Survival Outcomes and Predictive Factors of Mortality in Feline Epilepsy: A Comprehensive Retrospective Study
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Period and Location
2.2. Case Selection and Data Collection
2.3. Statistical Analysis
3. Results
4. Discussion
5. Limitations and Recommendations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CI | confidence interval |
CSF | cerebrospinal fluid |
IE | idiopathic epilepsy |
MRI | magnetic resonance imaging |
NLR | neutrophil-to-lymphocyte ratio |
References
- Fredso, N.; Toft, N.; Sabers, A.; Berendt, M. A prospective observational longitudinal study of new-onset seizures and newly diagnosed epilepsy in dogs. BMC Vet. Res. 2017, 13, 54. [Google Scholar] [CrossRef] [PubMed]
- Stafstrom, C.E.; Carmant, L. Seizures and epilepsy: An overview for neuroscientists. Cold Spring Harb. Perspect. Med. 2015, 5, a022426. [Google Scholar] [CrossRef]
- Erlen, A.; Potschka, H.; Volk, H.A.; Sauter-Louis, C.; O’Neill, D.G. Seizures in dogs under primary veterinary care in the United Kingdom: Etiology, diagnostic testing, and clinical management. J. Vet. Intern. Med. 2020, 34, 2525–2535. [Google Scholar] [CrossRef]
- Berendt, M.; Farquhar, R.G.; Mandigers, P.J.; Pakozdy, A.; Bhatti, S.F.; De Risio, L.; Fischer, A.; Long, S.; Matiasek, K.; Munana, K.; et al. International Veterinary Epilepsy Task Force consensus report on epilepsy definition, classification and terminology in companion animals. BMC Vet. Res. 2015, 11, 182. [Google Scholar] [CrossRef] [PubMed]
- Hall, R.; Labruyere, J.; Volk, H.; Cardy, T.J. Estimation of the prevalence of idiopathic epilepsy and structural epilepsy in a general population of 900 dogs undergoing MRI for epileptic seizures. Vet. Rec. 2020, 187, e89. [Google Scholar] [CrossRef]
- Podell, M.; Volk, H.A.; Berendt, M.; Loscher, W.; Munana, K.; Patterson, E.E.; Platt, S.R. 2015 ACVIM small animal consensus statement on seizure management in dogs. J. Vet. Intern. Med. 2016, 30, 477–490. [Google Scholar] [CrossRef] [PubMed]
- Prompinichpong, K.; Thengchaisri, N.; Suwanna, N.; Tiraphut, B.; Theerapan, W.; Steiner, J.M.; Sattasathuchana, P. A retrospective study of structural brain lesions identified by magnetic resonance imaging in 114 cats with neurological signs. Vet. World 2023, 16, 1871–1879. [Google Scholar] [CrossRef]
- Moore, S. Seizures and epilepsy in cats. Vet. Med. Res. Rep. 2014, 5, 41–47. [Google Scholar]
- Garosi, L. Neurological examination of the cat. How to get started. J. Feline Med. Surg. 2009, 11, 340–348. [Google Scholar] [CrossRef]
- Wolff, C.A.; Holmes, S.P.; Young, B.D.; Chen, A.V.; Kent, M.; Platt, S.R.; Savage, M.Y.; Schatzberg, S.J.; Fosgate, G.T.; Levine, J.M. Magnetic resonance imaging for the differentiation of neoplastic, inflammatory, and cerebrovascular brain disease in dogs. J. Vet. Intern. Med. 2012, 26, 589–597. [Google Scholar] [CrossRef]
