Weaning Stress Aggravates Defense Response and the Burden of Protein Metabolism in Low-Birth-Weight Piglets
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design and Animal Management
2.2. Sample Collection
2.3. Serum Physiochemical Parameters
2.4. Determination of Histological Analysis
2.5. Total RNA Extraction and Real-Time Quantitative PCR
2.6. DNA Extraction and Quantification of Intestinal Microflora
2.7. Statistical Analysis
3. Results
3.1. Body Weight of Piglets
3.2. Physicochemical Parameters in Serum
3.3. Intestinal Morphology
3.4. Gene Expression of Tight Junction Proteins
3.5. Gene Expression of Inflammation-Related Genes
3.6. Gene Expression of Immune-Related Genes
3.7. Intestinal Microbiota
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yuan, T.L.; Zhu, Y.H.; Shi, M.; Li, T.T.; Li, N.; Wu, G.Y.; Bazer, F.W.; Zhang, J.J.; Wang, F.L.; Wang, J.J. Within-litter variation in birth weight: Impact of nutritional status in the sow. J. Zhejiang Univ. Sci. B 2015, 16, 417–435. [Google Scholar] [CrossRef]
- Foxcroft, G.R.; Dixon, W.T.; Novak, S.; Putman, C.T.; Town, S.C.; Vinsky, M.D.A. The biological basis for prenatal programming of postnatal performance in pigs. J. Anim. Sci. 2006, 84 (Suppl. 13), E105–E112. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Bazer, F.W.; Wallace, J.M.; Spencer, T.E. Board-invited review: Intrauterine growth retardation: Implications for the animal sciences. J. Anim. Sci. 2006, 84, 2316–2337. [Google Scholar] [CrossRef]
- Riddersholm, K.V.; Bahnsen, I.; Bruun, T.S.; de Knegt, L.V.; Amdi, C. Identifying risk factors for low piglet birth weight, high within-litter variation and occurrence of intrauterine growth-restricted piglets in hyperprolific sows. Animals 2021, 11, 2731. [Google Scholar] [CrossRef] [PubMed]
- Bazer, F.W.; Spencer, T.E.; Wu, G.; Cudd, T.A.; Meininger, C.J. Maternal nutrition and fetal development. J. Nutr. 2004, 134, 2169–2172. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, H.; Chen, Y.P.; Ying, Z.X.; Su, W.P.; Zhang, L.L.; Wang, T. Effects of dietary l-methionine supplementation on the growth performance, carcass characteristics, meat quality, and muscular antioxidant capacity and myogenic gene expression in low birth weight pigs. J. Anim. Sci. 2017, 95, 3972–3983. [Google Scholar]
- De Vos, M.; Che, L.; Huygelen, V.; Willemen, S.; Michiels, J.; Van Cruchten, S.; Van Ginneken, C. Nutritional interventions to prevent and rear low-birthweight piglets. J. Anim. Physiol. Anim. Nutr. 2014, 98, 609–619. [Google Scholar] [CrossRef]
- Alonso-Spilsbury, M.; Ramírez-Necoechea, R.; González-Lozano, M.; Mota-Rojas, D.; Trujillo-Ortega, M.E. Piglet survival in early lactation: A review. J. Anim. Vet. Adv. 2007, 6, 76–86. [Google Scholar]
- Milligan, B.N.; Dewey, C.E.; de Grau, A.F. Neonatal-piglet weight variation and its relation to pre-weaning mortality and weight gain on commercial farms. Prev. Vet. Med. 2002, 56, 119–127. [Google Scholar] [CrossRef]
