Effects of Dietary Docosahexaenoic Acid Levels on the Growth, Body Composition, and Health of Liver and Intestine in Juvenile Tiger Puffer (Takifugu rubripes)
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Approval
2.2. Experimental Diets
2.3. Feeding Procedure and Sampling
2.4. Analysis of the Proximate Composition of Fish
2.5. Biochemical Parameters of Serum
2.6. Fatty Acid Composition
Determination of Absolute DHA Content in Diets by Gas Chromatography
2.7. Histological Structure
2.8. RNA Extraction and RT-qPCR Analysis
2.9. Calculation and Statistics
2.9.1. Calculation
2.9.2. Statistics
3. Results
3.1. Growth Performance, Somatic Indices, and Body Composition
3.2. Serum Biochemical Parameters
3.3. Fatty Acid Profiles in the Whole Body, Muscle and Liver
3.4. Histological Structure of Tissues
3.5. Gene Expression
3.5.1. Liver Fibrosis and Inflammation Related Gene Expression
3.5.2. Intestinal Inflammation and Intestinal Barrier-Related Gene Expression
3.5.3. Muscle Differentiation and Apoptosis Related Gene Expression
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Abbreviation | Full name |
Non-gene name | |
LC-PUFA | long-chain polyunsaturated fatty acids |
EPA | eicosapentaenoic acid |
DHA | docosahexaenoic acid |
ARA | arachidonic acid |
FO | fish oil |
SFA | saturated fatty acid |
MUFA | monounsaturated fatty acid |
RT-qPCR | real-time quantitative polymerase chain reaction |
WG | weight gain |
SGR | specific growth rate |
VSI | viscerosomatic index |
HSI | hepatosomatic index |
TFA | total fatty acids |
TG | triglyceride |
T-CHO | total cholesterol |
HDL-C | high-density lipoprotein cholesterol |
LDL-C | low-density lipoprotein choles-terol |
TBA | total bile acid |
MDA | malondialdehyde |
Gene name | |
myod | myogenic differentiation antigen |
myog | myogenin |
myf6 | myogenic factor 6 |
myf5 | myogenic factor 5 |
bax | bcl-2-associated x |
bcl-2 | b-cell lymphoma-2 |
acta2 | actin alpha 2 |
il-1β | interleukin—1β |
il-8 | interleukin 8 |
tnf-α | tumor necrosis factor alpha |
ifn-γ | interferon gamma |
jam-a | junctional adhesion molecule a |
mlck | myosin light chain kinase |
rpl19 | ribosomal protein l19 |
rpl13 | ribosomal protein l13 |
keap1 | Kelch-like ECH-associated protein 1 |
nrf2 | nuclear factor erythroid 2 |
col1a2 | collagen type I alpha 2 chain |
References
- Xiao, Y.F.; Ke, Q.G.; Wang, S.Y.; Auktor, K.; Yang, Y.K.; Wang, G.K.; Morgan, J.P.; Leaf, A. Single point mutations affect fatty acid block of human myocardial sodium channel alpha subunit Na+ channels. Proc. Natl. Acad. Sci. USA 2001, 98, 3606–3611. [Google Scholar] [CrossRef] [PubMed]
- Rombenso, A.N.; Trushenski, J.T.; Jirsa, D.; Drawbridge, M. Docosahexaenoic acid (DHA) and arachidonic acid (ARA) are essential to meet LC-PUFA requirements of juvenile California Yellowtail (Seriola dorsalis). Aquaculture 2016, 463, 123–134. [Google Scholar] [CrossRef]
- Lutfi, E.; Berge, G.M.; Bæverfjord, G.; Sigholt, T.; Bou, M.; Larsson, T.; Morkore, T.; Evensen, O.; Sissener, N.H.; Rosenlund, G.; et al. Increasing dietary levels of the n-3 long-chain PUFA, EPA and DHA, improves the growth, welfare, robustness and fillet quality of Atlantic salmon in sea cages. Br. J. Nutr. 2023, 129, 10–28. [Google Scholar] [CrossRef]
- Poggioli, R.; Hirani, K.; Jogani, V.G.; Ricordi, C. Modulation of inflammation and immunity by Omega-3 fatty acids: A possible role for prevention and to halt disease progression in autoimmune, viral, and age-related disorders. Eur. Rev. Med. Pharmacol. Sci. 2023, 27, 7380–7400. [Google Scholar]
- Ji, S.-C.; Shin, J.; Kim, D.-J.; Jeong, M.H.; Kim, J.-h.; Lee, K.-J. Utilization of Enzyme-treated Fish Meal and DHA Oil in Diets for Juvenile Atlantic Bluefin Tuna Thunnus thynnus. Korean J. Fish. Aquat. Sci. 2020, 53, 181–190. [Google Scholar] [CrossRef]
- Seong, T.; Kitagima, R.; Haga, Y.; Satoh, S. Non-fish meal, non-fish oil diet development for red sea bream, Pagrus major, with plant protein and graded levels of Schizochytrium sp.: Effect on growth and fatty acid composition. Aquac. Nutr. 2020, 26, 1173–1185. [Google Scholar] [CrossRef]
- Toshio, T.; Reiji, M.; Yasuro, I.; Takeshi, W.; Masaei, K.; Keinosuke, I.; Katsumi, T. Determination of the Requirement of Larval Striped Jack for Eicosapentaenoic Acid and Docosahexaenoic Acid Using Enriched Artemia nauplii. Fish. Sci. 1996, 62, 760–765. [Google Scholar]
- Batista, I.R.; Kamermans, P.; Verdegem, M.C.J.; Smaal, A.C. Growth and fatty acid composition of juvenile Cerastoderma edule (L.) feb live microalgae diets with different fatty acid profiles. Aquac. Nutr. 2014, 20, 132–142. [Google Scholar] [CrossRef]
- Liu, C.; Rao, W.X.; Cui, Z.Y.; Chen, P.; Lei, K.K.; Mai, K.S.; Zhang, W.B. Comparative evaluation on the effects of dietary docosahexaenoic acid on growth performance, fatty acid profile and lipid metabolism in two sizes of abalone Haliotis discus hannai Ino. Aquaculture 2023, 565, 739136. [Google Scholar] [CrossRef]
