.024 |
Cluster numbers | 19.971 | 0.000 | 18.600 | 0.000 | 17.250 | 0.001 | 14.550 | 0.002 | 19.950 | 0.000 | 19.050 | 0.000 |
I-index | 15.343 | 0.002 | 19.950 | 0.000 | 8.550 | 0.036 | 5.250 | 0.154 | 12.150 | 0.007 | 11.550 | 0.009 |
MC | 12.600 | 0.006 | 6.450 | 0.092 | 17.250 | 0.001 | 14.550 | 0.002 | 19.950 | 0.000 | 19.050 | 0.000 |
SSI | 14.829 | 0.002 | 15.450 | 0.001 | 3.450 | 0.327 | 4.650 | 0.199 | 7.800 | 0.050 | 6.450 | 0.092 |
(b) | ||||||||||||
Parameters | PI | PII | PIII | P-S | SI | SII | ||||||
χ2 | p | χ2 | p | χ2 | p | χ2 | p | χ2 | p | χ2 | P | |
Speed | 0.600 | 0.896 | 3.000 | 0.392 | 1.800 | 0.615 | 7.950 | 0.047 | 8.657 | 0.034 | 14.657 | 0.002 |
Locomotory rate | 0.200 | 0.978 | 3.857 | 0.277 | 1.650 | 0.648 | 7.950 | 0.047 | 9.000 | 0.029 | 14.486 | 0.002 |
DCR | 5.600 | 0.133 | 2.829 | 0.419 | 1.050 | 0.789 | 6.750 | 0.080 | 6.257 | 0.100 | 5.229 | 0.156 |
Sinuosity | 12.200 | 0.007 | 15.343 | 0.002 | 21.600 | 0.000 | 16.350 | 0.001 | 17.914 | 0.000 | 14.486 | 0.002 |
Stop numbers | 12.600 | 0.006 | 6.257 | 0.100 | 7.350 | 0.062 | 9.450 | 0.024 | 10.371 | 0.016 | 11.057 | 0.011 |
Stop time | 12.200 | 0.007 | 6.600 | 0.086 | 8.850 | 0.031 | 9.450 | 0.024 | 10.029 | 0.018 | 10.543 | 0.014 |
Cluster numbers | 14.600 | 0.002 | 13.800 | 0.003 | 14.550 | 0.002 | 12.600 | 0.006 | 13.971 | 0.003 | 16.200 | 0.001 |
I-index | 11.160 | 0.011 | 14.600 | 0.002 | 11.600 | 0.009 | 12.200 | 0.007 | 13.457 | 0.004 | 14.143 | 0.003 |
MC | 12.600 | 0.006 | 5.914 | 0.116 | 4.050 | 0.256 | 12.450 | 0.006 | 5.914 | 0.116 | 14.486 | 0.002 |
SSI | 12.200 | 0.007 | 5.229 | 0.156 | 10.050 | 0.018 | 8.250 | 0.041 | 2.314 | 0.510 | 4.371 | 0.224 |
(a) | ||||||||
Parameters | Food-provision | Center-diffusion | Intermediate | Edge | ||||
χ2 | p | χ2 | p | χ2 | p | χ2 | p | |
Speed | 12.878 | 0.025 | 19.000 | 0.002 | 25.714 | 0.000 | 16.500 | 0.006 |
Locomotory rate | 10.673 | 0.058 | 16.000 | 0.007 | 24.714 | 0.000 | 15.929 | 0.007 |
DCR | 12.959 | 0.024 | 2.714 | 0.744 | 12.714 | 0.026 | 6.786 | 0.237 |
Sinuosity | 16.388 | 0.006 | 15.643 | 0.008 | 3.909 | 0.563 | 4.571 | 0.470 |
Stop numbers | 9.857 | 0.079 | 24.214 | 0.000 | 9.071 | 0.106 | 21.500 | 0.001 |
Stop time | 14.429 | 0.013 | 20.714 | 0.001 | 5.643 | 0.343 | 21.429 | 0.001 |
Cluster numbers | 5.776 | 0.329 | 27.929 | 0.000 | 18.357 | 0.003 | 12.000 | 0.035 |
