Influences of a Supplemental Blend of Essential Oils Plus 25-Hydroxy-Vit-D3 and Zilpaterol Hydrochloride (β2 Agonist) on Growth Performance and Carcass Measures of Feedlot Lambs Finished under Conditions of High Ambient Temperature
Abstract
:Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. Location of the Study
2.2. Climatic Variables and Temperature Humidity Index (THI) Calculation
2.3. Animals, Diet, and Experimental Design
2.4. Chemical Analysis
2.5. Calculations
2.6. Carcass Characteristics and Visceral Mass Data
2.7. Expression and Quantification of Ovis Aries IGF1, IGF2, and mTOR mRNA in Samples of Longissimus Muscle Using Quantitative Real-Time PCR
2.8. Statistical Analysis
3. Results
3.1. Ambient Temperature
3.2. Growth Performance and Dietary Energy
3.3. Carcass Characteristics, Visceral Mass, and Gene Expression for IGF-1, IGF-2 and mTOR in LM Muscle
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Morris, S.T. Overview of Sheep Production Systems. In Advances If Sheep Welfare; Ferguson, D.M., Lee, C., Fisher, A., Eds.; Woodhead Publishing Series in Food Science, Technology and Nutrition; Elsevier, LTD.: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Hahn, G.L. Dynamic responses of cattle to thermal heat loads. J. Anim. Sci. 1999, 77 (Suppl. 2), 10–20. [Google Scholar] [CrossRef]
- Osei-Amponsah, R.; Chauhan, S.S.; Leury, B.J.; Cheng, L.; Cullen, B.; Clarke, I.J.; Dunshea, F.R. Genetic Selection for Thermotolerance in Ruminants. Animals 2019, 9, 948. [Google Scholar] [CrossRef]
- Chauhan, S.S.; Rashamol, V.P.; Bagath, M.; Sejian, V.; Dunshea, F.R. Impacts of heat stress on immune responses and oxidative stress in farm animals and nutritional strategies for amelioration. Int. J. Biometeorol. 2021, 65, 1231–1244. [Google Scholar] [CrossRef]
- Renaudeau, D.; Collin, A.; Yahav, S.; de Basilio, V.; Gourdine, J.L.; Collier, R.J. Adaptation to hot climate and strategies to alleviate heat stress in livestock production. Animals 2012, 6, 707–728. [Google Scholar] [CrossRef]
- Castro-Pérez, B.I.; Estrada-Angulo, A.; Ríos-Rincón, F.G.; Núñez-Benítez, V.H.; Rivera-Méndez, C.R.; Urías-Estrada, J.D.; Zinn, R.A.; Barreras, A.; Plascencia, A. The influence of shade allocation or total shade plus overhead fan on growth performance, efficiency of dietary energy utilization, and carcass characteristics of feedlot cattle under tropical ambient conditions. Asian-Australas. J. Anim. Sci. 2020, 33, 1034–1041. [Google Scholar] [CrossRef]
- Cayetano-De-Jesus, J.A.; Rojo-Rubio, R.; Grajales-Lagunes, A.; Avendaño-Reyes, L.; Macias-Cruz, U.; Gonzalez-del-Prado, V.; Olmedo-Juárez, A.; Chay-Canul, A.; Roque-Jiménez, J.A.; Lee-Rangel, H.A. Effect of zilpaterol hydrochloride on performance and meat quality in finishing lambs. Agriculture 2020, 10, 241. [Google Scholar] [CrossRef]
- Barnes, T.L.; Cadaret, C.N.; Beede, K.A.; Schmidt, T.B.; Petersen, J.L.; Yates, D.T. Hypertrophic muscle growth and metabolic efficiency were impaired by chronic heat stress, improved by zilpaterol supplementation, and not affected by ractopamine supplementation in feedlot lambs. J. Anim. Sci. 2019, 97, 4101–4103. [Google Scholar] [CrossRef]
- Arteaga-Wences, Y.; Estrada-Angulo, A.; Gerardo Ríos-Rincón, F.G.; Castro-Pérez, B.I.; Mendoza-Cortéz, D.A.; Manriquez-Núñez, O.M.; Barreras, A.; Corona-Gochi, L.; Zinn, R.A.; Perea-Domínguez, X.P.; et al. The effects of feeding a standardized mixture of essential oils vs. monensin on growth performance, dietary energy and carcass characteristics of lambs fed a high-energy finishing diet. Small Rum. Res. 2021, 205, 106557. [Google Scholar] [CrossRef]
- Estrada-Angulo, A.; Arteaga-Wences, Y.J.; Castro-Pérez, B.I.; Urías-Estrada, J.D.; Gaxiola-Camacho, S.; Angulo-Montoya, C.; Ponce-Barraza, E.; Barreras, A.; Corona, L.; Zinn, R.A.; et al. Blend of Essential Oils Supplemented Alone or Combined with Exogenous Amylase Compared with Virginiamycin Supplementation on Finishing Lambs. Animals 2021, 11, 2390. [Google Scholar] [CrossRef] [PubMed]
- Acedo, T.S.; Gouvêa, V.N.; Vasconcellos, G.M.; Arrigoni, M.; Martins, C.L.; Millen, D.D.; Muller, L.R.; Melo, G.F.; Rizzieri, R.A.; Costa, C.F.; et al. Effect of 25-hydroxy-vitamin-D3 on feedlot cattle. J. Anim. Sci. 2019, 96 (Suppl. 3), 447–448. [Google Scholar] [CrossRef]
- Carvalho, V.V.; Perdigão, A. Supplementation of 25-hydroxy-vitamin-D3 and increased vitamin E as a strategy to increase carcass weight of feedlot beef cattle. J. Anim. Sci. 2019, 97 (Suppl. 3), 440. [Google Scholar] [CrossRef]