- Chen, Y.F.; Sun, Z.Z.; Liang, Z.M.; Xie, Y.D.; Su, J.L.; Luo, Q.L.; Zhu, J.Y.; Liu, Q.Y.; Han, T.; Wang, A.L. Effects of dietary fish oil replacement by soybean oil and l-carnitine supplementation on growth performance, fatty acid composition, lipid metabolism and liver health of juvenile largemouth bass, Micropterus salmoides. Aquaculture 2020, 516, 734596. [Google Scholar] [CrossRef]
- Li, L.; Zhang, F.R.; Meng, X.X.; Cui, X.S.; Ma, Q.; Wei, Y.L.; Liang, M.Q.; Xu, H.G. Fish Oil Replacement with Poultry Oil in the Diet of Tiger Puffer (Takifugu rubripes): Effects on Growth Performance, Body Composition, and Lipid Metabolism. Aquac. Nutr. 2022, 2022, 2337933. [Google Scholar] [CrossRef] [PubMed]
- Zatti, K.M.; Ceballos, M.J.; Vega, V.V.; Denstadli, V. Full replacement of fish oil with algae oil in farmed Atlantic salmon (Salmo salar)—Debottlenecking omega 3. Aquaculture 2023, 574, 739653. [Google Scholar] [CrossRef]
- Monge-Ortiz, R.; Tomás-Vidal, A.; Rodriguez-Barreto, D.; Martínez-Llorens, S.; Pérez, J.A.; Jover-Cerdá, M.; Lorenzo, A. Replacement of fish oil with vegetable oil blends in feeds for greater amberjack (Seriola dumerili) juveniles: Effect on growth performance, feed efficiency, tissue fatty acid composition and flesh nutritional value. Aquac. Nutr. 2018, 24, 605–615. [Google Scholar] [CrossRef]
- Takii, K.; Ukawa, M.; Nakamura, M.; Kumai, H. Suitable Lipid Level in Brown Fish Meal Diet for Tiger Puffer. Fish. Sci. 1995, 61, 841–844. [Google Scholar] [CrossRef]
- Kim, S.S.; Lee, K.J. Dietary protein requirement of juvenile tiger puffer (Takifugu rubripes). Aquaculture 2009, 287, 219–222. [Google Scholar] [CrossRef]
- Wei, Y.L.; Zhou, Z.B.; Zhang, Z.J.; Zhao, L.L.; Li, Y.L.; Ma, Q.; Liang, M.Q.; Xu, H.G. Effects of dietary tryptophan levels on growth performance, serotonin metabolism, brain 5-HT and cannibalism activities in tiger puffer, Takifugu rubripes fingerlings. Aquaculture 2024, 593, 741313. [Google Scholar] [CrossRef]
- Laining, A.; Ishikawa, M.; Kyaw, K.; Gao, J.; Binh, N.T.; Koshio, S.; Yamaguchi, S.; Yokoyama, S.; Koyama, J. Dietary calcium/phosphorus ratio influences the efficacy of microbial phytase on growth, mineral digestibility and vertebral mineralization in juvenile tiger puffer, Takifugu rubripes. Aquac. Nutr. 2011, 17, 267–277. [Google Scholar] [CrossRef]
- Eo, J.; Lee, K.J. Effect of dietary ascorbic acid on growth and non-specific immune responses of tiger puffer, Takifugu rubripes. Fish Shellfish Immunol. 2008, 25, 611–616. [Google Scholar] [CrossRef]
- Furuichi, M.A.H.M. Calcium Requirement of Tiger Puffer Fed a Semi-Purified Diet. Aquac. Int. 1999, 7, 287–293. [Google Scholar]
- Aparicio, S.; Chapman, J.; Stupka, E.; Putnam, N.; Chia, J.; Dehal, P.; Christoffels, A.; Rash, S.; Hoon, S.; Smit, A.; et al. Whole-genome shotgun assembly and analysis of the genome of Fugu rubripes. Science 2002, 297, 1301–1310. [Google Scholar] [CrossRef]
- Kai, W.; Kikuchi, K.; Tohari, S.; Chew, A.K.; Tay, A.; Fujiwara, A.; Hosoya, S.; Suetake, H.; Naruse, K.; Brenner, S.; et al. Integration of the Genetic Map and Genome Assembly of Fugu Facilitates Insights into Distinct Features of Genome Evolution in Teleosts and Mammals. Genome Biol. Evol. 2011, 3, 424–442. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.G.; Liao, Z.B.; Zhang, Q.G.; Wei, Y.L.; Liang, M.Q. A moderately high level of dietary lipid inhibited the protein secretion function of liver in juvenile tiger puffer Takifugu rubripes. Aquaculture 2019, 498, 17–27. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis of Official Analytical Chemists International, 16th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 1995. [Google Scholar] [CrossRef]
- Meng, X.X.; Bi, Q.Z.; Cao, L.; Ma, Q.; Wei, Y.L.; Duan, M.; Liang, M.Q.; Xu, H.G. Evaluation of Necessity of Cholesterol Supplementation in Diets of Two Marine Teleosts, Turbot (Scophthalmus maximus) and Tiger Puffer (Takifugu rubripes): Effects on Growth and Lipid Metabolism. Aquac. Nutr. 2022, 2022, 4160991. [Google Scholar] [CrossRef]
- Vandesompele, J.; De Preter, K.; Pattyn, F.; Poppe, B.; Van Roy, N.; De Paepe, A.; Speleman, F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002, 3, research0034.1. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Wang, C.C.; Jiang, G.Z.; Cao, X.F.; Dai, Y.J.; Huang, Y.Y.; Li, X.F.; Liu, W.B. Effects of dietary docosahexaenoic acid on growth performance, fatty acid profile and lipogenesis of blunt snout bream (Megalobrama amblycephala). Aquac. Nutr. 2020, 26, 502–515. [Google Scholar] [CrossRef]
- Wu, F.C.; Ting, Y.Y.; Chen, H.Y. Docosahexaenoic Acid Is Superior to Eicosapentaenoic Acid as the Essential Fatty Acid for Growth of Grouper, Epinephelus malabaricus. J. Nutr. 2002, 132, 72–79. [Google Scholar] [CrossRef]