I-index | 8.061 | 0.153 | 11.714 | 0.039 | 9.929 | 0.077 | 20.929 | 0.001 |
MC | 3.490 | 0.625 | 13.143 | 0.022 | 4.429 | 0.489 | 14.571 | 0.012 |
SSI | 4.959 | 0.421 | 11.571 | 0.041 | 5.429 | 0.366 | 20.786 | 0.001 |
(b) | ||||||||
Parameters | Food-provision | Center-diffusion | Intermediate | Edge | ||||
χ2 | p | χ2 | p | χ2 | p | χ2 | p | |
Speed | 0.886 | 0.971 | 3.245 | 0.662 | 17.204 | 0.004 | 20.959 | 0.001 |
Locomotory rate | 2.143 | 0.829 | 4.143 | 0.529 | 16.061 | 0.007 | 21.939 | 0.001 |
DCR | 1.686 | 0.891 | 4.551 | 0.473 | 3.571 | 0.613 | 2.918 | 0.713 |
Sinuosity | 3.400 | 0.639 | 6.952 | 0.224 | 2.969 | 0.705 | 1.449 | 0.919 |
Stop numbers | 3.171 | 0.674 | 11.816 | 0.037 | 8.714 | 0.121 | 11.327 | 0.045 |
Stop time | 3.629 | 0.604 | 12.959 | 0.024 | 3.898 | 0.564 | 4.959 | 0.421 |
Cluster numbers | 7.400 | 0.193 | 18.952 | 0.002 | 11.980 | 0.035 | 11.490 | 0.042 |
I-index | 13.000 | 0.023 | 1.550 | 0.907 | 5.400 | 0.369 | 15.000 | 0.010 |
MC | 4.429 | 0.489 | 7.524 | 0.185 | 11.245 | 0.047 | 17.857 | 0.003 |
SSI | 1.800 | 0.876 | 5.048 | 0.410 | 8.878 | 0.114 | 7.408 | 0.192 |
Parameters and Phase | Total | Food-Provision | Center-Diffusion | Intermediate | Edge | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Wilcoxon Signed-Rank | Paired Permutation | Wilcoxon Signed-Rank | Paired Permutation | Wilcoxon Signed-Rank | Paired Permutation | Wilcoxon Signed-Rank | Paired Permutation | Wilcoxon Signed-Rank | Paired Permutation | ||||||||||||
W | p | Δμ | p | W | p | Δμ | p | W | p | Δμ | p | W | p | Δμ | p | W | p | Δμ | p | ||
Speed | PI | 4 | 0.055 | 0.235 | 0.039 | 1 | 0.063 | 0.323 | 0.031 | 4 | 0.055 | 0.252 | 0.008 | 5 | 0.078 | 0.915 | 0.257 | 1 | 0.016 | 0.232 | 0.023 |
SII | 2 | 0.047 | 1.005 | 0.062 | 9 | 0.469 | 0.218 | 0.155 | 10 | 0.578 | 0.154 | 0.264 | 3 | 0.078 | 1.546 | 0.186 | 1 | 0.031 | 1.684 | 0.047 | |
Loco. rate | PI | 1 | 0.016 | 0.347 | 0.016 | 0 | 0.031 | 0.411 | 0.031 | 4 | 0.055 | 0.265 | 0.086 | 5 | 0.078 | 1.072 | 0.226 | 0 | 0.008 | 0.337 | 0.031 |
PII | 16 | 0.844 | 0.158 | 0.459 | 13 | 0.938 | 0.023 | 0.837 | 11 | 0.383 | −0.088 | 0.475 | 9 | 0.25 | 1.05 | 0.093 | 13 | 0.547 | 0.341 | 0.389 | |
SI | 9 | 0.469 | 0.638 | 0.403 | 13 | 0.938 | −0.023 | 0.992 | 14 | 1 | 0.036 | 0.961 | 1 | 0.031 | 1.782 | 0.295 | 6 | 0.219 | 1.217 | 0.217 | |