- Dowarah, R.; Verma, A.K.; Agarwal, N.; Singh, P.; Singh, B.R. Selection and characterization of probiotic lactic acid bacteria and its impact on growth, nutrient digestibility, health and antioxidant status in weaned piglets. PLoS ONE 2018, 13, e0192978. [Google Scholar] [CrossRef]
- Wiyaporn, M.; Thongsong, B.; Kalandakanond-Thongsong, S. Growth and small intestine histomorphology of low and normal birth weight piglets during the early suckling period. Livest. Sci. 2013, 158, 215–222. [Google Scholar] [CrossRef]
- D’Inca, R.; Gras-Le Guen, C.; Che, L.; Sangild, P.T.; Le Huërou-Luron, I. Intrauterine growth restriction delays feeding-induced gut adaptation in term newborn pigs. Neonatology 2011, 99, 208–216. [Google Scholar] [CrossRef]
- Alvarenga, A.L.N.; Chiarini-Garcia, H.; Cardeal, P.C.; Moreira, L.P.; Foxcroft, G.R.; Fontes, D.O.; Almeida, F.R.C.L. Intra-uterine growth retardation affects birthweight and postnatal development in pigs, impairing muscle accretion, duodenal mucosa morphology and carcass traits. Reprod. Fert. Develop. 2013, 25, 387–395. [Google Scholar] [CrossRef]
- Ayuso, M.; Irwin, R.; Walsh, C.; Van Cruchten, S.; Van Ginneken, C. Low birth weight female piglets show altered intestinal development, gene expression, and epigenetic changes at key developmental loci. FASEB J. 2021, 35, e21522. [Google Scholar] [CrossRef] [PubMed]
- Anonye, B.O. General commentary on: Alternatives to antibiotic growth promoters in animals. Front. Vet. Sci. 2016, 3, 74. [Google Scholar] [CrossRef]
- Fouhse, J.M.; Tsoi, S.; Clark, B.; Gartner, S.; Patterson, J.L.; Foxcroft, G.R.; Willing, B.P.; Dyck, M.K. Outcomes of a low birth weight phenotype on piglet gut microbial composition and intestinal transcriptomic profile. Can. J. Anim. Sci. 2019, 100, 47–58. [Google Scholar] [CrossRef]
- Tang, X.; Xiong, K. Intrauterine growth retardation affects intestinal health of suckling piglets via altering intestinal antioxidant capacity, glucose uptake, tight junction, and immune responses. Oxid. Med. Cell Longev. 2022, 2022, 2644205. [Google Scholar] [CrossRef]
- Li, N.; Wang, W.; Wu, G.; Wang, J. Nutritional support for low birth weight infants: Insights from animal studies. Brit. J. Nutr. 2017, 117, 1390–1402. [Google Scholar] [CrossRef]
- Li, N.; Huang, S.; Jiang, L.; Wang, W.; Li, T.; Zuo, B.; Li, Z.; Wang, J. Differences in the gut microbiota establishment and metabolome characteristics between low-and normal-birth-weight piglets during early-life. Front. Microbiol. 2018, 9, 1798. [Google Scholar] [CrossRef]
- Ming, D.; Wang, W.; Huang, C.; Wang, Z.; Shi, C.; Ding, J.; Liu, H.; Wang, F. Effects of weaning age at 21 and 28 days on growth performance, intestinal morphology and redox status in piglets. Animals 2021, 11, 2169. [Google Scholar] [CrossRef]