- Mendoza-Cortéz, D.A.; Ramos-Méndez, J.L.; Arteaga-Wences, Y.; Félix-Bernal, A.; Estrada-Angulo, A.; Castro-Pérez, B.I.; Urías-Estrada, J.D.; Barreras, A.; Zinn, R.A.; Plascencia, A. Influence of a supplemental blend of essential oils plus 25-hydroxy-vitamin-d3 on feedlot cattle performance during the early-growing phase under conditions of high-ambient temperature. Indian J. Anim. Res. 2022, 57, 1–6. [Google Scholar] [CrossRef]
- Escobedo-Gallegos, L.d.G.; Estrada-Angulo, A.; Castro-Pérez, B.I.; Urías-Estrada, J.D.; Calderón-Garay, E.; Ramírez-Santiago, L.; Valdés-García, Y.S.; Barreras, A.; Zinn, R.A.; Plascencia, A. Essential Oils Combined with Vitamin D3 or with Probiotic as an Alternative to the Ionophore Monensin Supplemented in High-Energy Diets for Lambs Long-Term Finished under Subtropical Climate. Animals 2023, 13, 2430. [Google Scholar] [CrossRef]
- Normas Oficiales Mexicanas. Diario Oficial de la Federación. (NOM-051-ZOO-1995, NOM-033-ZOO-1995) Trato Humanitario de Animales de Producción, de Compañía y Animales Silvestres Durante el Proceso de Crianza, Desarrollo de Experimentos, Movilización y Sacrificio. 1995. Available online: https://dof.gob.mx/nota_detalle.php?codigo=4870842&fecha=23/03/1998#gsc.tab=0 (accessed on 6 March 2023).
- Dikmen, S.; Hansen, P.J. Is the temperature-humidity index the best indicator of heat stress in lactating dairy cows in a subtropical environment? J. Dairy Sci. 2009, 92, 109–116. [Google Scholar] [CrossRef]
- Rojas-Román, L.A.; Castro-Pérez, B.I.; Estrada-Angulo, A.; Angulo-Montoya, C.; Yocupicio-Rocha, J.A.; López-Soto, M.A.; Barreras, A.; Zinn, R.A.; Plascencia, A. Influence of long-term supplementation of tannins on growth performance, dietary net energy and carcass characteristics in finishing lambs. Small Rum. Res. 2017, 153, 137–141. [Google Scholar] [CrossRef]
- Estrada-Angulo, A.; Castro-Pérez, B.I.; Urías-Estrada, J.D.; Ríos-Rincón, F.G.; Arteaga-Wences, Y.J.; Barreras, A.; López-Soto, M.A.; Plascencia, A.; Zinn, R.A. Influence of protein level on growth performance, dietary energetics and carcass characteristics of Pelibuey × Katahdin lambs finished with isocaloric diets. Small Rum. Res. 2018, 160, 59–64. [Google Scholar] [CrossRef]
- Rivera-Villegas, A.; Estrada-Angulo, A.; Castro-Pérez, B.I.; Urías-Estrada, J.D.; Ríos-Rincón, F.G.; Rodríguez-Cordero, D.; Barreras, A.; Plascencia, A.; González-Vizcarra, V.M.; Sosa-Gordillo, J.F.; et al. Comparative evaluation of supplemental zilpaterol hydrochloride sources on growth performance, dietary energetics and carcass characteristics of finishing lambs. Asian-Australas. J. Anim. Sci. 2019, 32, 209–216. [Google Scholar] [CrossRef]
- Ortiz-Rodea, A.; Barbosa-Amezcua, M.; Partida, J.A.; González-Ronquillo, M. Effect of zilpaterol hydrochloride on animal performance and carcass characteristics in sheep: A meta-analysis. J. Appl. Anim. Res. 2016, 41, 104–112. [Google Scholar] [CrossRef]
- Cannas, A.; Tedeschi, L.O.; Fox, D.G.; Pell, A.N.; Van Soest, P.J. A mechanistic model for predicting the nutrient requirements and feed biological values for sheep. J. Anim. Sci. 2004, 82, 149–169. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists. Official Method of Analysis, 17th ed.; Association of Official Analytical Chemists (AOAC): Washington, DC, USA, 2000. [Google Scholar]
- National Research Council. Nutrient Requirement of Small Ruminant: Sheep, Goats, Cervids, and New World Camelids; National Academy Science (NRC): Washington, DC, USA, 2007. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef] [PubMed]
- National Research Council. Nutrient Requirement of Sheep, 6th ed.; National Academy Science (NRC): Washington, DC, USA, 1985. [Google Scholar]
- Canton, G.J.; Bores, Q.R.; Baeza, R.J.; Quintal, F.J.; Santos, R.R.; Sandoval, C.C. Growth and Feed efficiency of Pure and F1 Pelibuey Lambs Crossbred with Specialized Breeds for Production of Meat. J. Anim. Vet. Adv. 2009, 8, 26–32. [Google Scholar]
- Zinn, R.A.; Barreras, A.; Owens, F.N.; Plascencia, A. Performance by feedlot steers and heifers: ADG, mature weight, DMI and dietary energetics. J. Anim. Sci. 2008, 86, 2680–2689. [Google Scholar] [CrossRef] [PubMed]
- Agricultural Marketing Service (USDA). Official United States Standards for Grades of Carcass Lambs, Yearling Mutton and Mutton Carcasses; Agricultural Marketing Service (USDA): Washington, DC, USA, 1992.