- Betiku, O.C.; Barrows, F.T.; Ross, C.; Sealey, W.M. The effect of total replacement of fish oil with DHA-Gold® and plant oils on growth and fillet quality of rainbow trout (Oncorhynchus mykiss) fed a plant-based diet. Aquac. Nutr. 2016, 22, 158–169. [Google Scholar] [CrossRef]
- Hossain, M.A.; Al-Abdul-Elah, K.; El-Dakour, S. Improvement of nutritional quality of cultured sobaity sea bream, Sparidentex hasta (Valenciennes) muscle by preharvest feeding of finisher feeds. J. Appl. Ichthyol. 2019, 35, 1197–1208. [Google Scholar] [CrossRef]
- Araújo, B.C.; Mata-Sotres, J.A.; Vian, M.T.; Tinajero, A.; Braga, A. Fish oil-free diets for Pacific white shrimp Litopenaeus vannamei: The effects of DHA-EPA supplementation on juvenile growth performance and muscle fatty acid profile. Aquaculture 2019, 511, 734276. [Google Scholar] [CrossRef]
- Trushenski, J.; Schwarz, M.; Bergman, A.; Rombenso, A.; Delbos, B. DHA is essential, EPA appears largely expendable, in meeting the n-3 long-chain polyunsaturated fatty acid requirements of juvenile cobia Rachycentron canadum. Aquaculture 2012, 326, 81–89. [Google Scholar] [CrossRef]
- Choi, J.; Han, G.S.; Byun, S.G.; Oh, H.Y.; Lee, T.H.; Lee, D.Y.; Lee, C.H.; Kim, H.S. Effects of dietary docosahexaenoic acid enrichment in Artemia feed on the growth, survival, and fatty acid composition of Pacific cod (Gadus macrocephalus) larvae. Aquac. Res. 2022, 53, 4353–4362. [Google Scholar] [CrossRef]
- Sato, N.; Takeuchh, T. Docosahexaenoic acid (DHA) requirement of larval brown sole Pleuronectes herzensteini. Nippon Suisan Gakkaishi 2009, 75, 28–37. [Google Scholar] [CrossRef]
- Betancor, M.B.; Atalah, E.; Caballero, M.J.; Benítez-Santana, T.; Roo, J.; Montero, D.; Izquierdo, M. α-Tocopherol in weaning diets for European sea bass (Dicentrarchus labrax) improves survival and reduces tissue damage caused by excess dietary DHA contents. Aquac. Nutr. 2011, 17, E112–E122. [Google Scholar] [CrossRef]
- Betancor, M.B.; Izquierdo, M.; Terova, G.; Preziosa, E.; Saleh, R.; Montero, D.; Hernández-Cruz, C.M.; Caballero, M.J. Physiological pathways involved in nutritional muscle dystrophy and healing in European sea bass (Dicentrarchus labrax) larvae. Comp. Biochem. Physiol. A-Mol. Integr. Physiol. 2013, 164, 399–409. [Google Scholar] [CrossRef]
- Ji, S.H.; Li, H.D.; Huang, X.C.; Sun, J.; Kaneko, G.; Ji, H. Docosahexaenoic acid (DHA) promotes grass carp (Ctenopharyngodon idella) muscle fiber development by activating MEK/ERK pathway in vitro and in vivo. Aquaculture 2024, 579, 740148. [Google Scholar] [CrossRef]
- Wang, C.C.; Liu, W.B.; Huang, Y.Y.; Wang, X.; Li, X.F.; Zhang, D.D.; Jiang, G.Z. Dietary DHA affects muscle fiber development by activating AMPK/Sirt1 pathway in blunt snout bream (Megalobrama amblycephala). Aquaculture 2020, 518, 734835. [Google Scholar] [CrossRef]
- Johansen, K.A.; Overturf, K. Sequence, conservation, and quantitative expression of rainbow trout Myf5. Comp. Biochem. Phys. 2005, 140, 533–541. [Google Scholar] [CrossRef]
- de Almeida, F.L.A.; Pessotti, N.S.; Pinhal, D.; Padovani, C.R.; Leitao, N.D.; Carvalho, R.F.; Martins, C.; Portella, M.C.; Dal Pai-Silva, M. Quantitative expression of myogenic regulatory factors MyoD and myogenin in pacu (Piaractus mesopotamicus) skeletal muscle during growth. Micron 2010, 41, 997–1004. [Google Scholar] [CrossRef]
- Hossain, M.A.; Almatar, S.M.; James, C.M. Effects of varying dietary docosahexaenoic acid levels on growth, proximate composition and tissue fatty acid profile of juvenile silver pomfrets, Pampus argenteus (Euphrasen, 1788). Aquac. Res. 2012, 43, 1599–1610. [Google Scholar] [CrossRef]
- Liu, J.H.; Ma, Q.; Zhang, F.R.; Gao, Q.Y.; Zhang, Z.J.; Wei, Y.L.; Liang, M.Q.; Xu, H.G. Dietary DHA Regulated the Androgen Production in Male Chinese Tongue Sole Cynoglossus semilaevis. Aquac. Nutr. 2025, 2025, 9318358. [Google Scholar] [CrossRef] [PubMed]
- Shinagawa, J.; Morino, H.; Masumoto, T.; Fukada, H. Development of a docosahexaenoic acid (DHA)-rich yellowtail Seriola quinqueradiata using tuna by-product oil. Fish. Sci. 2017, 83, 607–617. [Google Scholar] [CrossRef]
- Kaneko, G.; Yamada, T.; Han, Y.N.; Hirano, Y.; Khieokhajonkhet, A.; Shirakami, H.; Nagasaka, R.; Kondo, H.; Hirono, I.; Ushio, H.; et al. Differences in lipid distribution and expression of peroxisome proliferator-activated receptor gamma and lipoprotein lipase genes in torafugu and red seabream. Gen. Comp. Endocrinol. 2013, 184, 51–60. [Google Scholar] [CrossRef]
- Liu, Y.C.; Limbu, S.M.; Wang, J.G.; Wang, M.; Chen, L.Q.; Qiao, F.; Luo, Y.; Zhang, M.L.; Du, Z.Y. Dietary docosahexaenoic acid reduces fat deposition and alleviates liver damage induced by D-galactosamine and lipopolysaccharides in Nile tilapia (Oreochromis niloticus). Comp. Biochem. Physiol. C-Toxicol. Pharmacol. 2023, 268, 109603. [Google Scholar] [CrossRef]