- Nowland, T.L.; Plush, K.J.; Barton, M.; Kirkwood, R.N. Development and function of the intestinal microbiome and potential implications for pig production. Animals 2019, 9, 76. [Google Scholar] [CrossRef] [PubMed]
- Moeser, A.J.; Ryan, K.A.; Nighot, P.K.; Blikslager, A.T. Gastrointestinal dysfunction induced by early weaning is attenuated by delayed weaning and mast cell blockade in pigs. Am. J. Physiol. Gastrointest. Liver Physiol. 2007, 293, G413–G421. [Google Scholar] [CrossRef]
- Upadhaya, S.D.; Kim, I.H. The impact of weaning stress on gut health and the mechanistic aspects of several feed additives contributing to improved gut health function in weanling piglets—A review. Animals 2021, 11, 2418. [Google Scholar] [CrossRef]
- Gondret, F.; Lefaucheur, L.; Louveau, I.; Lebret, B.; Pichodo, X.; Le Cozler, Y. Influence of piglet birth weight on postnatal growth performance, tissue lipogenic capacity and muscle histological traits at market weight. Livest. Prod. Sci. 2005, 93, 137–146. [Google Scholar] [CrossRef]
- Nissen, P.M.; Oksbjerg, N. Birth weight and postnatal dietary protein level affect performance, muscle metabolism and meat quality in pigs. Animal 2011, 5, 1382–1389. [Google Scholar] [CrossRef] [PubMed]
- Michiels, J.; De Vos, M.; Missotten, J.; Ovyn, A.; De Smet, S.; Van Ginneken, C. Maturation of digestive function is retarded and plasma antioxidant capacity lowered in fully weaned low birth weight piglets. Brit. J. Nutr. 2013, 109, 65–75. [Google Scholar] [CrossRef]
- Zheng, P.; Song, Y.; Tian, Y.; Zhang, H.; Yu, B.; He, J.; Mao, X.; Yu, J.; Luo, Y.; Luo, J.; et al. Dietary arginine supplementation affects intestinal function by enhancing antioxidant capacity of a nitric oxide–independent pathway in low-birth-weight piglets. J. Nutr. 2018, 148, 1751–1759. [Google Scholar] [CrossRef]
- Chen, H.; Mao, X.; He, J.; Yu, B.; Huang, Z.; Yu, J.; Zheng, P.; Chen, D. Dietary fibre affects intestinal mucosal barrier function and regulates intestinal bacteria in weaning piglets. Brit. J. Nutr. 2013, 110, 1837–1848. [Google Scholar] [CrossRef]
- Zheng, P.; Yu, B.; He, J.; Yu, J.; Mao, X.; Luo, Y.; Luo, J.; Huang, Z.; Tian, G.; Zeng, Q.; et al. Arginine metabolism and its protective effects on intestinal health and functions in weaned piglets under oxidative stress induced by diquat. Brit. J. Nutr. 2017, 117, 1495–1502. [Google Scholar] [CrossRef]
- Wang, X.; Zhu, Y.; Feng, C.; Lin, G.; Wu, G.; Li, D.; Wang, J. Innate differences and colostrum-induced alterations of jejunal mucosal proteins in piglets with intra-uterine growth restriction. Br. J. Nutr. 2018, 119, 734–747. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Fierer, N.; Jackson, J.A.; Vilgalys, R.; Jackson, R.B. Assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays. Appl. Environ. Microb. 2005, 71, 4117–4120. [Google Scholar] [CrossRef] [PubMed]
- Qi, H.; Xiang, Z.; Han, G.; Yu, B.; Huang, Z.; Chen, D. Effects of different dietary protein sources on cecal microflora in rats. Afr. J. Biotechnol. 2011, 10, 3704–3708. [Google Scholar]