- Statistical Analytical System, Institute Inc. SAS Proprietary software Release 9.3, SAS Institute Inc. (SAS): Cary, NC, USA, 2004.
- Mader, T.L.; Davis, M.S.; Brown-Brandl, T. Environmental factors influencing heat stress in feedlot cattle. J. Anim. Sci. 2006, 84, 712–719. [Google Scholar] [CrossRef] [PubMed]
- Silanikove, N. Effects of heat stress on the welfare of extensively managed domestic ruminants: A review. Livest. Prod. Sci. 2000, 67, 1–18. [Google Scholar] [CrossRef]
- Lees, A.M.; Sejian, V.; Wallage, A.L.; Steel, C.C.; Mader, T.L.; Lees, J.C.; Gaughan, J.B. The Impact of Heat Load on Cattle. Animals 2019, 9, 322. [Google Scholar] [CrossRef] [PubMed]
- Moreno, J.A.; Lopes de Sá, A.; Cohelo, C.F.; Pereira, R.N.; Batista, E.D.; Ladeira, M.M.; Casagrande, D.R.; Gionbelli, M.P. Effect of heat stress on ingestive, digestive, ruminal and physiological parameters of Nellore cattle feeding low- or high-energy diets. Livest. Sci. 2021, 252, 104676. [Google Scholar]
- Mahjoubi, E.; Yazdi, M.H.; Aghaziarati, N.; Noori, G.R.; Afsarian, O.; Baumgard, L.H. The effect of cyclical and severe heat stress on growth performance and metabolism in Afshari lambs. J. Anim. Sci. 2015, 93, 1632–1640. [Google Scholar] [CrossRef] [PubMed]
- National Research Council. Predicting Feed Intake of Producing Animals; National Academy Science (NRC): Washington, DC, USA, 1987. [Google Scholar]
- Vicente-Pérez, V.R.; Macías-Cruz, U.; Avendaño-Reyes, L.; Correa-Calderón, A.; López-Vaca, M.A.; Lara-Rivera, A.L. Heat stress impacts in hair sheep production. Rev. Mex. Cienc. Pecu. 2020, 11, 205–222. [Google Scholar]
- Macías-Cruz, U.; Saavedra, O.R.; Correa-Calderón, A.; Mellado, M.; Torrentera, N.G.; Chay-Canul, A.; López-Baca, M.A.; Avendaño-Reyes, L. Feedlot growth, carcass characteristics and meat quality of hair breed lambs exposed to seasonal heat stress (winter vs. summer) in an arid climate. Meat Sci. 2020, 169, 108202. [Google Scholar] [CrossRef]
- Nicolás-López, P.; Macías-Cruz, U.; Mellado, M.; Correa-Calderón, A.; Meza-Herrera, C.A.; Avendaño-Reyes, L. Growth performance and changes in physiological, metabolic and hematological parameters due to outdoor heat stress in hair breed male lambs finished in feedlot. Int. J. Biometeorol. 2021, 65, 1451–1459. [Google Scholar] [CrossRef]
- Macías-Cruz, J.; López-Baca, M.A.; Vicente, R.; Mejía, A.; Álvarez, F.D.; Correa-Calderón, A. Effects of seasonal ambient heat stress (spring vs. summer) on physiological and metabolic variables in hair sheep located in an arid region. Int. J. Biometeorol. 2015, 60, 1279–1286. [Google Scholar] [CrossRef] [PubMed]
- Habebb, A.A.; Gad, A.E.; Atta, M.A. Temperature-humidity index as indicators to stress of climatic conditions with relation to production and reproduction of farm animals. Int. J. Biotechnol. Res. Adv. 2018, 1, 35–50. [Google Scholar] [CrossRef]
- Beenchar, C.; Calsamiglia, S.; Chaves, A.V.; Fraser, G.R.; Colombatto, D.; McCallister, T.A.; Beauchemin, K.A. A review of plant-derived essential oils in ruminant nutrition and production. Anim. Sci. Technol. 2008, 145, 209–228. [Google Scholar] [CrossRef]
- Chaves, A.V.; Stanford, K.; Gibson, L.; McAllister, T.A.; Benchaar, C. Effects of cinnamaldehyde, garlic and juniper berry essential oils on rumen fermentation, blood metabolites, growth performance, and carcass characteristics of growing lambs. J. Drug Deliv. Sci. Technol. 2008, 117, 215–224. [Google Scholar] [CrossRef]