- Magalhaes, R.; Martins, N.; Fontinha, F.; Moutinho, S.; Olsen, R.E.; Peres, H.; Oliva-Teles, A. Effects of dietary arachidonic acid and docosahexanoic acid at different carbohydrates levels on gilthead sea bream growth performance and intermediary metabolism. Aquaculture 2021, 545, 737233. [Google Scholar] [CrossRef]
- Huang, X.C.; Bian, C.C.; Ji, H.; Ji, S.H.; Sun, J. DHA induces adipocyte lipolysis through endoplasmic reticulum stress and the cAMP/PKA signaling pathway in grass carp (Ctenopharyngodon idella). Anim. Nutr. 2023, 13, 185–196. [Google Scholar] [CrossRef]
- Schönfeld, P.; Wojtczak, L. Short- and medium-chain fatty acids in energy metabolism: The cellular perspective. J. Lipid Res. 2016, 57, 943–954. [Google Scholar] [CrossRef]
- Sun, S.X.; Cao, X.J.; Gao, J. C24:0 avoids cold exposure-induced oxidative stress and fatty acid β-oxidation damage. Iscience 2021, 24, 103409. [Google Scholar] [CrossRef]
- Nayak, S.; Khozin-Goldberg, I.; Cohen, G.; Zilberg, D. Dietary Supplementation With ω6 LC-PUFA-Rich Algae Modulates Zebrafish Immune Function and Improves Resistance to Streptococcal Infection. Front. Immunol. 2018, 9, 1960. [Google Scholar] [CrossRef]
- Colombo, S.M.; Budge, S.M.; Hall, J.R.; Kornicer, J.; White, N. Atlantic salmon adapt to low dietary n-3 PUFA and warmer water temperatures by increasing feed intake and expression of n-3 biosynthesis-related transcripts. Fish Physiol. Biochem. 2023, 49, 39–60. [Google Scholar] [CrossRef]
- Morton, K.M.; Blyth, D.; Bourne, N.; Irvin, S.; Glencross, B.D. Effect of ration level and dietary docosahexaenoic acid content on the requirements for long-chain polyunsaturated fatty acids by juvenile barramundi (Lates calcarifer). Aquaculture 2014, 433, 164–172. [Google Scholar] [CrossRef]
- Emery, J.A.; Norambuena, F.; Trushenski, J.; Turchini, G.M. Uncoupling EPA and DHA in Fish Nutrition: Dietary Demand is Limited in Atlantic Salmon and Effectively Met by DHA Alone. Lipids 2016, 51, 399–412. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.G.; Cao, L.; Wei, Y.L.; Zhang, Y.Q.; Liang, M.Q. Lipid contents in farmed fish are influenced by dietary DHA/EPA ratio: A study with the marine flatfish, tongue sole (Cynoglossus semilaevis). Aquaculture 2018, 485, 183–190. [Google Scholar] [CrossRef]
- Liu, Z.P.; Xiang, Y.Q.; Sun, G.H. The KCTD family of proteins: Structure, function, disease relevance. Cell Biosci. 2013, 3, 45. [Google Scholar] [CrossRef]
- McMahon, M.; Lamont, D.J.; Beattie, K.A.; Hayes, J.D. Keap1 perceives stress via three sensors for the endogenous signaling molecules nitric oxide, zinc, and alkenals. Proc. Natl. Acad. Sci. USA 2010, 107, 18838–18843. [Google Scholar] [CrossRef]
- Zeb, A.; Choubey, V.; Gupta, R.; Kuum, M.; Safiulina, D.; Vaarmann, A.; Gogichaishvili, N.; Liiv, M.; Ilves, I.; Tämm, K.; et al. A novel role of KEAP1/PGAM5 complex: ROS sensor for inducing mitophagy. Redox Biol. 2021, 48, 102186. [Google Scholar] [CrossRef]
- Lai, Y.W.; Ramírez-Pardo, I.; Isern, J.; An, J.; Perdiguero, E.; Serrano, A.L.; Li, J.X.; García-Domínguez, E.; Segalés, J.; Guo, P.C.; et al. Multimodal cell atlas of the ageing human skeletal muscle. Nature 2024, 629, 154–164. [Google Scholar] [CrossRef]
- Yoon, Y.; Hwang, S.; Saima, F.T.; Kim, M.Y.; Baik, S.K.; Eom, Y.W. AKT regulates IL-1β-induced proliferation and activation of hepatic stellate cells. Biocell 2023, 47, 669–676. [Google Scholar] [CrossRef]
- Stefania, K.; Ashok, K.K.; Geena, P.V.; Katarina, P.; Isak, D. TMAO enhances TNF-α mediated fibrosis and release of inflammatory mediators from renal fibroblasts. Sci. Rep. 2024, 14, 9070. [Google Scholar] [CrossRef]
- Du, L.; Hao, Y.M.; Yang, Y.H.; Zheng, Y.; Wu, Z.J.; Zhou, M.Q.; Wang, B.Z.; Wang, Y.M.; Wu, H.; Su, G.H. DHA-Enriched Phospholipids and EPA-Enriched Phospholipids Alleviate Lipopolysaccharide-Induced Intestinal Barrier Injury in Mice via a Sirtuin 1-Dependent Mechanism. J. Agric. Food Chem. 2022, 70, 2911–2922. [Google Scholar] [CrossRef]
- Zhao, Q.L.; Yang, F.; Pu, Q.Y.; Zhao, R.; Jiang, S.; Tang, Y.P. Integrative metabolomics and gut microbiota analyses reveal the protective effects of DHA-enriched phosphatidylserine on bisphenol A-induced intestinal damage. J. Funct. Foods 2024, 117, 106229. [Google Scholar] [CrossRef]
- Gisbert, E.; Villeneuve, L.; Zambonino-Infante, J.L.; Quazuguel, P.; Cahu, C.L. Dietary phospholipids are more efficient than neutral lipids for long-chain polyunsaturated fatty acid supply in European sea bass Dicentrarchus labrax larval development. Lipids 2005, 40, 609–618. [Google Scholar] [CrossRef] [PubMed]
- Bou, M.; Berge, G.M.; Baeverfjord, G.; Sigholt, T.; Ostbye, T.K.; Romarheim, O.H.; Hatlen, B.; Leeuwis, R.; Venegas, C.; Ruyter, B. Requirements of n-3 very long-chain PUFA in Atlantic salmon (Salmo salar L): Effects of different dietary levels of EPA and DHA on fish performance and tissue composition and integrity. Br. J. Nutr. 2017, 117, 30–47. [Google Scholar] [CrossRef]
