Nanoemulsified Corn Oil in Lactating Barki Nutrition: Effect on Intake, Nutrient Digestibility, Rumen Fermentation Characteristics, and Microbial Population
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Locations of the Study
2.2. Nanoemulsion Preparation
2.3. Animal Management
2.4. Diet and Treatments
2.5. Feed Intake and Nutrient Apparent Digestibility
2.6. Sampling and Analysis of Rumen Fluid
2.7. Statistical Analysis
3. Results
3.1. Dry Matter Intake and Nutrient Digestibility
3.2. Rumen Basic Parameters and Volatile Fatty Acids
3.3. Rumen Fatty Acid Profile
3.4. Ruminal Microbial Population
4. Discussion
4.1. Dry Matter Intake and Nutrient Digestibility
4.2. Rumen Basic Parameters and Volatile Fatty Acids
4.3. Rumen Fatty Acid Profile and Microbial Populations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- O’Donnell, J.A. Future of milk fat modification by production or processing: Integration of nutrition, food science, and animal science. J. Dairy Sci. 1993, 76, 1797–1801. [Google Scholar] [CrossRef]
- Cockbain, A.J.; Toogood, G.J.; Hull, M.A. Omega-3 polyunsaturated fatty acids for the treatment and prevention of colorectal cancer. Gut 2011, 61, 135–149. [Google Scholar] [CrossRef] [PubMed]
- Meyer, B.J. Are we consuming enough long chain omega-3 polyunsaturated fatty acids for optimal health? Prostaglandins Leukot Essent Fat. Acids 2011, 85, 275–280. [Google Scholar] [CrossRef] [PubMed]
- Koba, K.; Yanagita, T. Health benefits of conjugated linoleic acid (CLA). Obes. Res. Clin. Pract. 2014, 8, e525–e532. [Google Scholar] [CrossRef]
- Zhang, X.M.; Medrano, R.F.; Wang, M.; Beauchemin, K.A.; Ma, Z.Y.; Wang, R.; Wen, J.N.; Lukuyu, B.A.; Tan, Z.L.; He, J.H. Corn oil supplementation enhances hydrogen use for biohydrogenation, inhibits methanogenesis, and alters fermentation pathways and the microbial community in the rumen of goats. J. Anim. Sci. 2019, 97, 4999–5008. [Google Scholar] [CrossRef]
- Lima, V.G.O.; da Silva, L.O.; de Freitas Júnior, J.E.; Alba, H.D.R.; Silva, W.P.; Pina, D.d.S.; Leite, L.C.; Rodrigues, C.S.; Santos, S.A.; Becker, C.A.; et al. Soybean Oil, Linoleic Acid Source, in Lamb Diets: Intake, Digestibility, Performance, Ingestive Behaviour, and Blood Metabolites. Animals 2024, 14, 2075. [Google Scholar] [CrossRef]
- Khattab, M.S.A.; Abd-El-Gawad, A.E.; Abo El-Nor, S.H.A.; El-Sherbiny, M. The effect of diet supplemented with vegetable oils and/or monensin on the vaccenic acid production in continuous culture fermenters. Anim. Nutr. 2015, 1, 320–323. [Google Scholar] [CrossRef]
- Cancino-Padilla, N.; Catalán, N.; Siu-Ting, K.; Creevey, C.J.; Huws, S.A.; Romero, J.; Vargas-Bello-Pérez, E. Long-Term Effects of Dietary Supplementation with Olive Oil and Hydrogenated Vegetable Oil on the Rumen Microbiome of Dairy Cows. Microorganisms 2021, 9, 1121. [Google Scholar] [CrossRef]
- Mason, T.G.; Wilking, J.N.; Meleson, K.; Chang, C.B.; Graves, S.M. Nanoemulsions: Formation, structure, and physical properties. J. Phys. Condens. Matter. 2006, 18, R635. [Google Scholar] [CrossRef]
