Use of Cracker Residue in the Diet of Dairy Heifers: Impacts on Animal Health, Ruminal Fatty Acids Profile, Digestibility, Weight Gain, and Economic Viability
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Cracker Residue and Other Concentrate Ingredients
2.2. Animals and Installations
2.3. Experiment I: Experimental Design and Diets
2.4. Experiment II: Experimental Design and Diets
2.5. Experiments I and II: Feed Management
2.6. Experiments I and II: Growth Performance
2.7. Experiments I and II: Sample Collection
2.8. Laboratory Analysis
2.8.1. Analysis of the Conventional Chemical Composition of Feed and Feces
2.8.2. Apparent Digestibility
2.8.3. Hematologic Analysis
2.8.4. Serum Biochemistry
2.8.5. Profile of Fatty Acids in Ruminal Fluid: Experiments I and II
2.9. Economic Viability
2.10. Statistical Analyses
3. Results
3.1. Performance
3.2. Apparent Digestibility
3.3. VFAs in Ruminal Fluid
3.4. Biochemistry and Metabolism
3.5. Hematology
3.6. Economic Viability
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Medeiros, I.; Fernandez-Novo, A.; Astiz, S.; Simões, J. Historical evolution of cattle management and herd health of dairy farms in OECD Countries. Vet. Sci. 2022, 9, 125. [Google Scholar] [CrossRef] [PubMed]
- Santos, G.T.; Cavalieri, F.L.B.; Massuda, E.M. Some economic and management aspects in raising dairy heifers. Rev. Balde Branco 2011, 37, 56–60. [Google Scholar]
- Erickson, P.S.; Kalscheur, K.F. Nutrition and feeding of dairy cattle. In Animal Agriculture; Academic Press: Cambridge, MA, USA, 2020; pp. 157–180. [Google Scholar]
- Garcia, E.C.; Menolli, K.A.P. Nutrição de novilhas de reposição. Rev. Terra Cult. Cad. Ensino Pesqui. 2021, 37, 58–68. [Google Scholar]
- Orihuela, A. Review: Management of livestock behavior to improve welfare and production. Animal 2021, 15 (Suppl. 1), 100290. [Google Scholar] [CrossRef] [PubMed]
- Broucek, J.; Uhrincat, M.; Kisac, P.; Hanus, A. Effect of Different Rearing during the Milk-Feeding Period on Growth of Dairy Calves. Agriculture 2020, 10, 346. [Google Scholar] [CrossRef]
- Yosthongngam, S.; Tansuchat, R.; Yamaka, W. Volatility spillovers between ethanol and corn prices: A Bayesian analysis. Energy Rep. 2022, 8 (Suppl. 10), 1030–1037. [Google Scholar] [CrossRef]
- Zilli, M.; Scarabello, M.C.; Soteroni, A.; Valin, H. The impact of climate change on Brazil’s agriculture. Sci. Total Environ. 2020, 740, 139384. [Google Scholar] [CrossRef] [PubMed]
- Grasser, L.A.; Fadel, J.G.; Garnett, I.; Depeters, E.J. Quantity and economic importance of nine selected by-products used in california dairy rations. J. Dairy Sci. 1995, 78, 962–971. [Google Scholar] [CrossRef] [PubMed]
- ABIMAPI—Associação Brasileira das Indústrias de Biscoitos, Massas Alimentícias e Pães & Bolos Industrializados, 2021. Estatísticas do Mercado de Biscoitos. Available online: https://www.abimapi.com.br/estatisticas.php (accessed on 1 January 2020).