- Simon, H.; Hecht, S.; Fazio, C.; Sun, X. Magnetic resonance imaging subtraction vs. pre- and post-contrast 3D gradient recalled echo fat suppressed imaging for evaluation of the canine and feline brain. Front. Vet. Sci. 2024, 11, 1346617. [Google Scholar] [CrossRef] [PubMed]
- May, J.L.; Garcia-Mora, J.; Edwards, M.; Rossmeisl, J.H. An illustrated scoping review of the magnetic resonance imaging characteristics of canine and feline brain tumors. Animals 2024, 14, 1044. [Google Scholar] [CrossRef]
- Rossmeisl, J.H. New treatment modalities for brain tumors in dogs and cats. Vet. Clin. N. Am. Small Anim. Pract. 2014, 44, 1013–1038. [Google Scholar] [CrossRef] [PubMed]
- Rheims, S.; Sperling, M.R.; Ryvlin, P. Drug-resistant epilepsy and mortality—Why and when do neuromodulation and epilepsy surgery reduce overall mortality. Epilepsia 2022, 63, 3020–3036. [Google Scholar] [CrossRef]
- Hamamoto, Y.; Hasegawa, D.; Mizoguchi, S.; Yu, Y.; Wada, M.; Kuwabara, T.; Fujiwara-Igarashi, A.; Fujita, M. Retrospective epidemiological study of canine epilepsy in Japan using the International Veterinary Epilepsy Task Force classification 2015 (2003–2013): Etiological distribution, risk factors, survival time, and lifespan. BMC Vet. Res. 2016, 12, 248. [Google Scholar] [CrossRef]
- Fredso, N.; Koch, B.C.; Toft, N.; Berendt, M. Risk factors for survival in a university hospital population of dogs with epilepsy. J. Vet. Intern. Med. 2014, 28, 1782–1788. [Google Scholar] [CrossRef] [PubMed]
- Szelecsenyi, A.C.; Giger, U.; Golini, L.; Mothersill, I.; Torgerson, P.R.; Steffen, F. Survival in 76 cats with epilepsy of unknown cause: A retrospective study. Vet. Rec. 2017, 181, 479. [Google Scholar] [CrossRef]
- Dohoo, I.; Stryhn, H. Modelling survival data. In Veterinary Epidemiologic Research, 2nd ed.; Dohoo, I., Stryhn, H., Eds.; VER Inc.: Charlottetown, PEI, Canada, 2009; pp. 467–527. [Google Scholar]
- Petrie, A.; Watson, P. Additional Techniques—Multivariate analysis. In Statistics for Veterinary and Animal Science, 3rd ed.; Petrie, A., Watson, P., Eds.; John Wiley & Sons: Chichester, UK, 2013; pp. 226–227. [Google Scholar]
- Del Pozo, A.; Lehmann, L.; Knox, K.M.; Barker-Haliski, M. Can old animals reveal new targets? The aging and degenerating brain as a new precision medicine opportunity for epilepsy. Front. Neurol. 2022, 13, 833624. [Google Scholar] [CrossRef]
- Sordo, L.; Martini, A.C.; Houston, E.F.; Head, E.; Gunn-Moore, D. Neuropathology of aging in cats and its similarities to human Alzheimer’s disease. Front. Aging 2021, 2, 684607. [Google Scholar] [CrossRef]
- Trompetto, C.; Marinelli, L.; Mori, L.; Pelosin, E.; Currà, A.; Molfetta, L.; Abbruzzese, G. Pathophysiology of spasticity: Implications for neurorehabilitation. BioMed Res. Int. 2014, 2014, 1–8. [Google Scholar] [CrossRef]
- Kennedy, S.A.; Noble, J.; Wong, A.M.F. Examining the pupils. CMAJ 2013, 185, E424. [Google Scholar] [CrossRef] [PubMed]
- Rauchman, S.H.; Zubair, A.; Jacob, B.; Rauchman, D.; Pinkhasov, A.; Placantonakis, D.G.; Reiss, A.B. Traumatic brain injury: Mechanisms, manifestations, and visual sequelae. Front. Neurosci. 2023, 17, 1090672. [Google Scholar] [CrossRef]