- Moura, L.V.; Oliveira, E.R.; Fernandes, A.R.M.; Gabriel, A.M.A.; Silva, L.H.X.; Tkiya, C.S.; Consolo, N.R.B.; Rodrigues, G.C.; Lemos, T.; Gandra, J.R. Feed efficiency and carcass traits of feedlot lambs supplemented either monensin or increasing doses of copaiba (Copaifera spp.) essential oil. Anim. Feed Sci. Technol. 2017, 232, 110–118. [Google Scholar] [CrossRef]
- de Souza, K.A.; Monsteschio, J.O.; Mottin, C.; Ramos, T.R.; Pinto, L.A.M.; Eiras, C.E.; Guerrero, A.; Prado, I.N. Effects of diet supplementation with clove and rosemary essential oils and protected oils (eugenol, thymol and vanillin) on animal performance, carcass characteristics, digestibility, and ingestive behavior activities for Nellore heifers finished in feedlot. Livest. Sci. 2019, 220, 190–195. [Google Scholar]
- Dorantes-Iturbide, G.; Orzuna-Orzuna, J.F.; Lara-Bueno, A.; Mendoza-Martínez, G.D.; Miranda-Romero, L.A.; Lee-Rangel, H.A. Essential Oils as a Dietary Additive for Small Ruminants: A Meta-Analysis on Performance, Rumen Parameters, Serum Metabolites, and Product Quality. Vet. Sci. 2022, 9, 475. [Google Scholar] [CrossRef] [PubMed]
- Parvar, R.; Ghoorchi, T.; Kashfi, H.; Parvar, K. Effect of Ferulago angulata (Chavil) essential oil supplementation on lamb growth performance and meat quality characteristics. Small Rum. Res. 2018, 167, 48–54. [Google Scholar] [CrossRef]
- Wang, L.H.; Zhang, C.R.; Zhang, Q.Y.; Xu, H.J.; Feng, G.Z.; Zhang, G.N.; Zhang, Y.G. Effects of feeding different doses of 25-hydroxyvitamin D3 on the growth performance, blood minerals, antioxidant status and immunoglobulin of preweaning calves. Anim. Feed Sci. Technol. 2022, 285, 115220. [Google Scholar] [CrossRef]
- Latack, B.C.; Carvalho, P.H.V.; Zinn, R.A. The interaction of feeding an eubiotic blend of essential oils plus 25-hydroxy-vit-D3 on performance, carcass characteristics, and dietary energetics of calf-fed Holstein steers. Front. Vet. Sci. 2022, 9, 1032532. [Google Scholar] [CrossRef]
- Estrada-Angulo, A.; Mendoza-Cortéz, D.A.; Ramos-Méndez, J.L.; Arteaga-Wences, Y.; Urías-Estrada, J.D.; Castro-Pérez, B.I.; Ríos-Rincón, F.G.; Rodríguez-Gaxiola, M.A.; Barreras, A.; Zinn, R.A.; et al. Comparing Blend of Essential Oils Plus 25-Hydroxy-Vit-D3 Versus Monensin Plus Virginiamycin Combination in Finishing Feedlot Cattle: Growth Performance, Dietary Energetics, and Carcass Traits. Animals 2022, 12, 1715. [Google Scholar] [CrossRef] [PubMed]
- National Research Council. Effect of Environment on Nutrient Requirements of Domestic Animals (NRC); National Academy Press: Washington, DC, USA, 1981. [Google Scholar]
- Estrada-Angulo, A.; Aguilar-Hernández, A.; Osuna-Pérez, M.; Núñez-Benítez, V.H.; Castro-Pérez, B.I.; Silva-Hidalgo, G.; Contreras-Pérez, G.; Barreras, A.; Plascencia, A.; Zinn, R.A. Influence of quaternary benzophenantridine and protopine alkaloids on growth performance, dietary energy, carcass traits, visceral mass and rumen health in finishing ewes under conditions of severe temperature humidity index. Asian-Australas. J. Anim. Sci. 2016, 29, 652–658. [Google Scholar] [CrossRef]
- Moody, D.E.; Hancock, D.L.; Anderson, D.B. Phenylethanolamine repartitioning agents. In Farm Animal Nutrition; D’Mello, J.P.F., Ed.; Cabi Publishing: New York, NY, USA, 2000. [Google Scholar]