- Garcia, H.; Andrade, L.; Andrade Júnior, L.C.; Ludgero, G. Análise de perdas de produção de biscoitos na mabel: Controle estatístico de processo. Encontro Nac. Eng. Produção 2011, 31, 626–641. [Google Scholar]
- Arosemena, A.; DePeters, E.J.; Fadel, J.G. Extensão da variabilidade na composição de nutrientes em alimentos de subprodutos selecionados. Ciênc. Tecnol. Aliment. Anim. 1995, 54, 103–120. [Google Scholar]
- Harris Junior, B.; Staples, C.R. Feeding by-Product Feedstuffs to Dairy Cattle Gainesville; University of Florida: Gainesville, FL, USA, 1993; pp. 1–6. [Google Scholar]
- Adams, R.S. Use of commodity ingredients and food processing wastes in the northeast. In Proceedings of the Dairy Feeding Systems Symposium, Harrisburg, PA, USA, 10–12 January 1990. [Google Scholar]
- Rostagno, H.S.; Albino, L.F.T.; Donzele, J.L.; Gomes, P.C.; Oliveira, R.D.; Lopes, D.C.; Ferreira, A.S.; Barreto, S.D.T.; Euclides, R.F. Tabelas Brasileiras para Aves e Suínos [:Composição de Alimentos e 2017 Exigências Nutricionais]; Departamento de Zootecnia, UFV: Viçosa, Brazil, 2017; 488p. [Google Scholar]
- National Research Council–NRC. Nutrient Requeriments of Dairy Cattle, 7th ed.; NRC: Washinton, DC, USA, 2001; p. 381. [Google Scholar]
- Brunetto, A.L.; Giacomelli, C.M.; Favero, J.F.; Bissacotti, B.F.; Copeti, P.M.; Morsch, V.M.; Oliveira, F.d.C.d.; Wagner, R.; Alves, R.; Pereira, W.A.; et al. Phytogenic blend in the diet of growing Holstein steers: Effects on performance, digestibility, rumen volatile fatty acid profile, and immune and antioxidant responses. Anim. Feed. Sci. Technol. 2023, 297, 115595. [Google Scholar] [CrossRef]
- Silva, D.J.; Queiroz, A.C. Análise de Alimentos. Métodos Químicos e Biológicos, 3rd ed.; Editora UFV: Viçosa, Brazil, 2002; p. 235. [Google Scholar]
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis, 16th ed.; AOAC International: Gaithersburg, MD, USA, 1997. [Google Scholar]
- Komarek, A.R. A filter bag procedure for improved efficiency of fiber analysis. J. Dairy Sci. 1993, 76, 250–259. [Google Scholar]
- Senger, C.C.; Kozloski, G.V.; Sanchez, L.M.B.; Mesquita, F.R.; Alves, T.P.; Castagnino, D.S. Evaluation of autoclave procedures for fiber analysis in forage rations and concentrates. Ciênc. Tecnol. Aliment. Anim. 2008, 146, 169–174. [Google Scholar]
- Costa e Silva, L.F.; Engle, T.E.; Valadares Filho, S.C.; Rotta, P.P.; Valadares, R.F.D.; Silva, B.C.; Pacheco, M.V.C. Intake, apparent digestibility, and nutrient requirements for growing Nellore heifers and steers fed two levels of calcium and phosphorus. Livest. Sci. 2015, 181, 17–24. [Google Scholar] [CrossRef]
- Dermauw, V.; Yisehak, K.; Dierenfeld, E.S.; Du Laing, G.; Buyse, J.; Wuyts, B.; Janssens, G.P.J. Effects of trace element supplementation on apparent nutrient digestibility and utilisation in grass-fed zebu (Bos indicus) cattle. Livest. Sci. 2013, 155, 255–261. [Google Scholar] [CrossRef]