- El-Sherbiny, M.; Cieslak, A.; Pers-Kamczyc, E.; Szczechowiak, J.; Kowalczyk, D.; Szumacher-Strabel, M. Short Communication: A Nanoemulsified Form of Oil Blends Positively Affects the Fatty Acid Proportion in Ruminal Batch Cultures. J. Dairy Sci. 2016, 99, 399–407. [Google Scholar] [CrossRef]
- El-Sherbiny, M.; Cieślak, A.; Szczechowiak, J.; Kołodziejski, P.; Szulc, P.; Szumacher-Strabel, M. Effect of nanoemulsified oils addition on rumen fermentation and fatty acid proportion in a rumen simulation technique. J. Anim. Feed Sci. 2016, 25, 116–124. [Google Scholar] [CrossRef]
- Yousef, M.A.; Farouk, M.H.; Azzaz, H.H.; Khattab, M.S.A.; Abd El Tawab, A.M.; El-Sherbiny, M. Feeding Corn Oil in a Nanoemulsified Form Alters the Unsaturated Fatty Acids in the Milk of Zaraibi Dairy Goats. Animals 2022, 12, 2559. [Google Scholar] [CrossRef] [PubMed]
- El-Sherbiny, M.; Khattab, M.S.A.; Abd El Tawab, A.M.; Elnahr, M.; Cieslak, A.; Szumacher Strabel, M. Oil-in-Water Nanoemulsion Can Modulate the Fermentation, Fatty Acid Accumulation, and the Microbial Population in Rumen Batch Cultures. Molecules 2023, 28, 358. [Google Scholar] [CrossRef] [PubMed]
- NRC. Nutrient Requirements of Small Ruminants; National Academies Press: Washington, DC, USA, 2007; ISBN 978-0-309-10213-1. [Google Scholar]
- Ferret, A.; Plaixats, J.; Caja, G.; Gasa, J.; Prió, P. Using markers to estimate apparent dry matter digestibility, faecal output and dry matter intake in dairy ewes fed Italian ryegrass hay or alfalfa hay. Small Rumin. R 1999, 33, 145–152. [Google Scholar] [CrossRef]
- AOAC. Official Method of Analysis, 18th ed.; AOAC International: Washington, DC, USA, 2005; ISBN 0935584544. [Google Scholar]
- van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Minuti, A.; Palladino, A.; Khan, M.J.; Alqarni, S.; Agrawal, A.; Piccioli-Capelli, F.; Hidalgo, F.; Cardoso, F.C.; Trevisi, E.; Loor, J.J. Abundance of ruminal bacteria, epithelial gene expression, and systemic biomarkers of metabolism and inflammation are altered during the peripartal period in dairy cows. J. Dairy Sci. 2015, 98, 8940–8951. [Google Scholar] [CrossRef]
- Li, M.; Penner, G.B.; Hernandez-Sanabria, E.; Oba, M.; Guan, L.L. Effects of sampling location and time, and host animal on assessment of bacterial diversity and fermentation parameters in the bovine rumen. J. Appl. Microbiol. 2009, 107, 1924–1934. [Google Scholar] [CrossRef]
- Potu, R.B.; AbuGhazaleh, A.A.; Hastings, D.; Jones, K.; Ibrahim, S.A. The effect of lipid supplements on ruminal bacteria in continuous culture fermenters varies with the fatty acid composition. J. Microbiol. 2011, 49, 216–223. [Google Scholar] [CrossRef]
- Denman, S.E.; McSweeney, C.S. Development of a real-time PCR assay for monitoring anaerobic fungal and cellulolytic bacterial populations within the rumen. FEMS Microbiol. Ecol. 2006, 58, 572–582. [Google Scholar] [CrossRef]
- Yu, Y.; Lee, C.; Kim, J.; Hwang, S. Group-specific primer and probe sets to detect methanogenic communities using quantitative real-time polymerase chain reaction. Biotechnol. Bioeng. 2005, 89, 670–679. [Google Scholar] [CrossRef]