- Cagnotti, G.; Ferrini, S.; Ala, U.; Bellino, C.; Corona, C.; Dappiano, E.; Di Muro, G.; Iulini, B.; Pepe, I.; Roncone, S.; et al. Analysis of early assessable risk factors for poor outcome in dogs with cluster seizures and status epilepticus. Front. Vet. Sci. 2020, 7, 5755551. [Google Scholar] [CrossRef] [PubMed]
- Guy, B.; Freeman, P.; Khan, S.; Genain, M.A. The effect of midline shift on survival time in dogs with structural brain disease diagnosed on MRI. Vet. Radiol. Ultrasound 2024, 66, e13450. [Google Scholar] [CrossRef]
- Nordberg, J.; Schaper, F.L.W.V.J.; Bucci, M.; Nummenmaa, L.; Joutsa, J. Brain lesion locations associated with secondary seizure generalization in tumors and strokes. Hum. Brain Mapp. 2023, 44, 3136–3146. [Google Scholar] [CrossRef]
- Phal, P.M.; Usmanov, A.; Nesbit, G.M.; Anderson, J.C.; Spencer, D.; Wang, P.; Hamilton, B.E. Qualitative comparison of 3-T and 1.5-T MRI in the evaluation of epilepsy. Am. J. Roentgenol. 2008, 191, 890–895. [Google Scholar] [CrossRef]
- Singh, M.; Foster, D.J.; Child, G.; Lamb, W.A. Inflammatory cerebrospinal fluid analysis in cats: Clinical diagnosis and outcome. J. Feline Med. Surg. 2005, 7, 77–93. [Google Scholar] [CrossRef] [PubMed]
- Fries, R.C.; Kadotani, S.; Stack, J.P.; Kruckman, L.; Wallace, G. Prognostic value of neutrophil-to-lymphocyte ratio in cats with hypertrophic cardiomyopathy. Front. Vet. Sci. 2022, 9, 813524. [Google Scholar] [CrossRef]
- Despa, A.; Musteata, M.; Solcan, G. Evaluation of blood C-reactive protein (CRP) and neutrophil-to-lymphocyte ratio (NLR) utility in canine epilepsy. Vet. Sci. 2024, 11, 408. [Google Scholar] [CrossRef]
- Park, J.; Lee, D.; Yun, T.; Koo, Y.; Chae, Y.; Kim, H.; Yang, M.P.; Kang, B.T. Evaluation of the blood neutrophil-to-lymphocyte ratio as a biomarker for meningoencephalitis of unknown etiology in dogs. J. Vet. Intern. Med. 2022, 36, 1719–1725. [Google Scholar] [CrossRef]
- Hosseini, S.; Mofrad, A.M.E.; Mokarian, P.; Nourigheimasi, S.; Azarhomayoun, A.; Fujita, M. Neutrophil to lymphocyte ratio in epilepsy: A systematic review. Mediat. Inflamm. 2022, 2022, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Galer, J.; Forward, A.K.; Hughes, J.; Crawford, A.H.; Behr, S.; Cherubini, G.B.; Cornelis, I.; Royaux, E. Clinical features, treatment, and outcome of juvenile dogs with meningoencephalitis of unknown etiology. J. Vet. Intern. Med. 2024, 38, 2214–2220. [Google Scholar] [CrossRef] [PubMed]
- Kleeb, C.; Golini, L.; Beckmann, K.; Torgerson, P.; Steffen, F. Canine tick-borne encephalitis: Clinical features, survival rate and neurological sequelae: A retrospective study of 54 cases (1999–2016). Front. Vet. Sci. 2021, 8, 782044. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, D.; Kanazono, S.; Chambers, J.K.; Uchida, K. Neurosurgery in feline epilepsy, including clinicopathology of feline epilepsy syndromes. Vet. J. 2022, 290, 105928. [Google Scholar] [CrossRef]