- Cochran, R.C.; Adams, D.C.; Wallace, J.D.; Galyean, M.L. Predicting Digestibility of Different Diets with Internal Markers: Evaluation of Four Potential Markers. J. Anim. Sci. 1986, 63, 1476–1483. [Google Scholar] [CrossRef]
- Huhtanen, P.; Kaustell, K.; Jaakkola, S. The use of internal markers to predict total digestibility and duodenal flow of nutrients in cattle given six different diets. Anim. Feed Sci. Technol. 1994, 48, 211–227. [Google Scholar] [CrossRef]
- Passini, R.; Spers, A.; Lucci, C.D.S. Effects of partial replacement of corn by bakery waste in the diet on performance of Holstein steers. Pesqui. Agropecu. Bras. 2001, 36, 689–694. [Google Scholar] [CrossRef]
- Oliveira, A.H.; Carneiro, M.D.S.; Sales, R.D.O.; Pereira, E.S.; De Araújo Filho, J.M.; Magalhães, J.A.; Costa, N.D.L. Valor nutritivo do resíduo de panificação na alimentação de ovinos. Pubvet 2011, 5, 1043. [Google Scholar] [CrossRef]
- Cammack, K.M.; Austin, K.J.; Lamberson, W.R.; Conant, G.C.; Cunningham, H.C. Ruminant Nutrition Symposium: Tiny but mighty: The role of the rumen microbes in livestock production. J. Anim. Sci. 2018, 96, 752–770. [Google Scholar] [CrossRef]
- Agnihotri, S.; Yin, D.M.; Mahboubi, A.; Sapmaz, T.; Varjani, S.; Qiao, W.; Koseoglu-Imer, D.Y.; Taherzadeh, M.J. A Glimpse of the World of Volatile Fatty Acids Production and Application: A review. Bioengineered 2022, 13, 1249–1275. [Google Scholar] [CrossRef]
- Mendes, A.R.; Ezequiel, J.M.B.; Galati, R.L.; Feitosa, J.V. Performance, plasma parameters and carcass traits of steers fed diet with sunflower meal and different energy sources, in feedlot. Rev. Bras. Zootec. 2005, 34, 692–702. [Google Scholar] [CrossRef]
- López, J.; Stumpf, W., Jr. Influence of sorghum grain as a source of starch in sheep fed hay: Plasma parameters. Rev. Bras. Zootec. 2000, 29, 1183–1190. [Google Scholar] [CrossRef]
- Da Silva, L.D.N.C. Farelo de Biscoito Como Alternativa Energética em Dietas Para Ovinos Morada Nova; Universidade Estadual Vale do Acaraú: Sobral, Brazil, 2018; p. 96. [Google Scholar]
- García-Torres, S.; Cabeza de Vaca, M.; Tejerina, D.; Romero-Fernández, M.P.; Ortiz, A.; Franco, D.; Sentandreu, M.A.; Oliván, M. Assessment of Stress by Serum Biomarkers in Calves and Their Relationship to Ultimate pH as an Indicator of Meat Quality. Animals 2021, 11, 2291. [Google Scholar] [CrossRef]
- Alvarenga, P.B.D.; Rezende, A.L.; Justo, F.B.; Rezende, S.R.; Cesar, J.C.; Santos, R.M.; Saut, J.P. Metabolic profile of clinically healthy Jersey cows. Pesqui. Vet. Bras. 2017, 37, 195–203. [Google Scholar] [CrossRef]