- Wang, R.F.; Cao, W.W.; Cerniglia, C.E. PCR detection of Ruminococcus spp. in human and animal faecal samples. Mol. Cell. Probes 1997, 11, 259–265. [Google Scholar] [CrossRef]
- Poeker, S.A.; Geirnaert, A.; Berchtold, L.; Greppi, A.; Krych, L.; Steinert, R.E.; de Wouters, T.; Lacroix, C. Understanding the prebiotic potential of different dietary fibers using an in vitro continuous adult fermentation model (PolyFermS). Sci. Rep. 2018, 8, 4318–4330. [Google Scholar] [CrossRef] [PubMed]
- Shingfield, K.J.; Bonnet, M.; Scollan, N.D. Recent Developments in Altering the Fatty Acid Composition of Ruminant-Derived Foods. Animal 2013, 7, 132–162. [Google Scholar] [CrossRef] [PubMed]
- Parente, M.O.M.; Rocha, K.S.; Bessa, R.J.B.; Parente, H.N.; Zanine, A.M.; Machado, N.A.F.; Lourenço, J.B., Jr.; Bezerra, L.R.; Landim, A.V.; Alves, S.P. Effects of the dietary inclusion of babassu oil or buriti oil on lamb performance, meat quality and fatty acid composition. Meat Sci. 2020, 160, 107971. [Google Scholar] [CrossRef] [PubMed]
- Getachew, C.; DePetes, E.J.; Robinson, P.H.; Taylor, S.J. In vitro rumen fermentation and gas production: Influence of yellow grease, tallow, corn oil and their potassium soaps. J. Anim. Feed. Sci. Technol. 2001, 93, 1–5. [Google Scholar] [CrossRef]
- Anam, M.S.; Yusiati, L.M.; Hanim, C.; Bachruddin, Z.; Astuti, A. Effect of Combination of Protected and Non-Protected Corn Oil Supplementation on In Vitro Nutrient Digestibility. IOP Conf. Ser. Earth Environ. Sci. 2020, 478, 012026. [Google Scholar] [CrossRef]
- Golbotteh, M.M.; Malecky, M.; Aliarabi, H.; Zamani, P. Impact of oil type and savory plant on nutrient digestibility and rumen fermentation, milk yield, and milk fatty acid profile in dairy cows. Sci. Rep. 2024, 14, 22427. [Google Scholar] [CrossRef]
- Amanullah, S.M.; Lee, S.-S.; Paradhipta, D.H.V.; Joo, Y.-H.; Kim, D.-H.; Seong, P.-N.; Jeong, S.-M.; Kim, S.-C. Impact of Oil Sources on In Vitro Fermentation, Microbes, Greenhouse Gas, and Fatty Acid Profile in the Rumen. Fermentation 2022, 8, 242. [Google Scholar] [CrossRef]
- Martin, C.; Coppa, M.; Fougère, H.; Bougouin, A.; Baumont, R.; Eugène, M.; Bernard, L. Diets Supplemented with Corn Oil and Wheat Starch, Marine Algae, or Hydrogenated Palm Oil Modulate Methane Emissions Similarly in Dairy Goats and Cows, but Not Feeding Behavior. Anim. Feed Sci. Technol. 2021, 272, 114783. [Google Scholar] [CrossRef]
- Khiaosa-Ard, R.; Leiber, F.; Soliva, C.R. Methods of emulsifying linoleic acid in biohydrogenation studies in vitro may bias the resulting fatty acid profiles. Lipids 2010, 45, 651–657. [Google Scholar] [CrossRef]
- Bauchart, D.; Legay-Carmier’, F. Lipid metabolism of liquid-associated and solid-adherent bacteria in rumen contents of dairy cows offered lipid-supplemented diets. Br. J. Nutr. 1990, 63, 563–578. [Google Scholar] [CrossRef] [PubMed]
- Ozturk, B.; Argin, S.; Ozilgen, M.; McClements, D.J. Nanoemulsion delivery systems for oil-soluble vitamins: Influence of carrier oil type on lipid digestion and vitamin D3 bioaccessibility. Food Chem. 2015, 187, 499–506. [Google Scholar] [CrossRef] [PubMed]