- Xiang, Z.; Qi, H.; Han, G.; Liu, J.; Huang, Z.; Yu, B.; Chen, D. Real-time TaqMan polymerase chain reaction to quantify the effects of different sources of dietary starch on Bifidobacterium in the intestinal tract of piglets. Afr. J. Biotechnol. 2011, 10, 5059–5067. [Google Scholar]
- Kuller, W.I.; Soede, N.M.; van Beers-Schreurs, H.M.G.; Langendijk, P.; Taverne, M.A.M.; Verheijden, J.H.M.; Kemp, B. Intermittent suckling: Effects on piglet and sow performance before and after weaning. J. Anim. Sci. 2004, 82, 405–413. [Google Scholar] [CrossRef] [PubMed]
- Pié, S.; Lalles, J.P.; Blazy, F.; Laffitt, J.; Sève, B.; Oswald, I.P. Weaning is associated with an upregulation of expression of inflammatory cytokines in the intestine of piglets. J. Nutr. 2004, 134, 641–647. [Google Scholar]
- Moeser, A.J.; Pohl, C.S.; Rajput, M. Weaning stress and gastrointestinal barrier development: Implications for lifelong gut health in pigs. Anim. Nutr. 2017, 3, 313–321. [Google Scholar] [CrossRef]
- Douglas, S.L.; Edwards, S.A.; Sutcliffe, E.; Knap, P.W.; Kyriazakis, I. Identification of risk factors associated with poor lifetime growth performance in pigs. J. Anim. Sci. 2013, 91, 4123–4132. [Google Scholar] [CrossRef]
- Bæk, O.; Ren, S.; Brunse, A.; Sangild, P.T.; Nguyen, D.N. Impaired neonatal immunity and infection resistance following fetal growth restriction in preterm pigs. Front. Immunol. 2020, 11, 1808. [Google Scholar] [CrossRef]
- Jarvis, S.; D’Eath, R.B.; Robson, S.K.; Lawrence, A.B. The effect of confinement during lactation on the hypothalamic–pituitary–adrenal axis and behaviour of primiparous sows. Physiol. Behav. 2006, 87, 345–352. [Google Scholar] [CrossRef]
- Yu, C.; Chen, C.; Chang, C. The immediate effects of weaning stress on the hypothalamus-pituitary-adrenal alteration of newly weaned piglets. J. Anim. Physiol. Anim. Nutr. 2019, 103, 1218–1223. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Lu, N.; Zhao, H.; Yuan, H.; Xia, D.; Lei, H. The microbiome–metabolome response in the colon of piglets under the status of weaning stress. Front. Microbiol. 2020, 11, 2055. [Google Scholar] [CrossRef] [PubMed]
- Petrowski, K.; Wintermann, G.B.; Schaarschmidt, M.; Bornstein, S.R.; Krischbaum, C. Blunted salivary and plasma cortisol response in patients with panic disorder under psychosocial stress. Int. J. Psychophysiol. 2013, 88, 35–39. [Google Scholar] [CrossRef] [PubMed]
- Pineiro, M.; Piñeiro, C.; Carpintero, R.; Morales, J.; Campbell, F.M.; Eckersall, P.D.; Toussaint Mathilda, J.M.; Lampreave, F. Characterisation of the pig acute phase protein response to road transport. Vet. J. 2007, 173, 669–674. [Google Scholar] [CrossRef]
- Gutiérrez, A.M.; Martínez-Subiela, S.; Eckersall, P.D.; Cerón, J.J. C-reactive protein quantification in porcine saliva: A minimally invasive test for pig health monitoring. Vet. J. 2009, 181, 261–265. [Google Scholar] [CrossRef]