- Johnson, B.L.; Chung, K.Y. Alteration in the physiology of growth cattle with growth-enhancing compounds. In Veterinary Clinics of North America: Food Animal Practice; Hollis, L.C., Olson, K.C., Eds.; W.B. Saunders Co.: Philadelphia, PA, USA, 2007; Volume 23, pp. 321–332. [Google Scholar]
- Reith, R.R.; Sieck, R.L.; Grijalva, P.C.; Swanson, R.M.; Fuller, A.M.; Díaz, D.E.; Schmidt, T.B.; Yates, D.T.; Petersen, J.L. Transcriptome analyses indicate that heat stress-induced inflammation in white adipose tissue and oxidative stress in skeletal muscle is partially moderated by zilpaterol supplementation in beef cattle. J. Anim. Sci. 2022, 100, skac019. [Google Scholar] [CrossRef]
- Nehme, R.; Andrés, S.; Pereira, R.B.; Ben Jemaa, M.; Bouhallab, S.; Ceciliani, F.; López, S.; Rahali, F.Z.; Ksouri, R.; Pereira, D.M.; et al. Essential Oils in Livestock: From Health to Food Quality. Antioxidants 2021, 10, 330. [Google Scholar] [CrossRef] [PubMed]
- Brito da Silva, R.; Pereira, M.N.; Canonenco de Araujo, R.; Silva, W.R.; Pereira, R.A.N. A blend of essential oils improved feed efficiency and affected ruminal and systemic variables of dairy cows. Transl. Anim. Sci. 2020, 4, 182–193. [Google Scholar] [CrossRef] [PubMed]
- Toseti, L.B.; Goulart, R.S.; Gouvêa, V.N.; Acedo, T.S.; Guillerme, S.F.M.; Pires, A.V.; Leme, P.R.; Netto, A.S.; Silva, S.L. Effects of a blend essential oils and exogenous amylase in diets containing different roughage sources for finishing beef cattle. Anim. Feed Sci. Technol. 2020, 269, 114643. [Google Scholar] [CrossRef]
- Martins, T.E.; Acedo, T.S.; Gouvêa, V.N.; Vasconcellos, G.M.; Arrigoni, M.; Martins, C.L.; Millen, D.D.; Pai, M.D.; Perdigão, A.; Melo, G.F.; et al. Effects of 25-hydroxycholecalciferol supplementation on gene expression of feedlot cattle. J. Anim. Sci. 2020, 98 (Suppl. 4), 302–303. [Google Scholar] [CrossRef]
- Romeu-Montenegro, K.; Pufal, M.M.; Newsholme, P. Vitamin D Supplementation and Impact on Skeletal Muscle Function in Cell and Animal Models and an Aging Population: What Do We Know So Far? Nutrients 2021, 13, 1110. [Google Scholar] [CrossRef]
- Yoon, M.S. mTOR as a key regulator in maintaining skeletal muscle mass. Front. Physiol. 2017, 8, 788. [Google Scholar] [CrossRef]
- Partida, A.; Casaya, T.A.; Rubio, M.S.; Méndez, R.D. Effect of zilpaterol hydrochloride on the carcass characteristics of Katahdin lamb terminal crosses. Vet. Mex. OA 2015, 2, 2. [Google Scholar]
- Estrada-Angulo, A.; Barreras-Serrano, A.; Contreras, G.; Obregon, J.F.; Robles-Estrada, J.C.; Plascencia, A.; Zinn, R.A. Influence of level of zilpaterol chlorhydrate supplementation on growth performance and carcass characteristics of feedlot lambs. Small Rum. Res. 2008, 80, 107–110. [Google Scholar] [CrossRef]
- Vahedi, V.; Towhidi, A.; Hedayat-Evrigh, N.; Vaseghi-Dodaran, H.; Motlagh, M.; Ponnampalam, E.N. The effects of supplementation methods and length of feeding of zilpaterol hydrochloride on meat characteristics of fattening lambs. Small Rum. Res. 2015, 131, 107–112. [Google Scholar] [CrossRef]
- Robles-Estrada, J.C.; Arrizon, A.; Calderon-Cortés, J.F.; Figueroa-Saavedra, F.; Torrentera, N.; Plascencia, A.; Zinn, R.A. Effects of pre-harvest withdrawal period on response of feedlot heifers to zilpaterol hydrochloride supplementation: Growth performance and carcass characteristics. J. Anim. Sci. 2009, 87, 1759–1763. [Google Scholar] [CrossRef] [PubMed]