- Mrsny, R.J.; Brown, G.T.; Gerner-Smidt, K.; Buret, A.G.; Meddings, J.B.; Quan, C.; Koval, M.; Nusrat, A. A key claudin extracellular loop domain is critical for epithelial barrier integrity. Am. J. Pathol. 2008, 172, 905–915. [Google Scholar] [CrossRef]
- Wardill, H.R.; Gibson, R.J.; Logan, R.M.; Bowen, J.M. TLR4/PKC-mediated tight junction modulation: A clinical marker of chemotherapy-induced gut toxicity? Int. J. Cancer. 2014, 135, 2483–2492. [Google Scholar] [CrossRef]
- Hering, N.A.; Fromm, M.; Schulzke, J.D. Determinants of colonic barrier function in inflammatory bowel disease and potential therapeutics. J Physiol. 2012, 590, 1035–1044. [Google Scholar] [CrossRef]
- Rao, R.K.; Basuroy, S.; Rao, V.U.; Karnaky, K.J.; Gupta, A. Tyrosine phosphorylation and dissociation of occludin-Z0-1 and E-cadherin-β-catenin complexes from the cytoskeleton by oxidative stress. Biochem. J. 2002, 368, 471–481. [Google Scholar] [CrossRef]
Ingredients | Dietary DHA Levels (% Dry Matter basis) | |||||
---|---|---|---|---|---|---|
0.09 | 0.57 | 1.35 | 1.61 | 2.28 | 3.08 | |
Fish meal | 35.00 | 35.00 | 35.00 | 35.00 | 35.00 | 35.00 |
Poultry by-product meal | 8.00 | 8.00 | 8.00 | 8.00 | 8.00 | 8.00 |
Soybean meal | 14.00 | 14.00 | 14.00 | 14.00 | 14.00 | 14.00 |
Com gluten meal | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 |
Wheat meal | 17.05 | 17.05 | 17.05 | 17.05 | 17.05 | 17.05 |
Brewer’s yeast | 5.00 | 5.00 | 5.00 | 5.00 | 5.00 | 5.00 |
Mineral premix a | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 |
Vitamin premix a | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Monocalcium phosphate | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
L-ascorbyl-2-polyphosphate | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 |
Choline chloride | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 |
Betaine | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 |
Ethoxyquin | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 |
Calcium propionic acid | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 |
Soya lecithin | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
DHA enriched oil b | 0.00 | 1.00 | 2.00 | 3.00 | 4.00 | 5.00 |
EPA enriched oil b | 1.20 | 1.19 | 1.17 | 1.16 | 1.14 | 1.13 |
ARA enriched oil b | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 |
Rapeseed oil c | 4.93 | 3.94 | 2.96 | 1.97 | 0.99 | 0.00 |
Proximate composition | ||||||
Crude protein | 49.10 | 49.10 | 49.10 | 49.10 | 49.10 | 49.10 |
Crude lipid | 11.63 | 11.63 | 11.63 | 11.63 | 11.63 | 11.63 |
Ash | 89.62 | 89.69 | 89.71 | 89.72 | 89.65 | 89.62 |
Energy KJ/g | 21.35 | 21.16 | 20.95 | 20.94 | 21.33 | 21.07 |
DHA content | 0.09 | 0.57 | 1.35 | 1.61 | 2.28 | 3.08 |
Primer | Sequence (5′−3′) | GenBank Reference | PL (bp) |
---|---|---|---|
myod-F | TTCATCATCACACCGAGGCG | NM_001032769.1 | 126 |
myod-R | GTCGGTCCACGTTTGTAGTCT | ||
myog-F | ACGCTAATCAGTGGGTCTGC | XM_003973605.3 | 89 |
myog-R | TAACTCGTGGCTTCGACAGG | ||
myf6-F | GATCTGCAAGCGCAAATCGG | NM_001032771.1 | 116 |
myf6-R | CCACGGTCTTCCTCTTGAGC | ||
myf5-F | GGAGTCCTCTGTCCAACTGC | NM_001032770.1 | 84 |
myf5-R | CGCTGCTGTAAACTGCGTTC | ||
bax-F | ACCGTTCCCAGTGCAAATCT | NC_042289.1 | 108 |
bax-R | TGGGAACACTTGAGCCCATC | ||
bcl-2-F | GGGCCGGATTATCGCTTTCT | NC_042306.1 | 111 |
bcl-2-R | TATTCCGTCATCCACTCCGC | ||
acta2-6F | ATTCCTCGTCCCTGTGTGGTC | XM_029845356.1 | 125 |
acta2-6R | GGCATCATCTCCAGCGAAGC | ||
il-1β-F | CATCACCCGCTGACCATGAA | NM_001280090.1 | 103 |
il-1β-R | CATCCCTGAACTCGGTGCTC | ||
il-8-F | CCTGCGGAGCCTCGGAGTG | AB125645.1 | 145 |
il-8-R | TGACATCTTCAGAGTGGCAATGATCTC | ||
tnf-α-F | CTACTGGAACGGAAGGCAAGAGATG | AB183465.1 | 100 |
tnf-α-R | GATGCGGCTCAGCGTGTAGTG | ||
ifn-γ-F | CTGTGATGACTCTTGGGGCT | XM_029825554.1 | 147 |
ifn-γ-R | TGTACCGCTGACAGGAGTTG | ||
claudin18-F | GACACAAGGGTCTGTGGCAG | AY554344.1 | 112 |
claudin18-R | ATGATCATCAGGGCTCGCAC | ||
jam-a-F | CAAAAACGGCGTGCCTCTAC | XM_003971244.3 | 122 |
jam-a-R | CCGAGTCCGACCTTGATGTT | ||
mlck-F | GACACGACTGGCACGCAGATC | XM_011621260.1 | 170 |
mlck-R | CAGATGACTCCGATGCTCCACATG | ||
rpl19-F | GTCTCATCATCCGCAAACC | XM_003964816 | 132 |
rpl19-R | TCTCAGGCATACGAGCATT | ||
rpl13-F | GTAACAGGTCCACAGAATCCC | XM_003969972 | 117 |
rpl13-R | CCTCAGTGCTGTCTCCCTTC | ||
keap1-F | ACCGTGATGGAGGAATCGAGC | XM_029851225.1 | 123 |
keap1-R | TCAGCTTACCAGAACCGAGGG | ||
nrf2-F | ACGCATTCGACAAACACGAC | XM_003961827.3 | 106 |
nrf2-R | CCGTACACAGACTTCCCAGG | ||
col1a2-F | TGTTGGAGAGGGTGGAAAGC | XM_011609483.2 | 136 |
col1a2-R | GACTCCCATTGGACCCTGAG |
Parameters | DHA0 | DHA1 | DHA2 | DHA3 | DHA4 | DHA5 | Regression | |||
---|---|---|---|---|---|---|---|---|---|---|
Model | Equation | R2 | p | |||||||
Initial weight (g) | 17.69 ± 0.04 | 17.86 ± 0.09 | 17.77 ± 0.01 | 17.88 ± 0.09 | 17.77 ± 0.06 | 17.69 ± 0.03 | / | |||
Final weight (g) | 54.85 ± 1.35 a | 60.09 ± 0.29 bc | 59.16 ± 0.55 bc | 62.13 ± 1.3 c | 57.22 ± 2.02 ab | 57.19 ± 0.97 abc | cubic | y = 0.24x3 − 3.17x2 + 12.49x + 45.34 | 0.52 | 0.018 |