- Kuwabara, T.; Hasegawa, D.; Ogawa, F.; Kobayashi, M.; Fujita, M.; Suzuki, H.; Matsuki, N.; Orima, H. A familial spontaneous epileptic feline strain: A novel model of idiopathic/genetic epilepsy. Epilepsy Res. 2010, 92, 85–88. [Google Scholar] [CrossRef]
Values | Non-Survival | Survival | p-Value | |
---|---|---|---|---|
N; % | 90; 100% | 47; 52.2% | 43; 47.8% | |
Age (years; median [range]) | 2 (0.1–13.8) | 3 (0.1–13.8) | 1 (0.3–10.9) | 0.014 |
Sex (n; %) | ||||
Male | 50; 55.6% | 30; 33.3% | 20; 22.2% | 0.137 |
Female | 40; 44.4% | 17; 18.9% | 23; 25.6% | |
Hair length (n; %) | ||||
Short-haired | 74; 82.2% | 38; 42.2% | 36; 40% | 0.788 |
Long-haired | 16; 17.8% | 9; 10% | 7; 7.8% | |
Weight (mean ± SD) | 3.6 ± 1.3 | 3.5 ± 1.3 | 3.8 ± 1.3 | 0.336 |
Skull shape (n; %) | ||||
Brachycephalic | 25; 27.8% | 14; 15.6% | 11; 12.2% | 0.814 |
Non-brachycephalic | 65; 72.2% | 33; 36.7% | 32; 35.6% | |
Neurological signs (n; %) | ||||
Paresis | 17; 18.7% | 15; 16.7% | 2; 2.2% | 0.001 |
Non-paresis | 73; 81.1% | 32; 35.6% | 41; 45.6% | |
Isocoria | 68; 75.6% | 21; 61.8% | 47; 83.9% | 0.024 |
Anisocoria | 22; 24.4% | 13; 38.2% | 9; 16.1% | |
Structural lesions (n; %) | ||||
Structural | 46; 51.1 | 37; 41.1% | 25; 27.8% | 0.042 |
Non-structural | 44; 48.9% | 10; 11.1% | 18; 20.0% | |
Inflammatory lesions (n; %) | ||||
Inflammatory | 39; 43.3% | 22; 24.4% | 17; 18.9% | 0.528 |
Non-inflammatory | 51; 56.7% | 25; 27.8% | 26; 28.9% |
Parameters | Value | Non-Survival | Survival | p-Value |
---|---|---|---|---|
Hemoglobin (g/dL) | 12.1 (7.4–16.1) | 11.8 (7.7–15) | 12.3 (7.4–16.1) | 0.142 |
Red blood cells (106 cells/µL) | 8.1 (4.7–12.1) | 7.61 (4.7–11) | 8.73 (5.7–12.1) | 0.001 |
Hematocrit (%) | 34.6 (21.9–49.7) | 33.7 (22.2–49.7) | 35.1 (21.9–49.7) | 0.380 |
Mean corpuscular volume (fL) | 42.8 (32.5–62.2) | 45.7 (32.5–62.2) | 40.6 (32.8–51.2) | 0.001 |
Mean corpuscular hemoglobin concentration (g/dL) | 34.5 (27.5–40.9) | 34.3 (27.5–40.9) | 34.8 (31–38.3) | 0.311 |
White blood cells (103 cells/µL) | 11.7 (4.2–36.4) | 11.5 (4.8–36.4) | 12.4 (4.2–26.5) | 0.922 |
Neutrophils (103 cells/µL) | 8.3 (0.6–29.5) | 9.3 (0.6–29.5) | 8.0 (1.7–20.1) | 0.171 |
Lymphocytes (103 cells/µL) | 2.0 (0.2–19.8) | 1.8 (0.2–19.8) | 2.5 (0.7–11.7) | 0.082 |
Monocytes (103 cells/µL) | 0.2 (0–2.9) | 0.2 (0–2.9) | 0.2 (0–1.6) | 0.121 |
Eosinophils (103 cells/µL) | 0.3 (0–3.3) | 0.2 (0–3.3) | 0.4 (0–2.2) | 0.020 |
Basophils (103 cells/µL) | 0.0 (0–0.1) | 0.0 (0–0.1) | 0.0 (0–0.1) | 0.278 |
Platelets (103 cells/µL) | 248.5 (10–595) | 226 (10–438) | 266 (22.7–595) | 0.024 |
Blood urea nitrogen (mg/dL) | 22 (6–45) | 22 (10–43) | 22 (6–45) | 0.680 |
Creatinine (mg/dL) | 1.3 (0.4–2.6) | 1.3 (0.4–2.6) | 1.3 (0.5–2.5) | 0.375 |
Alanine amino transferase (U/L) | 59.5 (17–730) | 60 (17–266) | 59 (21–730) | 0.966 |
Total protein (g/dL) | 7 (5.3–9.5) | 7 (5.3–9.5) | 7 (5.6–8.8) | 0.373 |
Albumin (g/dL) | 3.4 (2.4–4.3) | 3.4 (2.4–4.1) | 3.5 (2.6–4.3) | 0.033 |
Globulin (g/dL) | 3.6 (2.4–5.9) | 3.7 (2.4–5.9) | 3.4 (5.6–5.0) | 0.017 |