- Montgomery, J.L.; Krehbiel, C.R.; Cranston, J.J.; Yates, D.A.; Hutcheson, J.P.; Nichols, W.T.; Streeter, M.N.; Swingle, R.S.; Montgomery, T.H. Effects of dietary zilpaterol hydrochloride on feedlot performance and carcass characteristics of beef steers fed with and without monensin and tylosin. J. Anim. Sci. 2009, 87, 1013–1023. [Google Scholar] [CrossRef] [PubMed]
- Castro-Pérez, B.I.; Estrada-Angulo, A.; Urías-Estrada, J.D.; Lazalde-Cruz, R.; Barreras, A.; Figueroa-Saavedra, F.; Zinn, R.A.; Plascencia, A. Effects of duration of zilpaterol supplementation on growth performance, dietary energetics, carcass characteristics, and meat quality in crossbred yearling heifers when harvested at lighter, less than mature final weight (460 kg). Appl. Anim. Sci. 2021, 37, 547–551. [Google Scholar] [CrossRef]
- Wang, H.; Liang, S.; Li, X.; Yang, X.; Long, F.; Yang, X. Effects of encapsulated essential oils and organic acids on laying performance, egg quality, intestinal morphology, barrier function, and microflora count of hens during the early laying period. Poult. Sci. 2019, 98, 6751–6760. [Google Scholar] [CrossRef] [PubMed]
- Ghazanfari, S.; Mohammadi, Z.; Adib-Moradi, M. Effects of coriander essential oil on the performance, blood characteristics, intestinal microbiota and histological of broilers. Braz. J. Poult. Sci. 2015, 17, 419–426. [Google Scholar] [CrossRef]
- Ríos-Rincón, F.G.; Barreras-Serrano, A.; Estrada-Angulo, A.; Obregón, J.F.; Plascencia-Jorquera, A.; Portillo-Loera, J.J.; Zinn, R.A. Effect of level of dietary zilpaterol hydrochloride (β2-agonist) on performance, carcass characteristics and visceral organ mass in hairy lambs fed all-concentrate diets. J. Appl. Anim. Res. 2010, 38, 33–38. [Google Scholar] [CrossRef]
- Masoumi, R.; Afsharirad, A.; Mirzaei-Alamouti, H.; Vahedi, V.; Green, M.; Aliyari, D. Does fat-tail docking and Zilpaterol hydrochloride (ZH) supplementation affect feedlot performance and carcass characteristics of finishing lambs? Small Rum. Res. 2021, 205, 106548. [Google Scholar] [CrossRef]
Treatments 1 | ||||
---|---|---|---|---|
Item | Control | EOD3 | ZH | EOD3 + ZH |
Ingredient composition (%) | ||||
Sudangrass hay | 10.00 | 10.00 | 10.00 | 10.00 |
Cracked corn | 68.00 | 68.00 | 68.00 | 68.00 |
Soybean meal | 10.00 | 10.00 | 10.00 | 10.00 |
CRINA + HyD | --- | +++ | --- | +++ |
ZH | --- | --- | +++ | +++ |
Molasses cane | 6.00 | 6.00 | 6.00 | 6.00 |
Yellow grease | 2.50 | 2.50 | 2.50 | 2.50 |
Zeolite clay | 1.00 | 1.00 | 1.00 | 1.00 |
Trace protein-mineral salt 2 | 2.50 | 2.50 | 2.50 | 2.50 |
Chemical composition (%DM basis) 3 | ||||
Crude protein | 14.20 | 14.20 | 14.20 | 14.20 |
Neutral detergent fiber | 15.43 | 15.43 | 15.43 | 15.43 |
Dry matter | 88.32 | 88.32 | 88.32 | 88.32 |
Calculated net energy (Mcal/kg) 4 | ||||
Maintenance | 2.10 | 2.10 | 2.10 | 2.10 |
Gain | 1.44 | 1.44 | 1.44 | 1.44 |
Week | Mean Ta (°C) | Max Ta (°C) | Min Ta (°C) | Mean RH (%) | Max RH (%) | Min RH (%) | Mean THI 1 | Max THI | Min THI |
---|---|---|---|---|---|---|---|---|---|
1 | 30.18 ± 3.8 | 30.54 ± 3.9 | 29.83 ± 3.6 | 72.73 ± 12.9 | 74.18 ± 12.4 | 70.99 ± 13.4 | 81.93 ± 3.9 | 82.74 ± 4.2 | 81.14 ± 3.5 |
2 | 28.42 ± 2.9 | 28.80 ± 3.0 | 28.04 ± 2.7 | 80.58 ± 11.3 | 82.18 ± 10.7 | 79.01 ± 11.8 | 80.47 ± 3.0 | 81.33 ± 3.4 | 79.67 ± 2.7 |