SII | 3 | 0.078 | 1.124 | 0.031 | 10 | 0.578 | 0.206 | 0.202 | 6 | 0.219 | 0.206 | 0.264 | 2 | 0.047 | 1.762 | 0.031 | 2 | 0.047 | 1.924 | 0.047 | |
DCR | PII | 17 | 0.945 | −1.536 | 0.879 | 3 | 0.078 | 13.555 | 0.31 | 17 | 0.945 | 4.145 | 0.825 | 14 | 0.641 | 0.585 | 0.981 | 17 | 0.945 | −2.143 | 0.747 |
Sinu. | PI | 14 | 0.641 | 106.77 | 0.195 | 6 | 0.438 | 3.03 | 0.308 | 1 | 0.031 | 10.474 | 0.047 | 17 | 0.945 | 23.401 | 0.607 | 12 | 0.461 | −36.029 | 0.529 |
SII | 3 | 0.465 | 46.907 | 0.543 | 11 | 0.688 | −2.325 | 0.465 | 12 | 0.813 | −6.328 | 0.605 | 1 | 0.08 | 4.146 | 0.093 | 9 | 0.469 | 34.443 | 0.636 | |
St. no. | PI | 4 | 0.055 | −331.312 | 0.008 | 8 | 0.688 | 7.78 | 0.554 | 14 | 0.641 | 17.904 | 0.467 | 7 | 0.148 | −80.45 | 0.265 | 7 | 0.148 | −161.837 | 0.109 |
PII | 3 | 0.039 | −293.475 | 0.023 | 10 | 0.578 | 61.071 | 0.45 | 10 | 0.313 | 49.982 | 0.428 | 6 | 0.109 | −69.875 | 0.311 | 12 | 0.461 | −76.284 | 0.467 | |
PIII | 7 | 0.148 | −213.538 | 0.093 | 12 | 0.461 | 48.604 | 0.412 | 13 | 0.547 | −22.475 | 0.732 | 6 | 0.109 | −118.9 | 0.156 | 17 | 0.945 | 23.916 | 0.661 | |
P-S | 10 | 0.313 | −206.312 | 0.156 | 17 | 0.945 | 7.121 | 0.864 | 9 | 0.25 | 53.563 | 0.374 | 3 | 0.039 | −150.037 | 0.031 | 17 | 0.945 | 38.375 | 0.7 | |
St. ti. | P-S | 11 | 0.383 | −294.675 | 0.716 | 16 | 0.844 | 60.137 | 0.693 | 7 | 0.148 | 252.129 | 0.265 | 0 | 0.008 | −360.7 | 0.125 | 18 | 1 | 8.787 | 0.996 |
Cluster | PIII | 3 | 0.039 | −2.973 | 0.101 | 18 | 1 | 0.029 | 0.84 | 12 | 0.461 | −0.289 | 0.374 | 0 | 0.008 | −2.878 | 0.016 | 17 | 0.945 | 0.527 | 0.654 |
P-S | 5 | 0.078 | −4.033 | 0.163 | 17 | 0.945 | 0.015 | 0.786 | 3 | 0.039 | −0.791 | 0.016 | 0 | 0.008 | −4.847 | 0.016 | 16 | 0.844 | 1.601 | 0.459 | |
SI | 11 | 0.688 | −0.272 | 0.822 | 10 | 0.578 | 0.043 | 0.279 | 11 | 0.688 | 0.257 | 0.496 | 4 | 0.109 | −3.162 | 0.093 | 5 | 0.156 | 4.134 | 0.186 | |
SII | 8 | 0.375 | 3.488 | 0.403 | 14 | 1 | −0.026 | 0.791 | 8 | 0.375 | 0.178 | 0.667 | 5 | 0.156 | −1.205 | 0.124 | 1 | 0.031 | 5.71 | 0.031 | |
I-Index | P-S | 9 | 0.25 | −0.016 | 0.342 | 1 | 0.016 | −0.07 | 0.117 | 3 | 0.039 | −0.063 | 0.062 | 13 | 0.547 | 0.294 | 0.265 | 5 | 0.078 | −0.058 | 0.054 |
SI | 14 | 1 | 0.001 | 0.884 | 8 | 0.375 | −0.018 | 0.589 | 12 | 0.813 | −0.011 | 0.605 | 0 | 0.016 | 0.397 | 0.016 | 13 | 0.938 | −0.022 | 0.527 | |