Weight gain (g) | 37.16 ± 1.36 a | 42.22 ± 0.31 bc | 41.39 ± 0.55 abc | 44.28 ± 1.27 c | 39.42 ± 1.03 ab | 40.67 ± 0.75 abc | cubic | y = 0.24x3 − 3.13x2 + 12.29x + 27.80 | 0.50 | 0.017 |
Weight gain (%) | 210.05 ± 7.86 a | 236.41 ± 2.48 b | 232.98 ± 3.03 ab | 247.46 ± 6.96 b | 222.02 ± 6.51 ab | 229.98 ± 4.71 ab | quadratic | y = −7.68x2 + 26.99x + 214 | 0.43 | 0.029 |
Specific growth rate (%/d) | 2.02 ± 0.05 a | 2.17 ± 0.01 b | 2.15 ± 0.02 ab | 2.23 ± 0.04 b | 2.09 ± 0.04 ab | 2.13 ± 0.03 ab | quadratic | y = −0.04x2 + 0.15x + 2.04 | 0.43 | 0.027 |
Feed conversion ratio | 1.40 ± 0.10 | 1.26 ± 0.07 | 1.29 ± 0.01 | 1.27 ± 0.01 | 1.25 ± 0.05 | 1.27 ± 0.08 | cubic | y = −4.68 × 10−3x3 + 0.06x2 − 0.24x + 1.58 | 0.41 | 0.049 |
Survival (%) | 96.00 ± 4.00 | 97.33 ± 4.62 | 98.67 ± 2.31 | 96.00 ± 4.00 | 98.67 ± 2.31 | 94.67 ± 6.11 | / | |||
Viscerosomatic index (%) | 12.72 ± 1.41 | 13.28 ± 0.65 | 12.64 ± 1.32 | 13.55 ± 1.82 | 13.12 ± 0.94 | 14.15 ± 1.68 | / | |||
Hepatosomatic index (%) | 8.54 ± 1.22 | 8.54 ± 1.22 | 8.00 ± 0.52 | 9.32 ± 1.77 | 8.30 ± 1.06 | 9.25 ± 1.61 | / | |||
Condition factor (%) | 3.14 ± 0.26 | 3.25 ± 0.27 | 3.23 ± 0.13 | 3.24 ± 0.22 | 3.42 ± 0.19 | 3.38 ± 0.21 | / |
Parameters | DHA0 | DHA1 | DHA2 | DHA3 | DHA4 | DHA5 | Regression | |||
---|---|---|---|---|---|---|---|---|---|---|
Model | Equation | R2 | p | |||||||
Whole body | ||||||||||
Crude protein (% w.w.) | 20.83 ± 0.63 b | 19.98 ± 0.33 ab | 19.78 ± 0.83 ab | 20.09 ± 1.16 ab | 18.95 ± 0.78 a | 19.54 ± 0.56 ab | / | |||
Crude lipid (% w.w.) | 8.22 ± 0.83 ab | 8.26 ± 0.67 ab | 7.57 ± 0.47 a | 9.93 ± 0.61 c | 7.94 ± 0.64 ab | 8.71 ± 0.68 b | linear | y = 0.55x + 25.59 | 0.12 | 0.038 |
Moisture (%) | 68.38 ± 0.92 | 69.26 ± 0.80 | 69.84 ± 1.14 | 68.81 ± 1.42 | 70.41 ± 0.50 | 69.50 ± 1.46 | / | |||
Ash (% w.w.) | 3.42 ± 0.17 | 3.13 ± 0.09 | 2.88 ± 0.21 | 2.93 ± 0.20 | 2.89 ± 0.45 | 2.90 ± 0.09 | cubic | y = −0.01x3 + 0.15x2 − 0.71x + 4 | 0.50 | 0.017 |
Muscle | ||||||||||
Crude protein (% w.w.) | 18.50 ± 0.37 a | 18.84 ± 0.47 ab | 19.51 ± 0.17 b | 19.35 ± 0.06 ab | 19.62 ± 0.40 b | 19.21 ± 0.14 ab | quadratic | y = −0.09x2 + 0.79x + 17.75 | 0.63 | <0.001 |
Total lipid (% w.w.) | 1.06 ± 0.15 b | 1.03 ± 0.07 b | 1.44 ± 0.07 c | 1.11 ± 0.02 b | 1.00 ± 0.12 b | 0.76 ± 0.13 a | cubic | y = 0.01x3 − 0.13x2 + 0.39x + 0.22 | 0.34 | |
Moisture (%) | 79.19 ± 0.36 | 78.96 ± 0.32 | 78.46 ± 0.20 | 78.55 ± 0.19 | 78.12 ± 0.35 | 78.79 ± 0.19 | cubic | y = 0.03x3 − 0.26x2 + 0.33x + 79.08 | 0.59 | 0.009 |
Liver | ||||||||||
Crude protein (% w.w.) | 4.04 ± 0.09 | 3.97 ± 0.44 | 3.82 ± 0.30 | 3.81 ± 0.24 | 3.94 ± 0.48 | 3.90 ± 0.47 | / | |||
Total lipid (% w.w.) | 47.19 ± 3.20 | 48.34 ± 3.20 | 47.91 ± 3.28 | 48.76 ± 2.62 | 46.96 ± 3.87 | 44.18 ± 2.07 | / | |||
Moisture (%) | 30.55 ± 0.33 | 30.47 ± 0.41 | 30.35 ± 0.46 | 30.52 ± 0.26 | 30.36 ± 0.16 | 30.00 ± 0.47 | / |
Parameters | DHA0 | DHA1 | DHA2 | DHA3 | DHA4 | DHA5 | Regression | |||
---|---|---|---|---|---|---|---|---|---|---|
Model | Equation | R2 | p | |||||||
TG (mmol/L) | 1.88 ± 0.18 ab | 2.36 ± 0.41 b | 1.50 ± 0.16 a | 1.39 ± 0.20 a | 1.49 ± 0.13 a | 1.10 ± 0.08 a | linear | y = −0.18x + 2.2 | 0.30 | < 0.001 |
T-CHO (mmol/L) | 2.99 ± 0.19 | 3.49 ± 0.30 | 4.08 ± 0.22 | 3.78 ± 0.79 | 3.12 ± 0.18 | 3.28 ± 0.10 | cubic | y = −0.04x3 + 0.44x2 − 1.27x + 1.73 | 0.44 | < 0.001 |
HDL-C (mmol/L) | 3.93 ± 0.55 | 3.84 ± 0.33 | 3.68 ± 0.44 | 3.87 ± 0.36 | 3.82 ± 0.50 | 3.71 ± 0.47 | / | |||
LDL-C (mmol/L) | 1.11 ± 0.16 | 1.05 ± 0.10 | 0.99 ± 0.15 | 1.01 ± 0.14 | 1.09 ± 0.18 | 1.00 ± 0.12 | / | |||
TBA (μmol/L) | 1.31 ± 0.15 | 1.15 ± 0.24 | 1.47 ± 0.16 | 1.31 ± 0.09 | 1.21 ± 0.13 | 1.60 ± 0.11 | / | |||
MDA (nmol/mL) | 24.84 ± 0.54 a | 28.32 ± 1.97 ab | 28.78 ± 1.58 ab | 28.79 ± 1.01 ab | 32.01 ± 1.15 b | 26.17 ± 1.78 ab | / |
Fatty Acid | DHA0 | DHA1 | DHA2 | DHA3 | DHA4 | DHA5 | Regression | |||
---|---|---|---|---|---|---|---|---|---|---|
Model | Equation | R2 | p | |||||||
14:0 | 1.21 ± 0.05 | 0.99 ± 0.07 | 1.06 ± 0.23 | 1.00 ± 0.03 | 1.07 ± 0.07 | 1.00 ± 0.20 | / | |||
16:0 | 14.84 ± 0.23 | 14.73 ± 0.13 | 14.80 ± 0.67 | 14.78 ± 0.27 | 14.56 ± 0.42 | 14.25 ± 0.86 | / | |||
18:0 | 4.66 ± 0.16 a | 5.53 ± 0.23 ab | 5.17 ± 0.24 ab | 5.31 ± 0.20 ab | 5.26 ± 0.23 ab | 6.24 ± 0.45 b | cubic | y = 0.09x3 − 0.87x2 + 2.74x + 2.73 | 0.41 | 0.008 |
20:0 | 0.23 ± 0.00 b | 0.23 ± 0.01 b | 0.22 ± 0.01 ab | 0.18 ± 0.01 a | 0.19 ± 0.00 ab | 0.19 ± 0.02 ab | cubic | y = 1.89 × 10−3x3 − 0.02x2 + 0.04x + 0.21 | 0.48 | <0.001 |
SFA | 20.94 ± 0.31 | 21.48 ± 0.37 | 22.64 ± 0.93 | 22.08 ± 0.37 | 21.68 ± 0.60 | 22.67 ± 1.41 | / | |||
16:1n-7 | 0.15 ± 0.01 | 0.16 ± 0.01 | 0.15 ± 0.01 | 0.14 ± 0.01 | 0.15 ± 0.00 | 0.16 ± 0.01 | cubic | y = 2.24 × 10−3x3 − 0.02x2 + 0.06x + 0.12 | 0.30 | 0.027 |
18:1n-9 | 31.36 ± 0.37 e | 27.61 ± 0.69 d | 22.92 ± 1.05 c | 21.06 ± 0.35 c | 16.98 ± 0.37 b | 12.01 ± 0.45 a | linear | y = −3.57x + 34.73 | 0.95 | <0.001 |