3 | 29.78 ± 3.1 | 30.10 ± 3.2 | 29.47 ± 3.0 | 75.04 ± 12.6 | 76.60 ± 12.1 | 73.58 ± 12.9 | 81.79 ± 3.1 | 82.55 ± 3.3 | 81.09 ± 3.0 |
4 | 30.21 ± 2.4 | 30.51 ± 2.6 | 29.88 ± 2.3 | 73.44 ± 9.7 | 74.87 ± 9.5 | 72.12 ± 9.7 | 82.33 ± 2.5 | 83.04 ± 2.8 | 81.64 ± 2.3 |
5 | 30.00 ± 3.3 | 30.38 ± 3.4 | 29.66 ± 3.2 | 72.23 ± 13.3 | 73.75 ± 13.0 | 70.61 ± 13.5 | 81.63 ± 3.3 | 82.47 ± 3.5 | 80.88 ± 3.1 |
6 | 29.20 ± 3.4 | 29.56 ± 3.4 | 28.80 ± 3.3 | 70.10 ± 16.0 | 72.02 ± 15.4 | 68.36 ± 16.4 | 79.96 ± 2.8 | 80.82 ± 3.1 | 79.11 ± 2.5 |
7 | 30.77 ± 3.8 | 31.18 ± 3.8 | 30.33 ± 3.7 | 68.34 ± 15.5 | 70.44 ± 15.2 | 66.38 ± 15.6 | 82.01 ± 3.1 | 83.00 ± 3.3 | 81.06 ± 3.0 |
8 | 27.46 ± 3.5 | 27.81 ± 3.6 | 27.12 ± 3.4 | 76.10 ± 15.5 | 77.62 ± 15.0 | 74.53 ± 16.0 | 78.13 ± 3.2 | 78.88 ± 3.5 | 77.40 ± 3.0 |
9 | 28.39 ± 3.8 | 28.80 ± 3.9 | 27.99 ± 3.8 | 72.84 ± 16.9 | 74.53 ± 16.5 | 71.17 ± 17.2 | 79.02 ± 3.4 | 79.89 ± 3.7 | 78.18 ± 3.3 |
10 | 27.29 ± 4.1 | 27.73 ± 4.1 | 26.86 ± 3.9 | 69.97 ± 17.0 | 71.70 ± 16.6 | 68.18 ± 17.0 | 76.94 ± 3.9 | 77.84 ± 4.1 | 76.08 ± 3.7 |
Mean | 29.17 ± 3.4 | 29.54 ± 3.5 | 28.80 ± 3.3 | 73.14 ± 14.1 | 74.79 ± 13.6 | 71.49 ± 14.3 | 80.42 ± 3.2 | 81.26 ± 3.5 | 79.62 ± 3.0 |
−ZH | +ZH | EOD3, mg/kg DM | ZH, mg/kg DM | EOD3 × ZH | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Item | −EOD3 | +EOD3 | −EOD3 | +EOD3 | 0 | 151 | p Value | 0 | 6 | p Value | p Value | SEM |
Pen replicates | 6 | 6 | 6 | 6 | 12 | 12 | 12 | 12 | ||||
Live weight, kg | ||||||||||||
Initial | 25.23 | 25.15 | 25.07 | 25.02 | 25.15 | 25.08 | 0.55 | 25.19 | 25.05 | 0.23 | 0.92 | 0.116 |
Final 2 | 43.75 | 45.06 | 45.97 | 48.22 | 44.86 | 46.64 | <0.01 | 44.41 | 47.09 | <0.01 | 0.29 | 0.307 |
Weight gain, kg/d | 0.265 | 0.285 | 0.299 | 0.331 | 0.282 | 0.308 | <0.01 | 0.275 | 0.315 | <0.01 | 0.30 | 0.008 |
DM intake, kg | 1.203 | 1.199 | 1.195 | 1.251 | 1.199 | 1.225 | 0.43 | 1.201 | 1.223 | 0.50 | 0.37 | 0.031 |
Gain to feed ratio | 0.221 | 0.238 | 0.252 | 0.268 | 0.237 | 0.253 | <0.01 | 0.230 | 0.260 | <0.01 | 0.92 | 0.003 |
Diet energy, Mcal/kg | ||||||||||||
Maintenance | 1.958 | 2.064 | 2.147 | 2.238 | 2.053 | 2.152 | <0.01 | 2.011 | 2.193 | <0.01 | 0.79 | 0.029 |
Gain | 1.307 | 1.404 | 1.473 | 1.553 | 1.390 | 1.477 | <0.01 | 1.354 | 1.513 | <0.01 | 0.79 | 0.026 |
Observed-to-expected diet NE | ||||||||||||
Maintenance | 0.934 | 0.984 | 1.024 | 1.067 | 0.979 | 1.026 | <0.01 | 0.959 | 1.046 | <0.01 | 0.79 | 0.014 |
Gain | 0.914 | 0.980 | 1.031 | 1.087 | 0.972 | 1.034 | <0.01 | 0.947 | 1.059 | <0.01 | 0.79 | 0.013 |
Observed-to-expected DM intake | 1.082 | 1.016 | 0.971 | 0.921 | 1.026 | 0.969 | <0.01 | 1.049 | 0.946 | <0.01 | 0.64 | 0.012 |
−ZH | +ZH | EOD3, mg/kg DM | ZH, mg/kg DM | EOD3 × ZH | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Item | −EOD3 | +EOD3 | −EOD3 | +EOD3 | 0 | 151 | p Value | 0 | 6 | p Value | p Value | SEM |
Lamb replicates | 6 | 6 | 6 | 6 | 12 | 12 | 12 | 12 | ||||
HCW, kg | 25.43 | 26.20 | 26.73 | 28.03 | 26.07 | 27.12 | <0.01 | 25.81 | 27.37 | <0.01 | 0.29 | 0.252 |
Dressing percentage | 57.20 | 58.08 | 58.52 | 58.73 | 57.86 | 58.41 | 0.24 | 57.64 | 58.62 | 0.04 | 0.47 | 0.210 |
CCW, kg | 25.07 | 25.93 | 26.30 | 27.70 | 25.69 | 26.81 | <0.01 | 25.50 | 27.07 | <0.01 | 0.29 | 0.249 |
LM area, cm2 | 15.02 | 15.45 | 16.85 | 16.57 | 16.44 | 16.11 | 0.28 | 15.23 | 16.71 | 0.01 | 0.41 | 0187 |