Albumin–globulin ratio | 0.94 (0.5–1.5) | 0.9 (0.5–1.3) | 1 (0.6–1.5) | 0.004 |
Neutrophil–lymphocyte ratio | 3.7 (0.1–48.5) | 4.6 (0.2–48.5) | 3.2 (0.3–18.8) | 0.025 |
Parameters | Number of Cats That Had an Event | Hazard Ratio (95% CI) | p-Value |
---|---|---|---|
Age over 7 years | 12 | 3.08 (1.49–6.34) | 0.002 |
Male gender | 30 | 1.45 (0.72–2.89) | 0.296 |
Brachycephalic breed | 14 | 0.82 (0.37–1.80) | 0.614 |
Paresis | 15 | 3.36 (1.66–6.78) | 0.001 |
Anisocoria | 13 | 2.36 (1.18–4.74) | 0.015 |
Structural brain lesions | 37 | 3.26 (1.26–8.42) | 0.015 |
Anemia (hematocrit < 25%) | 2 | 0.49 (0.07–3.57) | 0.480 |
Leukocytosis (>19.0 × 103 cells/µL) | 10 | 3.55 (1.68–7.52) | 0.001 |
Neutrophilia (>12.5 × 103 cells/µL) | 16 | 3.06 (1.55–6.08) | 0.001 |
Lymphocytosis (>7.0 × 103 cells/µL) | 3 | 1.02 (0.25–4.28) | 0.974 |
Monocytosis (>0.9 × 103 cells/µL) | 3 | 0.83 (0.25–2.72) | 0.759 |
Thrombocytopenia (<200 × 109 cells/µL) | 12 | 1.92 (0.93–3.93) | 0.076 |
Elevated blood urea nitrogen (>34 U/L) | 6 | 2.37 (0.98–5.76) | 0.056 |
Elevated creatinine (>2.2 mg/dL) | 1 | 1.76 (0.24–12.90) | 0.577 |
Elevated alanine aminotransferase (>150 U/L) | 3 | 1.16 (0.36–3.81) | 0.800 |
Hyperproteinemia (>7.8 mg/dL) | 9 | 2.32 (1.05–5.15) | 0.037 |
Hypoalbuminemia (<2.6 mg/dL) | 2 | 11.55 (2.56–51.97) | 0.001 |
Hyperglobulinemia (>5.1 mg/dL) | 12 | 3.00 (1.45–6.17) | 0.003 |
Elevated neutrophil–lymphocyte ratio (>4) | 34 | 2.05 (1.03–4.10) | 0.041 |
Parameters | Hazard Ratio (95%CI) | p-Value |
---|---|---|
Age over 7 years | 2.21 (1.02–4.81) | 0.045 |
Paresis | 2.61 (1.23–5.54) | 0.012 |
Structural brain lesions | 2.73 (1.04–7.18) | 0.042 |
Leukocytosis (>19.0 × 103 cells/µL) | 3.16 (1.42–7.06) | 0.005 |
Hypoalbuminemia | 6.98 (1.20–40.44) | 0.030 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prompinichpong, K.; Suwanna, N.; Hunprasit, V.; Thongbai, A.; Theerapan, W.; Thengchaisri, N.; Sattasathuchana, P. Survival Outcomes and Predictive Factors of Mortality in Feline Epilepsy: A Comprehensive Retrospective Study. Animals 2025, 15, 1504. https://doi.org/10.3390/ani15111504
Prompinichpong K, Suwanna N, Hunprasit V, Thongbai A, Theerapan W, Thengchaisri N, Sattasathuchana P. Survival Outcomes and Predictive Factors of Mortality in Feline Epilepsy: A Comprehensive Retrospective Study. Animals. 2025; 15(11):1504. https://doi.org/10.3390/ani15111504
Chicago/Turabian StylePrompinichpong, Kreevith, Nirut Suwanna, Vachira Hunprasit, Amonrat Thongbai, Wutthiwong Theerapan, Naris Thengchaisri, and Panpicha Sattasathuchana. 2025. "Survival Outcomes and Predictive Factors of Mortality in Feline Epilepsy: A Comprehensive Retrospective Study" Animals 15, no. 11: 1504. https://doi.org/10.3390/ani15111504
APA StylePrompinichpong, K., Suwanna, N., Hunprasit, V., Thongbai, A., Theerapan, W., Thengchaisri, N., & Sattasathuchana, P. (2025). Survival Outcomes and Predictive Factors of Mortality in Feline Epilepsy: A Comprehensive Retrospective Study. Animals, 15(11), 1504. https://doi.org/10.3390/ani15111504