20:1n-9 | 1.33 ± 0.06 c | 1.29 ± 0.06 bc | 1.50 ± 0.16 c | 1.00 ± 0.03 ab | 1.02 ± 0.06 ab | 0.82 ± 0.05 a | cubic | y = 9.57 × 10−3x3 − 0.12x2 + 0.36x + 1.07 | 0.60 | <0.001 |
22:1n-9 | 0.26 ± 0.03 c | 0.23 ± 0.04 c | 0.28 ± 0.04 bc | 0.19 ± 0.00 ab | 0.19 ± 0.01 ab | 0.15 ± 0.01 a | cubic | y = 1.84 × 10−3x3 − 0.02x2 + 0.05x + 0.23 | 0.52 | <0.001 |
MUFA | 33.10 ± 0.37 e | 29.29 ± 0.70 d | 24.84 ± 0.98 c | 21.96 ± 0.17 c | 18.22 ± 0.43 b | 13.13 ± 0.48 a | linear | y = −3.7x + 36.68 | 0.95 | <0.001 |
18:2n-6 | 15.61 ± 0.30 d | 13.37 ± 0.16 c | 11.28 ± 0.56 b | 11.03 ± 0.11 b | 9.36 ± 0.19 a | 7.88 ± 0.14 a | cubic | y = −0.05x3 + 0.66x2 − 3.89x + 18.87 | 0.94 | <0.001 |
20:2n-6 | 0.61 ± 0.03 ab | 0.69 ± 0.06 b | 0.69 ± 0.08 b | 0.50 ± 0.00 a | 0.52 ± 0.03 a | 0.46 ± 0.02 a | cubic | y = 0.01x3 − 0.12x2 + 0.36x + 0.36 | 0.46 | 0.009 |
20:4n-6 | 1.85 ± 0.06 c | 1.78 ± 0.03 bc | 1.49 ± 0.09 a | 1.50 ± 0.04 a | 1.48 ± 0.05 a | 1.61 ± 0.08 ab | cubic | y = 9.01 × 10−3x3 − 0.06x2 − 0.02x + 1.93 | 0.63 | <0.001 |
n-6PUFA | 18.07 ± 0.31 d | 15.84 ± 0.13 c | 13.46 ± 0.45 b | 13.03 ± 0.11 b | 11.36 ± 0.21 a | 9.95 ± 0.15 a | cubic | y = −0.03x3 + 0.48x2 − 3.55x + 21.16 | 0.95 | <0.001 |
18:3n-3 | 2.81 ± 0.03 f | 2.39 ± 0.11 e | 1.86 ± 0.11 d | 1.62 ± 0.01 c | 1.19 ± 0.03 b | 0.70 ± 0.03 a | cubic | y = −0.01x3 + 0.13x2 − 0.79x + 3.49 | 0.99 | <0.001 |
20:5n-3 | 5.20 ± 0.12 | 5.23 ± 0.22 | 5.05 ± 0.47 | 5.52 ± 0.08 | 5.57 ± 0.11 | 5.50 ± 0.13 | / | |||
22:5n-3 | 3.11 ± 0.12 a | 3.59 ± 0.02 a | 3.92 ± 0.44 a | 4.85 ± 0.14 b | 5.02 ± 0.16 b | 5.74 ± 0.23 b | cubic | y = −0.03x3 + 0.27x2 − 0.2x + 3.08 | 0.79 | <0.001 |
22:6n-3 | 4.18 ± 0.14 a | 9.85 ± 0.11 b | 13.51 ± 1.22 c | 20.59 ± 0.20 d | 26.19 ± 0.94 e | 31.46 ± 1.05 f | linear | y = 5.17x − 0.81 | 0.91 | <0.001 |
n-3PUFA | 15.30 ± 0.22 a | 21.06 ± 0.23 b | 26.52 ± 0.42 c | 32.57 ± 0.33 d | 37.97 ± 1.15 e | 43.99 ± 0.50 f | cubic | y = −0.27x3 + 2.68x2 − 2.15x + 15.32 | 0.87 | <0.001 |
DHA/EPA | 0.80 ± 0.03 a | 1.89 ± 0.05 b | 2.67 ± 0.04 c | 3.74 ± 0.08 d | 4.70 ± 0.15 e | 5.97 ± 0.10 f | quadratic | y = 0.05x2 + 0.71x + 0.1 | 0.88 | <0.001 |
Fatty Acid | DHA0 | DHA1 | DHA2 | DHA3 | DHA4 | DHA5 | Regression | |||
---|---|---|---|---|---|---|---|---|---|---|
Model | Equation | R2 | p | |||||||
14:0 | 1.25 ± 0.08 | 1.17 ± 0.08 | 1.15 ± 0.18 | 1.11 ± 0.06 | 1.18 ± 0.17 | 1.17 ± 0.12 | / | |||
16:0 | 14.18 ± 0.16 | 14.32 ± 0.22 | 14.16 ± 0.24 | 14.48 ± 0.27 | 14.26 ± 0.42 | 14.00 ± 0.44 | / | |||
18:0 | 4.36 ± 0.19 a | 4.67 ± 0.15 ab | 5.03 ± 0.17 abc | 5.32 ± 0.20 bc | 5.26 ± 0.23 bc | 5.61 ± 0.32 c | / | |||
20:0 | 0.22 ± 0.01 c | 0.22 ± 0.01 bc | 0.21 ± 0.01 abc | 0.18 ± 0.01 a | 0.19 ± 0.01 ab | 0.19 ± 0.04 ab | cubic | y = 4.44 × 10−3x3 − 6.11E − 03x2 + 0.02x + 0.21 | 0.61 | <0.001 |
SFA | 20.01 ± 0.33 | 20.37 ± 0.31 | 20.54 ± 0.31 | 21.08 ± 0.37 | 20.88 ± 0.60 | 20.92 ± 0.73 | quadratic | y = 0.04x2 − 0.08x + 20.16 | 0.16 | 0.008 |
16:1n-7 | 0.14 ± 0.01 ab | 0.13 ± 0.00 a | 0.15 ± 0.01 ab | 0.14 ± 0.02 ab | 0.14 ± 0.01 ab | 0.16 ± 0.02 b | / | |||
18:1n-9 | 31.78 ± 0.64 f | 27.37 ± 1.09 e | 24.11 ± 0.61 d | 20.96 ± 0.94 c | 16.49 ± 1.40 b | 13.45 ± 2.50 a | cubic | y = −0.12x3 + 0.97x2 − 4.69x + 35.5 | 0.91 | <0.001 |
20:1n-9 | 1.50 ± 0.15c | 1.34 ± 0.14c | 1.32 ± 0.10c | 1.05 ± 0.08b | 1.04 ± 0.15b | 0.85 ± 0.11 a | cubic | y = 3.71 × 10−3x3 − 0.05x2 + 0.09x + 1.44 | 0.61 | <0.001 |
22:1n-9 | 0.31 ± 0.02 d | 0.23 ± 0.03 c | 0.23 ± 0.02 c | 0.18 ± 0.01 b | 0.18 ± 0.03 b | 0.14 ± 0.02 a | cubic | y = −1.41 × 10−3x3 + 0.02x2 − 0.08x + 0.37 | 0.77 | <0.001 |
MUFA | 33.73 ± 0.23 f | 29.07 ± 0.39 e | 25.80 ± 0.22 d | 22.33 ± 0.40 c | 17.84 ± 0.52 b | 13.10 ± 0.51 a | cubic | y = −0.12x3 + 0.95x2 − 4.71x + 37.46 | 0.92 | <0.001 |
18:2n-6 | 15.67 ± 0.37 f | 13.62 ± 0.19 e | 12.36 ± 0.30 d | 11.08 ± 0.26 c | 9.22 ± 0.52 b | 8.32 ± 0.77 a | cubic | y = −0.05x3 + 0.51x2 − 2.45x + 17.71 | 0.93 | <0.001 |
20:2n-6 | 0.59 ± 0.06 b | 0.54 ± 0.05 ab | 0.57 ± 0.04 ab | 0.52 ± 0.04 ab | 0.53 ± 0.06 ab | 0.49 ± 0.06 a | / | |||
20:4n-6 | 1.29 ± 0.09 a | 1.49 ± 0.12 b | 1.37 ± 0.10 ab | 1.48 ± 0.09 b | 1.44 ± 0.15 ab | 1.57 ± 0.14 b | / | |||
n-6PUFA | 17.54 ± 0.43 f | 15.65 ± 0.16 e | 14.30 ± 0.33 d | 13.08 ± 0.26 c | 11.19 ± 0.60 b | 10.39 ± 0.76 a | cubic | y = −0.05x3 + 0.44x2 − 2.19x + 19.38 | 0.92 | <0.001 |
18:3n-3 | 2.97 ± 0.10 f | 2.58 ± 0.02 e | 2.10 ± 0.05 d | 1.62 ± 0.03 c | 1.20 ± 0.06 b | 0.70 ± 0.05 a | quadratic | y = −0.03x2 − 0.1x + 3.11 | 0.94 | <0.001 |
20:5n-3 | 5.62 ± 0.12 | 5.60 ± 0.07 | 5.75 ± 0.09 | 5.40 ± 0.13 | 5.46 ± 0.15 | 5.49 ± 0.12 | / | |||
22:5n-3 | 3.25 ± 0.16 a | 3.90 ± 0.09 b | 4.23 ± 0.13 b | 4.87 ± 0.12 c | 5.15 ± 0.19 c | 5.42 ± 0.29 c | quadratic | y = 0.02x2 + 0.22x + 3.03 | 0.79 | <0.001 |
22:6n-3 | 4.25 ± 0.11 a | 10.30 ± 0.17 b | 15.29 ± 0.19 c | 20.23 ± 0.40 d | 26.36 ± 0.79 e | 32.57 ± 1.18 f | quadratic | y = 0.37x2 + 1.5x + 2.67 | 0.93 | <0.001 |