Fat thickness, cm | 0.307 | 0.320 | 0.252 | 0.282 | 0.279 | 0.300 | 0.27 | 0.313 | 0.267 | 0.03 | 0.67 | 0.019 |
KPH, % | 2.98 | 3.20 | 2.46 | 2.72 | 2.72 | 2.96 | 0.63 | 3.095 | 2.59 | <0.01 | 0.07 | 0.120 |
−ZH | +ZH | EOD3, mg/kg DM | ZH, mg/kg DM | EOD3 × ZH | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Item | −EOD3 | +EOD3 | −EOD3 | +EOD3 | 0 | 151 | p Value | 0 | 6 | p Value | p Value | SEM |
Pen replicates | 6 | 6 | 6 | 6 | 12 | 12 | 12 | 12 | ||||
EBW, % of full weight | 90.57 | 90.43 | 91.08 | 90.47 | 90.57 | 91.08 | 0.43 | 90.43 | 90.47 | 0.56 | 0.61 | 0.464 |
Organs, g/kg EBW | ||||||||||||
Stomach complex | 25.26 | 25.75 | 23.97 | 24.34 | 24.61 | 25.04 | 0.63 | 25.51 | 24.15 | 0.15 | 0.94 | 0.877 |
Intestines | 39.75 | 35.68 | 39.60 | 38.29 | 39.67 | 36.98 | 0.03 | 37.72 | 38.94 | 0.29 | 0.24 | 1.140 |
Liver | 17.67 | 18.25 | 16.21 | 17.34 | 16.94 | 17.80 | 0.31 | 17.96 | 16.77 | 0.17 | 0.74 | 0.809 |
Hearth + lungs | 19.81 | 21.07 | 19.49 | 20.56 | 19.65 | 20.81 | 0.25 | 20.44 | 20.02 | 0.67 | 0.92 | 0.963 |
Kidney | 2.97 | 2.99 | 2.92 | 2.91 | 2.94 | 2.95 | 0.98 | 2.98 | 2.91 | 0.73 | 0.91 | 0.178 |
Visceral fat | 32.09 | 33.92 | 27.42 | 27.98 | 29.75 | 30.95 | 0.61 | 33.00 | 27.70 | 0.04 | 0.78 | 1.629 |
−ZH | +ZH | EOD3, mg/kg DM | ZH, mg/kg DM | EOD3 × ZH | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Item | −EOD3 | +EOD3 | −EOD3 | +EOD3 | 0 | 151 | p Value | 0 | 6 | p Value | p Value | SEM |
Pen replicates | 6 | 6 | 6 | 6 | 12 | 12 | 12 | 12 | ||||
IGF-1 | 7.92 | 8.93 | 18.93 | 13.54 | 13.42 | 11.24 | 0.47 | 8.42 | 16.23 | 0.03 | 0.49 | 2.61 |
IGF-2 | 8.85 | 9.93 | 12.31 | 10.49 | 10.58 | 10.44 | 0.64 | 9.39 | 11.40 | 0.29 | 0.88 | 1.64 |
mTOR | 1.85 | 1.89 | 1.84 | 1.95 | 1.85 | 1.92 | 0.38 | 1.87 | 1.88 | 0.74 | 0.94 | 0.076 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Estrada-Angulo, A.; Verdugo-Insúa, M.; Escobedo-Gallegos, L.d.G.; Castro-Pérez, B.I.; Urías-Estrada, J.D.; Ponce-Barraza, E.; Mendoza-Cortez, D.; Ríos-Rincón, F.G.; Monge-Navarro, F.; Barreras, A.; et al. Influences of a Supplemental Blend of Essential Oils Plus 25-Hydroxy-Vit-D3 and Zilpaterol Hydrochloride (β2 Agonist) on Growth Performance and Carcass Measures of Feedlot Lambs Finished under Conditions of High Ambient Temperature. Animals 2024, 14, 1391. https://doi.org/10.3390/ani14091391
Estrada-Angulo A, Verdugo-Insúa M, Escobedo-Gallegos LdG, Castro-Pérez BI, Urías-Estrada JD, Ponce-Barraza E, Mendoza-Cortez D, Ríos-Rincón FG, Monge-Navarro F, Barreras A, et al. Influences of a Supplemental Blend of Essential Oils Plus 25-Hydroxy-Vit-D3 and Zilpaterol Hydrochloride (β2 Agonist) on Growth Performance and Carcass Measures of Feedlot Lambs Finished under Conditions of High Ambient Temperature. Animals. 2024; 14(9):1391. https://doi.org/10.3390/ani14091391
Chicago/Turabian StyleEstrada-Angulo, Alfredo, Moisés Verdugo-Insúa, Lucía de G. Escobedo-Gallegos, Beatriz I. Castro-Pérez, Jesús D. Urías-Estrada, Elizama Ponce-Barraza, Daniel Mendoza-Cortez, Francisco G. Ríos-Rincón, Francisco Monge-Navarro, Alberto Barreras, and et al. 2024. "Influences of a Supplemental Blend of Essential Oils Plus 25-Hydroxy-Vit-D3 and Zilpaterol Hydrochloride (β2 Agonist) on Growth Performance and Carcass Measures of Feedlot Lambs Finished under Conditions of High Ambient Temperature" Animals 14, no. 9: 1391. https://doi.org/10.3390/ani14091391