- Birgel Júnior, E.H.; D’Angelino, J.L.; Benesi, F.J.; Birgel, E.H. Reference values of the erythrogram of Jersey breed, raised in São Paulo state. Arq. Bras. Med. Vet. Zootec. 2001, 53, 1–9. [Google Scholar]
- Birgel Júnior, E.H.; D’Angelino, J.L.; Benesi, F.J.; Birgel, E.H. Reference values of the leucogram of the Jersey cattle, raised in São Paulo State. Braz. J. Vet. Res. Anim. Sci. 2001, 38, 136–141. [Google Scholar]
- Jain, N.C. Essentials of Veterinary Hematology; Lea and Febiger: Philadelphia, PA, USA, 1993; pp. 76–250. [Google Scholar]
- Gebert, R.R.; dos Reis, J.H.; Fortuoso, B.F.; Galli, G.M.; Boiago, M.M.; Paiano, D.; Da Silva, A.S. Biscuit residue in the nutrition of laying hens: Effects on animal health, performance and egg quality. Acta Sci. Vet. 2020, 48, 1736. [Google Scholar]
Ingredients | g/kg | |||||
---|---|---|---|---|---|---|
Experiment I | ||||||
Corn silage | 516.60 | |||||
Hay | 115.00 | |||||
Concentrate | 368.40 | |||||
Total diet | 1000 | |||||
Chemical composition 2 | Corn silage | Tifton hay | CONC-CON 1 | CONC-TREAT 2 | TMR-CON | TMR-TREAT |
DM, % | 36.76 | 81.26 | 87.68 | 88.11 | 41.20 | 42.70 |
Ash, % | 3.21 | 4.66 | 5.54 | 5.40 | 5.40 | 5.17 |
CP, % | 7.95 | 6.83 | 18.45 | 19.75 | 10.89 | 11.37 |
NDF, % | 51.60 | 80.62 | 35.29 | 28.73 | 36.01 | 35.82 |
ADF, % | 28.17 | 40.35 | 15.10 | 12.65 | 19.01 | 18.35 |
Starch | - | - | 28.65 | 19.43 | - | - |
EE | - | - | 2.66 | 4.39 | 2.87 | 3.21 |
SUGAR | - | - | 10.26 | 17.10 | - | - |
Experiment II | ||||||
Corn silage | 553.70 | |||||
Hay | 84.70 | |||||
Concentrate | 361.60 | |||||
Total diet | 1000 | |||||
Chemical composition | Corn silage | Tifton hay | CONC-CON 3 | CONC-TREAT 4 | TMR-CON | TMR-TREAT |
DM, % | 36.76 | 81.26 | 85.63 | 89.68 | 48.60 | 51.25 |
Ash, % | 3.21 | 4.66 | 5.27 | 6.08 | 6.28 | 5.91 |
CP, % | 7.95 | 6.83 | 22.97 | 22.89 | 13.34 | 12.74 |
NDF, % | 51.60 | 80.62 | 21.19 | 31.88 | 45.40 | 40.93 |
ADF, % | 28.17 | 40.35 | 10.88 | 11.90 | 23.47 | 21.16 |
Starch, % | - | - | 23.10 | 12.22 | - | - |
EE, % | - | - | 4.74 | 6.09 | 3.30 | 3.70 |
SUGAR, % | - | - | 12.46 | 23.62 | - | - |
Variables 1 | Experiment I: Groups | SEM 2 | p-Value | |
---|---|---|---|---|
Control | Treatment | |||
Initial weight *, kg | 168.2 | 171.5 | 2.89 | 0.87 |
Final weight &, kg | 195.7 | 201.2 | 3.06 | 0.62 |
Average daily gain (ADG), kg/day | 0.61 | 0.66 | 0.02 | 0.45 |
Dry matter intake (DMI), kg/day | 3.21 | 3.26 | 0.18 | 0.95 |
Feed efficiency (ADG/DMI), kg/kg | 0.19 | 0.20 | 0.01 | 0.61 |
Variables 1 | Experiment II: Groups | SEM 2 | p-Value | |
Control | Treatment | |||
Initial weight *, kg | 203.5 | 197.2 | 3.85 | 0.79 |
Final weight &, kg | 233.3 | 228.1 | 3.14 | 0.76 |
Average daily gain (ADG), kg/day | 0.63 | 0.64 | 0.03 | 0.87 |
Dry matter intake (DMI), kg/day | 4.87 | 5.00 | 0.20 | 0.70 |
Feed efficiency (ADG/DMI), kg/kg | 0.13 | 0.13 | 0.01 | 0.78 |