- Maia, M.R.G.; Chaudhary, L.C.; Figueres, L.; Wallace, R.J. Metabolism of polyunsaturated fatty acids and their toxicity to the microflora of the rumen. Ant. Leeuw. 2006, 91, 303–314. [Google Scholar] [CrossRef] [PubMed]
- Behan, A.A.; Loh, T.C.; Fakurazi, S.; Kaka, U.; Kaka, A.; Samsudin, A.A. Effects of supplementation of rumen protected fats on rumen ecology and digestibility of nutrients in sheep. Animals 2019, 9, 400. [Google Scholar] [CrossRef]
Item | Control Diet |
---|---|
Ingredients, g/kg of DM | |
Corn grain | 75.5 |
Cottonseed meal | 116 |
Sunflower seed meal | 85.5 |
Wheat bran | 175 |
Molasse | 35.5 |
Mineral-vitamin mixture 1 | 12.5 |
Berseem clover | 500 |
Chemical composition, g/kg of DM | |
Organic matter | 909 |
Ash | 91 |
Crude protein | 160 |
Either extract | 40 |
Neutral detergent fibre | 372 |
Acid detergent fibre | 213 |
Item | Control | Supplements 1 | |
---|---|---|---|
CO | NCO | ||
C14:0 | 0.23 | 0.14 | 0.19 |
C16:0 | 18.3 | 11.8 | 10.1 |
C18:0 | 2.67 | 2.81 | 2.49 |
C18:1 cis-9 | 28.3 | 27.1 | 28.9 |
C18:2 cis-9,cis-12 | 41.2 | 53.9 | 54.6 |
C18:3 cis-9,cis-12,cis-15 | 6.19 | 1.18 | 1.16 |
Other FA 2 | 3.11 | 3.07 | 2.56 |
SFA 3 | 23.5 | 15.5 | 13.4 |
UFA 4 | 76.5 | 84.5 | 86.6 |
MUFA 5 | 29.1 | 28.3 | 29.9 |
PUFA 6 | 47.4 | 56.2 | 56.7 |
Targeted Rumen Bacteria | Primer Sequence (5′ to 3′) | Reference |
---|---|---|
Anaerovibrio lipolytica | F: GAAATGGATTCTAGTGGCAAACG R: ACATCGGTCATGCGACCAA | [18] |
Butyrivibrio fibrisolvens | F: ACACACCGCCCGTCACA R: TCCTTACGGTTGGGTCACAGA | [19] |
Butyrivibrio proteoclasticus | F: TCCTAGTGTAGCGGTGAAATG R: TTAGCGACGGCACTGAATGCCTA | [20] |
Fibrobacter succinogenes | F: GTTCGGAATTACTGGGCGTAAA R: CGCCTGCCCCTGAACTATC | [21] |
Megasphaera elsdenii | F: AGATGGGGACAACAGCTGGA R: CGAAAGCTCCGAAGAGCCT | [22] |
Ruminococcus albus | F: CCCTAAAAGCAGTCTTAGTTCG R CCTCCTTGCGGTTAGAACA | [23] |
Ruminococcus flavefaciens | F: CGAACGGAGATAATTTGAGTTTACTTAGG R: CGGTCTCTGTATGTTATGAGGTATTACC | [24] |
Streptococcus bovis | F: TTCCTAGAGATAGGAAGTTTCTTCGG R: ATGATGGCAACTAACAATAGGGGT | [22] |
Item | Control | CO 1 | NCO 2 | SEM | p-Value |
---|---|---|---|---|---|
Dry matter intake and nutrient digestibility | |||||
Dry matter intake (DMI), kg/day | 1.21 a | 1.11 b | 1.19 a | 0.009 | 0.002 |
Digestibility, g absorbed/kg ingested. | |||||
Organic matter | 631 a | 603 b | 639 a | 3.521 | <0.001 |
Crude Protein | 688 a | 649 b | 681 a | 3.872 | 0.005 |
Ether Extract | 574 a | 541 b | 579 a | 3.845 | <0.001 |
Neutral Detergent Fiber | 601 a | 576 b | 598 a | 2.542 | <0.001 |
Acid Detergent Fiber | 539 a | 511 b | 529 a | 2.642 | <0.001 |
Rumen basic parameters and volatile fatty acid | |||||
pH | 6.47 a | 6.39 b | 6.51 a | 0.011 | <0.001 |
Ammonia-N, mmol/L | 8.31 a | 8.11 b | 8.26 a | 0.019 | <0.001 |
Total VFA, mmol/L | 107 a | 98.4 b | 108 a | 0.990 | 0.003 |
Acetate (A), mmol/L | 64.7 a | 60.1 b | 65.2 a | 0.523 | 0.005 |
Butyrate, mmol/L | 24.1 a | 21.4 b | 24.9 a | 0.341 | 0.005 |
Propionate (P), mmol/L | 17.9 a | 16.9 b | 18.2 a | 0.127 | 0.008 |