- Wang, M.; Zhong, Q.; Xin, H.; Yu, B.; He, J.; Yu, J.; Mao, X.; Huang, Z.; Luo, Y.; Luo, J.; et al. Purine metabolism and hexosamine biosynthetic pathway abnormalities in diarrheal weaned piglets identified using metabolomics. Animals 2024, 14, 522. [Google Scholar] [CrossRef]
- Pomorska-Mól, M.; Kwit, K.; Markowska-Daniel, I. Major acute phase proteins in pig serum from birth to slaughter. J. Vet. Res. 2012, 56, 553–557. [Google Scholar] [CrossRef]
- Wang, J.; Wu, C.; Feng, J. Effect of dietary antibacterial peptide and zinc-methionine on performance and serum biochemical parameters in piglets. Czech. J. Anim. Sci. 2011, 56, 30–36. [Google Scholar] [CrossRef]
- Lv, D.; Xiong, X.; Yang, H.; Wang, M.; He, Y.; Liu, Y.; Yin, Y. Effect of dietary soy oil, glucose, and glutamine on growth performance, amino acid profile, blood profile, immunity, and antioxidant capacity in weaned piglets. Sci. China Life Sci. 2018, 61, 1233–1242. [Google Scholar] [CrossRef]
- Heo, J.M.; Kim, J.C.; Hansen, C.F.; Mullan, B.P.; Hampson, D.J.; Pluske, J.R. Effects of feeding low protein diets to piglets on plasma urea nitrogen, faecal ammonia nitrogen, the incidence of diarrhoea and performance after weaning. Arch. Anim. Nutr. 2008, 62, 343–358. [Google Scholar] [CrossRef]
- Zou, X.T.; Zheng, G.H.; Fang, X.J.; Jiang, J.F. Effects of glutamine on growth performance of weanling piglets. Czech J. Anim. Sci. 2006, 51, 444. [Google Scholar] [CrossRef]
- Tao, X.; Xu, Z.; Men, X. Transient effects of weaning on the health of newly weaning piglets. Czech J. Anim. Sci. 2016, 61, 82–90. [Google Scholar] [CrossRef]
- Wang, J.; Ji, H. Tight junction proteins in the weaned piglet intestine: Roles and regulation. Curr. Protein Pept. Sci. 2019, 20, 652–660. [Google Scholar] [CrossRef]
- Bennet, S.; Trnblom, H. Editorial: Increased expression of nerve growth factor correlates with visceral hypersensitivity and impaired gut barrier function in diarrhoea-predominant irritable bowel syndrome. Aliment. Pharmacol. Ther. 2017, 45, 567–568. [Google Scholar] [CrossRef]
- Luo, C.; Xia, B.; Zhong, R.; Shen, D.; Li, J.; Chen, L.; Zhang, H. Early-life nutrition interventions improved growth performance and intestinal health via the gut microbiota in piglets. Front. Nutr. 2022, 8, 783688. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.H.; Xiao, K.; Luan, Z.S.; Song, J. Early weaning increases intestinal permeability, alters expression of cytokine and tight junction proteins, and activates mitogen-activated protein kinases in pigs. J. Anim. Sci. 2013, 91, 1094–1101. [Google Scholar] [CrossRef]
- Al Masri, S.; Hünigen, H.; Al Aiyan, A.; Rieger, J.; Zentek, J.; Richardson, K.; Plendl, J. Influence of age at weaning and feeding regimes on the postnatal morphology of the porcine small intestine: A review of morphometric studies. J. Swine Health Prod. 2015, 23, 186–203. [Google Scholar] [CrossRef]