n-3PUFA | 12.84 ± 0.19 a | 18.48 ± 0.18 b | 23.14 ± 0.20 c | 27.25 ± 0.50 d | 33.02 ± 0.82 e | 38.76 ± 1.22 f | cubic | y = 0.1x3 − 0.73x2 + 4.74x + 8.77 | 0.92 | <0.001 |
DHA/EPA | 0.76 ± 0.01 a | 1.84 ± 0.04 b | 2.67 ± 0.06 b | 3.75 ± 0.06 c | 4.85 ± 0.19 d | 5.93 ± 0.19 e | quadratic | y = 0.05x2 + 0.75x + 0.03 | 0.90 | <0.001 |
Fatty Acid | DHA0 | DHA1 | DHA2 | DHA3 | DHA4 | DHA5 | Regression | |||
---|---|---|---|---|---|---|---|---|---|---|
Model | Equation | R2 | p | |||||||
14:0 | 0.31 ± 0.07 | 0.28 ± 0.02 | 0.32 ± 0.05 | 0.33 ± 0.06 | 0.35 ± 0.07 | 0.43 ± 0.11 | quadratic | y = 8.28 × 10−3x2 − 0.03x + 0.33 | 0.36 | 0.038 |
16:0 | 19.44 ± 0.44 a | 20.26 ± 0.61 ab | 20.98 ± 0.92 ab | 21.70 ± 0.89 ab | 22.40 ± 1.43 b | 25.95 ± 1.12 c | cubic | y = 0.14x3 − 1.18x2 + 3.73x + 16.67 | 0.87 | <0.001 |
18:0 | 7.37 ± 0.37 a | 7.71 ± 0.44 a | 7.57 ± 0.54 a | 7.45 ± 0.30 a | 7.67 ± 0.53 a | 8.90 ± 0.11 b | cubic | y = 0.08x3 − 0.71x2 + 1.93x + 6.07 | 0.70 | <0.001 |
20:0 | 0.22 ± 0.03 | 0.22 ± 0.03 | 0.22 ± 0.03 | 0.21 ± 0.06 | 0.20 ± 0.05 | 0.26 ± 0.03 | / | |||
SFA | 27.28 ± 0.85 a | 28.46 ± 1.01 a | 29.09 ± 1.38 a | 29.69 ± 1.29 a | 30.62 ± 2.04 a | 35.45 ± 1.07 b | cubic | y = 0.22x3 − 1.93x2 + 5.8x + 23.09 | 0.84 | <0.001 |
16:1n-7 | 0.80 ± 0.09 | 0.80 ± 0.03 | 0.80 ± 0.01 | 0.78 ± 0.03 | 0.79 ± 0.01 | 0.84 ± 0.05 | / | |||
18:1n-9 | 19.11 ± 0.58 d | 17.60 ± 1.20 d | 15.14 ± 0.65 c | 12.07 ± 1.21 b | 11.79 ± 0.66 b | 9.31 ± 0.66 a | cubic | y = 2.95 × 10−3x3 − 0.03x2 + 0.06x + 0.76 | 0.94 | <0.001 |
20:1n-9 | 0.80 ± 0.07 c | 0.66 ± 0.06 bc | 0.63 ± 0.06 b | 0.54 ± 0.02 ab | 0.53 ± 0.05 ab | 0.44 ± 0.09 a | quadratic | y = 0.07x2 − 2.46x + 21.76 | 0.82 | <0.001 |
MUFA | 20.74 ± 0.71 d | 19.06 ± 1.19 d | 16.60 ± 0.62 c | 13.45 ± 1.29 b | 13.11 ± 0.66 b | 10.60 ± 0.62 a | cubic | y = −4.51 × 10−3x3 + 0.05x2 − 0.25x + 1 | 0.94 | < 0.01 |
18:2n-6 | 11.85 ± 0.27 e | 9.81 ± 0.76 d | 8.15 ± 0.22 c | 7.01 ± 0.09 b | 6.39 ± 0.58 b | 5.29 ± 0.33 a | cubic | y = 0.03x3 − 0.27x2 − 1.54x + 22.65 | 0.97 | <0.001 |
20:2n-6 | 0.53 ± 0.10 | 0.51 ± 0.04 | 0.51 ± 0.07 | 0.46 ± 0.02 | 0.46 ± 0.01 | 0.43 ± 0.05 | cubic | y = −0.04x3 + 0.58x2 − 3.64x + 14.99 | 0.33 | 0.047 |
20:4n-6 | 5.95 ± 0.18 c | 5.19 ± 0.28 b | 4.95 ± 0.11 ab | 4.81 ± 0.46 ab | 4.51 ± 0.06 ab | 4.27 ± 0.31 a | quadratic | y = −9.94 × 10−4x2 − 0.01x + 0.54 | 0.85 | <0.001 |
n-6PUFA | 18.33 ± 0.16 e | 15.50 ± 0.64 d | 13.62 ± 0.40 c | 12.28 ± 0.50 b | 11.37 ± 0.56 b | 9.99 ± 0.60 a | cubic | y = −0.03x3 + 0.35x2 − 1.52x + 7.14 | 0.98 | <0.001 |
18:3n-3 | 0.89 ± 0.02 b | 0.76 ± 0.07 b | 0.67 ± 0.08 b | 0.55 ± 0.18 ab | 0.51 ± 0.23 ab | 0.25 ± 0.09 a | cubic | y = −0.07x3 + 0.92x2 − 5.15x + 22.64 | 0.78 | <0.001 |
20:5n-3 | 7.06 ± 0.35 f | 5.24 ± 0.19 e | 5.02 ± 0.57 d | 4.20 ± 0.22 c | 4.19 ± 0.44 b | 3.41 ± 0.15 a | cubic | y = −9.52 × 10−3x3 + 0.09x2 − 0.36x + 1.17 | 0.92 | <0.001 |
22:5n-3 | 3.46 ± 0.05 d | 2.69 ± 0.19 c | 2.45 ± 0.05 bc | 2.12 ± 0.12 ab | 2.13 ± 0.11 ab | 1.93 ± 0.06 a | cubic | y = −0.02x3 + 0.31x2 − 1.48x + 4.64 | 0.91 | <0.001 |
22:6n-3 | 13.37 ± 0.19 a | 20.19 ± 0.72 b | 24.41 ± 0.28 b | 26.53 ± 1.66 cd | 29.72 ± 0.52 de | 30.78 ± 0.80 e | cubic | y = −0.07x3 + 0.86x2 − 3.65x + 9.88 | 0.96 | <0.001 |
n-3PUFA | 21.32 ± 0.27 a | 26.19 ± 0.70 b | 30.10 ± 0.56 c | 31.28 ± 1.64 cd | 34.42 ± 0.27 d | 34.35 ± 0.75 d | quadratic | y = −0.5x2 + 6.07x + 15.88 | 0.93 | <0.001 |
DHA/EPA | 1.90 ± 0.10 a | 3.86 ± 0.27 b | 4.90 ± 0.54 c | 6.36 ± 1.03 d | 7.15 ± 0.89 e | 9.06 ± 0.78 f | cubic | y = 0.06x3 − 0.7x2 + 3.56x − 1.02 | 0.94 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Bian, C.; Song, Z.; Liu, Y.; Liu, J.; Ma, Q.; Wei, Y.; Liang, M.; Xu, H. Effects of Dietary Docosahexaenoic Acid Levels on the Growth, Body Composition, and Health of Liver and Intestine in Juvenile Tiger Puffer (Takifugu rubripes). Animals 2025, 15, 1514. https://doi.org/10.3390/ani15111514
Zhang L, Bian C, Song Z, Liu Y, Liu J, Ma Q, Wei Y, Liang M, Xu H. Effects of Dietary Docosahexaenoic Acid Levels on the Growth, Body Composition, and Health of Liver and Intestine in Juvenile Tiger Puffer (Takifugu rubripes). Animals. 2025; 15(11):1514. https://doi.org/10.3390/ani15111514
Chicago/Turabian StyleZhang, Lu, Chenchen Bian, Ziling Song, Yang Liu, Jiahao Liu, Qiang Ma, Yuliang Wei, Mengqing Liang, and Houguo Xu. 2025. "Effects of Dietary Docosahexaenoic Acid Levels on the Growth, Body Composition, and Health of Liver and Intestine in Juvenile Tiger Puffer (Takifugu rubripes)" Animals 15, no. 11: 1514. https://doi.org/10.3390/ani15111514
APA StyleZhang, L., Bian, C., Song, Z., Liu, Y., Liu, J., Ma, Q., Wei, Y., Liang, M., & Xu, H. (2025). Effects of Dietary Docosahexaenoic Acid Levels on the Growth, Body Composition, and Health of Liver and Intestine in Juvenile Tiger Puffer (Takifugu rubripes). Animals, 15(11), 1514. https://doi.org/10.3390/ani15111514