Variables 1 | Experiment I | SEM 2 | p-Value | |
---|---|---|---|---|
Control | Treatment | |||
DM | 0.571 | 0.638 | 0.010 | 0.001 |
CP | 0.472 | 0.556 | 0.009 | 0.001 |
NDF | 0.480 | 0.534 | 0.010 | 0.054 |
ADF | 0.513 | 0.520 | 0.011 | 0.896 |
EE | 0.659 | 0.688 | 0.009 | 0.714 |
Ash | 0.612 | 0.747 | 0.021 | 0.001 |
Variables 1 | Experiment II | SEM 2 | p-Value | |
Control | Treatment | |||
DM | 0.494 | 0.549 | 0.009 | 0.050 |
CP | 0.488 | 0.516 | 0.011 | 0.118 |
NDF | 0.457 | 0.430 | 0.011 | 0.574 |
ADF | 0.424 | 0.466 | 0.010 | 0.082 |
EE | 0.561 | 0.628 | 0.008 | 0.002 |
Ash | 0.519 | 0.752 | 0.023 | 0.001 |
Variables 1 | Experiment I | SEM 2 | p-Value | |
---|---|---|---|---|
Control | Treatment | |||
pH | 6.565 | 6.498 | 0.06 | 0.14 |
Total VFA, mmol L−1 | 65.89 | 50.31 | 3.02 | 0.01 |
Acetic acid, mmol L−1 | 48.2 | 37.6 | 2.74 | 0.01 |
Propionic acid, mmol L−1 | 8.61 | 6.24 | 0.81 | 0.05 |
Butyric acid, mmol L−1 | 8.21 | 5.87 | 0.92 | 0.02 |
Isovaleric acid, mmol L−1 | 0.87 | 0.60 | 0.05 | 0.01 |
Variables 1 | Experiment II | SEM 2 | p-Value | |
Control | Treatment | |||
pH | 6.028 | 5.905 | 0.03 | 0.26 |
Total VFA, mmol L−1 | 40.79 | 58.10 | 3.52 | 0.01 |
Acetic acid, mmol L−1 | 30.6 | 42.9 | 3.21 | 0.01 |
Propionic acid, mmol L−1 | 5.10 | 7.15 | 0.28 | 0.01 |
Butyric acid, mmol L−1 | 4.43 | 7.31 | 0.42 | 0.01 |
Isovaleric acid, mmol L−1 | 0.66 | 0.74 | 0.07 | 0.39 |
Variables 1 | Treatments 2 | SEM 2 | p-Value | ||
---|---|---|---|---|---|
Control | Treatment | Treat | Treat × Day | ||
Albumin (g/dL) | 0.03 | 0.01 | |||
d 1 | 4.17 | 3.90 | 0.20 | ||
d 15 | 4.53 b | 6.44 a | 0.19 | ||
d 30 | 2.71 | 3.69 | 0.20 | ||
d 60 | 3.37 | 4.17 | 0.20 | ||
Globulin (g/dL) | 0.01 | 0.01 | |||
d 1 | 6.50 | 6.02 | 0.23 | ||
d 15 | 5.16 b | 9.06 a | 0.24 | ||
d 30 | 4.47 | 4.89 | 0.23 | ||
d 60 | 3.89 | 4.23 | 0.23 | ||
Total protein (g/dL) | 0.05 | 0.14 | |||
8.04 b | 10.8 a | 0.29 | |||
Urea (mg/dL) | 0.05 | 0.07 | |||
d 1 | 18.2 | 18.1 | 0.10 | ||
d 15 | 21.0 | 21.1 | 0.09 | ||
d 30 | 27.5 a | 23.2 b | 0.11 | ||
d 60 | 19.4 a | 16.2 b | 0.10 | ||
Glucose (mg/dL) | 0.05 | 0.01 | |||
d 1 | 122 | 116 | 11.74 | ||
d 15 | 80.2 | 91.3 | 8.14 | ||
d 30 | 83.1 b | 126 a | 8.17 | ||
d 60 | 87.2 b | 109 a | 8.07 | ||
Triglycerides (mg/dL) | 0.59 | 0.44 | |||
28.8 | 32.0 | 4.36 | |||
Cholesterol (mg/dL) | 0.11 | 0.01 | |||
d 1 | 151 | 138 | 6.74 | ||
d 15 | 93.1 b | 131 a | 6.72 | ||
d 30 | 68.2 | 74.3 | 6.59 | ||
d 60 | 104 | 99.4 | 6.57 | ||
AST (U/L) | 0.82 | 0.79 | |||
77.1 | 80.8 | 10.9 | |||
GGT (U/L) | 0.65 | 0.27 | |||
12.8 | 16.9 | 4.00 |
Variables 1 | Treatments 2 | SEM 2 | p-Value | ||
---|---|---|---|---|---|
Control | Treatment | Treat | Treat × Day | ||
Albumin (g/dL) | 0.96 | 0.92 | |||
2.92 | 2.98 | 0.10 | |||
Globulin (g/dL) | 0.95 | 0.93 | |||