- Xun, W.; Shi, L.; Zhou, H.; Hou, G.; Cao, T. Effect of weaning age on intestinal mucosal morphology, permeability, gene expression of tight junction proteins, cytokines and secretory IgA in Wuzhishan mini piglets. Ital. J. Anim. Sci. 2018, 17, 976–983. [Google Scholar] [CrossRef]
- Cao, S.; Hou, L.; Sun, L.; Gao, J.; Gao, K.; Yang, X.; Wang, L. Intestinal morphology and immune profiles are altered in piglets by early-weaning. Int. Immunopharmacol. 2022, 105, 108520. [Google Scholar] [CrossRef]
- Brown, D.C.; Maxwell, C.V.; Erf, G.F.; Davis, M.E.; Singh, S.; Johnson, Z.B. The influence of different management systems and age on intestinal morphology, immune cell numbers and mucin production from goblet cells in post-weaning pigs. Vet. Immunol. Immunopathol. 2006, 111, 187–198. [Google Scholar] [CrossRef]
- Wei, X.; Tsai, T.; Howe, S.; Zhao, J. Weaning induced gut dysfunction and nutritional interventions in nursery pigs: A partial review. Animals 2021, 11, 1279. [Google Scholar] [CrossRef]
- Gresse, R.; Chaucheyras-Durand, F.; Fleury, M.A.; Van, de.; Wiele, T.; Forano, E.; Blanquet-Diot, S. Gut microbiota dysbiosis in postweaning piglets: Understanding the keys to health. Trends Microbiol. 2017, 25, 851–873. [Google Scholar] [CrossRef]
- Wang, W.; Wang, Y.; Hao, X.; Duan, Y.; Meng, Z.; An, X.; Qi, J. Dietary fermented soybean meal replacement alleviates diarrhea in weaned piglets challenged with enterotoxigenic Escherichia coli K88 by modulating inflammatory cytokine levels and cecal microbiota composition. BMC Vet. Res. 2020, 16, 1–11. [Google Scholar] [CrossRef] [PubMed]
- McLamb, B.L.; Gibson, A.J.; Overman, E.L.; Stahl, C.; Moeser, A.J. Early weaning stress in pigs impairs innate mucosal immune responses to enterotoxigenic E. coli challenge and exacerbates intestinal injury and clinical disease. PLoS ONE 2013, 8, e59838. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Xia, B.; He, T.; Li, D.; Su, J.H.; Guo, L.; Wang, J.F.; Zhu, Y.H. Oral administration of a select mixture of Lactobacillus and Bacillus alleviates inflammation and maintains mucosal barrier integrity in the ileum of pigs challenged with Salmonella Infantis. Microorganisms 2019, 7, 135. [Google Scholar] [CrossRef]
- Hu, L.; Peng, X.; Chen, H.; Yan, C.; Liu, Y.; Xu, Q.; Fang, Z.F.; Lin, Y.; Xu, S.Y.; Feng, B.; et al. Effects of intrauterine growth retardation and Bacillus subtilis PB6 supplementation on growth performance, intestinal development and immune function of piglets during the suckling period. Eur. J. Nutr. 2017, 56, 1753–1765. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Chen, F.; Odle, J.; Lin, X.; Jacobi, S.K.; Zhu, H.; Wu, Z.; Hou, Y. Fish Oil Enhances Intestinal Integrity and Inhibits TLR4 and NOD2 Signaling Pathways in Weaned Pigs after LPS Challenge, 3. J. Nutr. 2012, 142, 2017–2024. [Google Scholar] [CrossRef]