SII | 12 | 0.813 | 0.007 | 0.605 | 13 | 0.938 | 0.011 | 0.636 | 8 | 0.375 | 0.024 | 0.295 | 4 | 0.109 | 0.333 | 0.047 | 11 | 0.688 | 0.015 | 0.791 | |
MC | P-S | 18 | 1 | -4.991 | 0.591 | 17 | 0.945 | 0.124 | 0.911 | 10 | 0.313 | 9.093 | 0.226 | 7 | 0.148 | -10.082 | 0.039 | 12 | 0.461 | -3.101 | 0.381 |
SII | 10 | 0.578 | -4.798 | 0.605 | 5 | 0.156 | -6.693 | 0.233 | 10 | 0.578 | 7.454 | 0.357 | 4 | 0.109 | -10.903 | 0.078 | 12 | 0.813 | 0.326 | 0.93 | |
SSI | PI | 4 | 0.055 | −3315.56 | 0.031 | 9 | 0.844 | 437.05 | 0.738 | 12 | 0.813 | −30.136 | 0.868 | 12 | 0.461 | −478.324 | 0.584 | 2 | 0.023 | −2711.53 | 0.047 |
PII | 7 | 0.148 | −3128.22 | 0.062 | 12 | 0.813 | 227.655 | 0.977 | 7 | 0.148 | −340.694 | 0.241 | 7 | 0.148 | −567.741 | 0.179 | 3 | 0.039 | −2507.21 | 0.078 | |
PIII | 7 | 0.148 | −1424.97 | 0.21 | 17 | 0.945 | 324.219 | 0.802 | 6 | 0.109 | −737.317 | 0.078 | 6 | 0.109 | −1102.44 | 0.039 | 14 | 0.641 | −274.226 | 0.77 | |
P-S | 17 | 0.945 | 76.322 | 0.996 | 18 | 1 | 319.303 | 0.833 | 12 | 0.461 | 171.639 | 0.553 | 8 | 0.195 | −855.893 | 0.07 | 15 | 0.742 | −317.488 | 0.506 | |
SII | 12 | 0.813 | 221.863 | 0.884 | 11 | 0.688 | −606.862 | 0.186 | 11 | 0.688 | 902.952 | 0.465 | 5 | 0.156 | −1109.96 | 0.093 | 13 | 0.938 | −167.561 | 0.853 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, N.; Xia, C.; Jang, Y.-H.; Kim, H.-W.; Chung, Y.D.; Chon, T.-S. Movement and Dispersion Parameters Characterizing the Group Behavior of Drosophila melanogaster in Micro-Areas of an Observation Arena. Animals 2025, 15, 1515. https://doi.org/10.3390/ani15111515
Jung N, Xia C, Jang Y-H, Kim H-W, Chung YD, Chon T-S. Movement and Dispersion Parameters Characterizing the Group Behavior of Drosophila melanogaster in Micro-Areas of an Observation Arena. Animals. 2025; 15(11):1515. https://doi.org/10.3390/ani15111515
Chicago/Turabian StyleJung, Nam, Chunlei Xia, Yong-Hyeok Jang, Hye-Won Kim, Yun Doo Chung, and Tae-Soo Chon. 2025. "Movement and Dispersion Parameters Characterizing the Group Behavior of Drosophila melanogaster in Micro-Areas of an Observation Arena" Animals 15, no. 11: 1515. https://doi.org/10.3390/ani15111515
APA StyleJung, N., Xia, C., Jang, Y.-H., Kim, H.-W., Chung, Y. D., & Chon, T.-S. (2025). Movement and Dispersion Parameters Characterizing the Group Behavior of Drosophila melanogaster in Micro-Areas of an Observation Arena. Animals, 15(11), 1515. https://doi.org/10.3390/ani15111515