3.94 | 3.80 | 0.10 | |||
Total protein (g/dL) | 0.91 | 0.82 | |||
6.86 | 6.78 | 0.20 | |||
Urea (mg/dL) | 0.98 | 0.97 | |||
21.0 | 21.9 | 0.12 | |||
Glucose (mg/dL) | 0.60 | 0.37 | |||
69.5 | 75.0 | 5.89 | |||
Triglycerides (mg/dL) | 0.41 | 0.05 | |||
d 1 | 26.7 | 20.1 | 2.74 | ||
d 15 | 24.0 | 22.2 | 2.79 | ||
d 30 | 23.8 b | 30.0 a | 2.79 | ||
d 60 | 22.5 b | 29.1 a | 2.75 | ||
Cholesterol (mg/dL) | 0.25 | 0.45 | |||
105.7 | 96.5 | 4.51 | |||
AST (U/L) | 0.74 | 0.69 | |||
62.8 | 58.7 | 6.40 | |||
GGT (U/L) | 0.80 | 0.15 | |||
16.0 | 14.0 | 2.09 |
Variables | Experiment I 1 | Economy, $ | |
---|---|---|---|
Control | Treatment | ||
Cost per kg of Concentrate | 0.38 | 0.33 | 0.04 |
Diet Cost per Day | 1.30 | 1.23 | 0.07 |
Cost per kg of Weight gain 2 | 2.46 a | 2.09 b | 0.36 |
Cost in the experimental period/animal 2 | 67.7 a | 62.5 b | 5.28 |
Variables | Experiment II 1 | ||
Control | Treatment | ||
Cost per Kg of Concentrate | 0.39 | 0.25 | 0.14 |
Diet Cost per Day | 1.56 | 1.27 | 0.28 |
Cost per kg of Weight gain 2 | 2.91 a | 2.27 b | 0.63 |
Cost in the experimental period/animal 2 | 86.4 a | 68.8 b | 17.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vitt, M.G.d.; Nascimento, A.L.d.; Brunetto, A.L.R.; Piaia, A.M.; Giocomelli, C.M.; Xavier, A.C.; Wagner, R.; Martins, C.S.; Kozloski, G.V.; Da Silva, A.S. Use of Cracker Residue in the Diet of Dairy Heifers: Impacts on Animal Health, Ruminal Fatty Acids Profile, Digestibility, Weight Gain, and Economic Viability. Animals 2024, 14, 1325. https://doi.org/10.3390/ani14091325
Vitt MGd, Nascimento ALd, Brunetto ALR, Piaia AM, Giocomelli CM, Xavier AC, Wagner R, Martins CS, Kozloski GV, Da Silva AS. Use of Cracker Residue in the Diet of Dairy Heifers: Impacts on Animal Health, Ruminal Fatty Acids Profile, Digestibility, Weight Gain, and Economic Viability. Animals. 2024; 14(9):1325. https://doi.org/10.3390/ani14091325
Chicago/Turabian StyleVitt, Maksuel Gatto de, Aline Luiza do Nascimento, Andrei Lucas Rebelatto Brunetto, Arthur Mocelin Piaia, Charles Marcon Giocomelli, Ana Carolina Xavier, Roger Wagner, Camila Soares Martins, Gilberto Vilmar Kozloski, and Aleksandro Schafer Da Silva. 2024. "Use of Cracker Residue in the Diet of Dairy Heifers: Impacts on Animal Health, Ruminal Fatty Acids Profile, Digestibility, Weight Gain, and Economic Viability" Animals 14, no. 9: 1325. https://doi.org/10.3390/ani14091325
APA StyleVitt, M. G. d., Nascimento, A. L. d., Brunetto, A. L. R., Piaia, A. M., Giocomelli, C. M., Xavier, A. C., Wagner, R., Martins, C. S., Kozloski, G. V., & Da Silva, A. S. (2024). Use of Cracker Residue in the Diet of Dairy Heifers: Impacts on Animal Health, Ruminal Fatty Acids Profile, Digestibility, Weight Gain, and Economic Viability. Animals, 14(9), 1325. https://doi.org/10.3390/ani14091325