- Trevisi, P.; Negrini, C.; Correa, F.; Virdis, S.; Laghi, L.; Marcello, M.; Conte, G.; Mazzoni, M.; Luise, D. Insight into the long-term impact of birth weight on intestinal development, microbial settlement, and the metabolism of weaned piglets. J. Anim. Sci. 2023, 101, skad395. [Google Scholar] [CrossRef]
- Lessard, M.; Blais, M.; Beaudoin, F.; Deschene, K.; Verso, L.L.; Bissonnette, N.; Lauzon, K.; Guay, F. Piglet weight gain during the first two weeks of lactation influences the immune system development. Vet. Immunol. Immunopathol. 2018, 206, 25–34. [Google Scholar] [CrossRef]
- D’Inca, R.; Kloareg, M.; Gras-Le Guen, C.; Le Huërou-Luron, I. Intrauterine growth restriction modifies the developmental pattern of intestinal structure, transcriptomic profile, and bacterial colonization in neonatal pigs. J. Nutr. 2010, 140, 925–931. [Google Scholar] [CrossRef]
Genes 1 | Primer Sequences (5′-3′) 2 | Size (bp) | AT 3, °C |
---|---|---|---|
ZO-1 | F: CAGCCCCCGTACATGGAGA | 105 | 59.7 |
R: GCGCAGACGGTGTTCATAGTT | |||
ZO-2 | F: ATTCGGACCCATAGCAGACATAG | 100 | 59.7 |
R: GCGTCTCTTGGTTCTGTTTTAGC | |||
Occludin | F: CAGGTGCACCCTCCAGATTG | 110 | 59.7 |
R: GGACTTTCAAGAGGCCTGGAT | |||
Claudin-1 | F: GCCACAGCAAGGTATGGTAAC | 140 | 59.7 |
R: AGTAGGGCACCTCCCAGAAG | |||
Claudin-2 | F: CATCGGCAGCAGCATTATC | 95 | 59.7 |
R: ACACTTTGCACTGCATCTGG | |||
IL-1β | F: CAGCTGCAAATCTCTCACCA | 112 | 59.7 |
R: TCTTCATCGGCTTCTCCACT | |||
IL-2 | F: TGCACTAACCCTTGCACTCA | 83 | 59.7 |
R: GCAATGGCTCCAGTTGTTTCT | |||
IL-6 | F: TTCACCTCTCCGGACAAAAC | 122 | 59.7 |
R: TCTGCCAGTACCTCCTTGCT | |||
TNF-α | F: CGTGAAGCTGAAAGACAACCAG | 121 | 59.7 |
R: GATGGTGTGAGTGAGGAAAACG | |||
IFN-γ | F: ACCAGGCCATTCAAAGGAGC | 90 | 59.7 |
R: CGAAGTCATTCAGTTTCCCAGAG | |||
NLRP3 | F: GGAGGAGGAGGAAGAGGAGATA | 147 | 59.7 |
R: AGGACTGAGAAGATGCCACTAC | |||
IL-18 | F: AGTAACCATCTCTGTGCAGTGT | 155 | 59.7 |
R: TCTTATCATCATGTCCAGGAAC | |||
Caspase-1 | F: GAAGGAGAAGAGGAGGCTGTT | 268 | 59.7 |
R: AGATTGTGAACCTGTGGAGAGT | |||
TLR4 | F: TTACAGAAGCTGGTTGCCGT | 152 | 65.0 |
R: TCCAGGTTGGGCAGGTTAGA | |||
TLR9 | F: AATCCAGTCGGAGATGTTTGCT | 79 | 59.7 |
R: GACCGCCTGGGAGATGCT | |||
NOD1 | F: TCAACACCGATCCAGTGAGC | 237 | 59.7 |
R: TGAAAATGGTCTCGCCCTCC | |||
NOD2 | F: GTGCCTCCCCTCTAGACTCA | 191 | 59.7 |
R: ACGAACCAGGAAGCCAAGAG | |||
MyD88 | F: CCATTCGAGATGACCCCCTG | 183 | 59.7 |
R: TAGCAATGGACCAGACGCAG | |||
TRAF6 | F: GCTGCATCTATGGCATTTGAAG | 70 | 59.7 |
R: CCACAGATAACATTTGCCAAAGG | |||
P38 MAPK | F: AGTTGAAGCTCATTTTAAGACTCGT | 117 | 59.7 |
R: AGTTCATCTTCGGCATCTGGG | |||
TRIF | F: CAAGTGGAGGAAGGAACAGG | 139 | 59.7 |
R: CAACTGCGTCTGGTAGGACA | |||
IRF3 | F: GCTACACCCTCTGGTTCTGC | 95 | 59.7 |
R: GAGACACATGGGGACAACCT | |||
p65 NF-κB | F: GTGTGTAAAGAAGCGGGACCT | 139 | 59.7 |
R: CACTGTCACCTGGAAGCAGAG | |||
β-actin | F: TCTGGCACCACACCTTCT | 114 | 59.7 |
R: TGATCTGGGTCATCTTCTCAC |
Primer | Nucleotide Sequence (5′-3′) 1 | Product Size, bp | AT 2, °C |
---|---|---|---|
Total bacteria | F: ACTCCTACGGGAGGCAGCAG R: ATTACCGCGGCTGCTGG | 200 | 60 |