A:P ratio | 2.68 b | 2.81 a | 2.62 b | 0.018 | 0.012 |
Item | Control | CO 1 | NCO 2 | SEM | p-Value |
---|---|---|---|---|---|
C14:0 | 1.88 b | 1.97 a | 1.90 b | 0.011 | <0.001 |
C14:1 cis-9 | 1.27 a | 1.15 b | 1.29 a | 0.017 | <0.001 |
C16:0 | 16.9 a | 16.1 a | 14.3 b | 0.279 | 0.009 |
C16:1 cis-9 | 1.00 a | 0.90 b | 0.91 b | 0.012 | 0.009 |
C18:0 | 41.3 b | 48.2 a | 39.9 c | 0.950 | <0.001 |
C18:1 trans-10 | 2.41 b | 2.89 a | 2.17 c | 0.079 | 0.008 |
C18:1 trans-11 | 2.08 a | 2.10 a | 1.89 b | 0.024 | 0.011 |
C18:1 cis-9 | 7.50 c | 8.13 b | 9.12 a | 0.174 | 0.002 |
C18:2 cis-9 cis-12 | 3.05 c | 3.12 b | 4.98 a | 0.234 | <0.001 |
C18:2 cis-9 trans-11 | 0.67 b | 0.99 a | 0.58 c | 0.009 | <0.001 |
C18:2 trans-10 cis-12 | 0.33 b | 0.40 a | 0.22 c | 0.002 | <0.001 |
C18:3 cis-9 cis-12 cis-15 | 0.80 b | 0.72 c | 0.99 a | 0.029 | <0.001 |
Other FA 3 | 20.8 a | 13.6 c | 19.4 b | 0.811 | <0.001 |
SFA 4 | 73.8 b | 77.3 a | 68.3 c | 0.970 | <0.001 |
UFA 5 | 26.2 b | 22.7 c | 31.7 a | 0.951 | <0.001 |
MUFA 6 | 19.9 b | 16.3 c | 24.5 a | 0.879 | 0.002 |
PUFA 7 | 6.23 c | 6.44 b | 7.23 a | 0.113 | 0.002 |
Item | Control | CO 1 | NCO 2 | SEM | p-Value |
---|---|---|---|---|---|
Anaerovibrio lipolytica | 1.24 a | 1.06 b | 1.31 a | 0.019 | <0.001 |
Butyrivibrio fibrisolvens | 1.44 a | 1.23 b | 1.46 a | 0.018 | <0.001 |
Butyrivibrio proteoclasticus | 2.98 a | 2.79 b | 3.11 a | 0.023 | <0.001 |
Fibrobacter succinogenes | 3.99 | 3.87 | 4.09 | 0.015 | 0.069 |
Megasphaera elsdenii | 0.79 a | 0.63 b | 0.78 a | 0.013 | 0.002 |
Ruminococcus flavefaciens | 1.01 a | 0.87 b | 0.99 a | 0.010 | 0.003 |
Ruminococcus albus | 0.12 b | 0.07 c | 0.16 a | 0.003 | 0.002 |
Streptococcus bovis | 0.06 a | 0.03 b | 0.06 a | 0.001 | 0.006 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, M.; Li, R.-Q.; Khattab, M.S.A.; Abd El Tawab, A.M.; Liu, Y.-B.; El-Sherbiny, M. Nanoemulsified Corn Oil in Lactating Barki Nutrition: Effect on Intake, Nutrient Digestibility, Rumen Fermentation Characteristics, and Microbial Population. Animals 2025, 15, 1424. https://doi.org/10.3390/ani15101424
Gao M, Li R-Q, Khattab MSA, Abd El Tawab AM, Liu Y-B, El-Sherbiny M. Nanoemulsified Corn Oil in Lactating Barki Nutrition: Effect on Intake, Nutrient Digestibility, Rumen Fermentation Characteristics, and Microbial Population. Animals. 2025; 15(10):1424. https://doi.org/10.3390/ani15101424
Chicago/Turabian StyleGao, Min, Rong-Qing Li, Mostafa S. A. Khattab, Ahmed M. Abd El Tawab, Yong-Bin Liu, and Mohamed El-Sherbiny. 2025. "Nanoemulsified Corn Oil in Lactating Barki Nutrition: Effect on Intake, Nutrient Digestibility, Rumen Fermentation Characteristics, and Microbial Population" Animals 15, no. 10: 1424. https://doi.org/10.3390/ani15101424
APA StyleGao, M., Li, R.-Q., Khattab, M. S. A., Abd El Tawab, A. M., Liu, Y.-B., & El-Sherbiny, M. (2025). Nanoemulsified Corn Oil in Lactating Barki Nutrition: Effect on Intake, Nutrient Digestibility, Rumen Fermentation Characteristics, and Microbial Population. Animals, 15(10), 1424. https://doi.org/10.3390/ani15101424