Escherichia coli | F: CATGCCGCGTGTATGAAGAA R: CGGGTAACGTCAATGAGCAAA P: AGGTATTAACTTTACTCCCTTCCTC | 96 | 60 |
Lactobacillus | F: ACTCCTACGGGAGGCAGCAG R: CAACAGTTACTCTGACACCCGTTCTTC P: AAGAAGGGTTTCGGCTCGTAAAACTC-TGTT | 126 | 60 |
Bacillus | F: GCAACGAGCGCAACCCTTGA R: TCATCCCCACCTTCCTCCGGT P: CGGTTTGTCACCGGCAGTCACCT | 92 | 60 |
Items | NBW 2 | LBW 3 | p-Value |
---|---|---|---|
21 d body weight, kg | 6.16 ± 0.03 | 3.65 ± 0.07 | 0.000 |
24 d body weight, kg | 6.37 ± 0.03 | 3.55 ± 0.06 | 0.000 |
Body weight gain, g | +210 | −100 |
Items | CON 2 | WEA 3 | p-Value | ||||
---|---|---|---|---|---|---|---|
NBW 4 | LBW 5 | NBW 4 | LBW 5 | BW | WEA | BW × WEA | |
Villus height, μm | 276.60 ± 15.55 a | 190.23 ± 35.02 b | 137.25 ± 17.69 b | 127.29 ± 9.84 b | 0.038 | 0.000 | 0.093 |
Crypt depth, μm | 67.18 ± 5.25 ab | 55.81 ± 6.37 b | 73.97 ± 2.60 a | 66.25 ± 2.74 ab | 0.048 | 0.072 | 0.692 |
V/C 6 | 4.18 ± 0.26 a | 3.49 ± 0.56 a | 1.88 ± 0.27 b | 1.95 ± 0.20 b | 0.391 | 0.000 | 0.294 |
Items | CON 2 | WEA 3 | p-Value | ||||
---|---|---|---|---|---|---|---|
NBW 4 | LBW 5 | NBW 4 | LBW 5 | BW | WEA | BW × WEA | |
Cecal digesta | |||||||
Total bacteria | 10.85 ± 0.05 | 10.52 ± 0.17 | 10.73 ± 0.13 | 10.67 ± 0.11 | 0.102 | 0.903 | 0.261 |
Lactobacillus | 7.38 ± 0.12 | 7.11 ± 0.20 | 7.31 ± 0.25 | 7.01 ± 0.39 | 0.279 | 0.745 | 0.945 |
Escherichia coli | 5.67 ± 0.36 ab | 5.10 ± 0.47 b | 4.39 ± 0.58 b | 6.68 ± 0.25 a | 0.044 | 0.726 | 0.001 |
Bacillus | 5.25 ± 0.07 | 4.96 ± 0.18 | 5.40 ± 0.09 | 5.32 ± 0.12 | 0.140 | 0.046 | 0.388 |
Colonic digesta | |||||||
Total bacteria | 11.19 ± 0.05 | 11.21 ± 0.05 | 11.15 ± 0.05 | 11.23 ± 0.06 | 0.355 | 0.893 | 0.540 |
Lactobacillus | 7.76 ± 0.13 | 7.73 ± 0.15 | 7.62 ± 0.24 | 7.93 ± 0.08 | 0.380 | 0.853 | 0.311 |
Escherichia coli | 7.70 ± 0.08 | 6.97 ± 0.18 | 7.43 ± 0.21 | 7.48 ± 0.33 | 0.126 | 0.592 | 0.081 |
Bacillus | 5.40 ± 0.08 | 5.46 ± 0.08 | 5.46 ± 0.05 | 5.49 ± 0.07 | 0.510 | 0.510 | 0.856 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, P.; Zhang, J.; Tian, Y.; Yu, B.; He, J.; Yu, J.; Zheng, P. Weaning Stress Aggravates Defense Response and the Burden of Protein Metabolism in Low-Birth-Weight Piglets. Animals 2025, 15, 1369. https://doi.org/10.3390/ani15101369
Wang P, Zhang J, Tian Y, Yu B, He J, Yu J, Zheng P. Weaning Stress Aggravates Defense Response and the Burden of Protein Metabolism in Low-Birth-Weight Piglets. Animals. 2025; 15(10):1369. https://doi.org/10.3390/ani15101369
Chicago/Turabian StyleWang, Peipei, Jinwei Zhang, Yihang Tian, Bing Yu, Jun He, Jie Yu, and Ping Zheng. 2025. "Weaning Stress Aggravates Defense Response and the Burden of Protein Metabolism in Low-Birth-Weight Piglets" Animals 15, no. 10: 1369. https://doi.org/10.3390/ani15101369
APA StyleWang, P., Zhang, J., Tian, Y., Yu, B., He, J., Yu, J., & Zheng, P. (2025). Weaning Stress Aggravates Defense Response and the Burden of Protein Metabolism in Low-Birth-Weight Piglets. Animals, 15(10), 1369. https://doi.org/10.3390/ani15101369