Emerging Insights into Brevetoxicosis in Sea Turtles
Abstract
:Simple Summary
Abstract
1. Introduction
2. Harmful Algal Blooms
2.1. Impact of HABs
2.2. Occurrence and Distribution of Karenia Blooms
2.3. HAB Monitoring, Prevention, and Control Strategies
2.3.1. Monitoring
2.3.2. Prevention
2.3.3. Control Strategies
3. Brevetoxin Exposure
3.1. Ingestion
3.2. Cutaneous Absorption
3.3. Aerogenic Exposure
3.4. Vertical Transfer
4. Pathophysiology
4.1. Central Nervous System
4.2. Immune Effects
4.3. Inflammation
4.4. Oxidative Stress
4.5. Pharmacokinetics
4.5.1. Tissue Distribution
4.5.2. Brevetoxin Clearance
5. Clinical Assessment
5.1. Clinical Symptoms
5.2. Diagnostic Options
6. Therapeutic Options
6.1. Intravenous Lipid Emulsion Treatment
6.2. Osmotic Treatment
6.3. Standard and Supportive Care
6.4. Cholestyramine Treatment
6.5. Other Treatment Options
6.6. Treatment of Secondary Conditions
7. Future Perspectives
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tester, P.A.; Steidinger, K.A. Gymnodinium breve Red Tide Blooms: Initiation, Transport, and Consequences of Surface Circulation. Limnol. Oceanogr. 1997, 42, 1039–1051. [Google Scholar] [CrossRef]
- Tester, P.A.; Stumpf, R.P.; Vukovich, F.M.; Fowler, P.K.; Turner, J.T. An Expatriate Red Tide Bloom: Transport, Distribution, and Persistence. Limnol. Oceanogr. 1991, 36, 1053–1061. [Google Scholar] [CrossRef]
- Walker, J.S.; Shaver, D.J.; Stacy, B.A.; Flewelling, L.J.; Broadwater, M.H.; Wang, Z. Brevetoxin exposure in sea turtles in south Texas (USA) during Karenia brevis red tide. Dis. Aquat. Organ. 2018, 127, 145–150. [Google Scholar] [CrossRef]
- Smayda, T. Novel and nuisance phytoplankton blooms in the sea: Evidence for a global epidemic. In Toxic Marine Phytoplankton; Elsevier: New York, NY, USA, 1990; pp. 29–40. [Google Scholar]
- Hallegraeff, G.M. A review of harmful algal blooms and their apparent global increase. Phycologia 1993, 32, 79–99. [Google Scholar] [CrossRef]
- Van Dolah, F.M. Marine Algal Toxins: Origins, Health Effects, and Their Increased Occurrence. Environ. Health Perspect. 2000, 108, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Anderson, D.M.; Burkholder, J.M.; Cochlan, W.P.; Glibert, P.M.; Gobler, C.J.; Heil, C.A.; Kudela, R.M.; Parsons, M.L.; Rensel, J.E.J.; Townsend, D.W.; et al. Harmful algal blooms and eutrophication: Examining linkages from selected coastal regions of the United States. Harmful Algae 2008, 8, 39–53. [Google Scholar] [CrossRef] [PubMed]
- Vargo, G.A. A brief summary of the physiology and ecology of Karenia brevis red tides on the West Florida Shelf and of hypotheses posed for their initiation, growth, maintenance, and termination. Harmful Algae 2009, 8, 573–584. [Google Scholar] [CrossRef]
- Hallegraeff, G.M.; Anderson, D.M.; Belin, C.; Bottein, M.; Bresnan, E.; Chinain, M.; Enevoldsen, H.; Iwataki, M.; Karlson, B.; McKenzie, C.H.; et al. Perceived global increase in algal blooms is attributable to intensified monitoring and emerging bloom impacts. Commun. Earth Environ. 2021, 2, 117. [Google Scholar] [CrossRef] [PubMed]
- Davis, C.C. Gymnodinium Brevis Sp. Nov., A Cause of Discolored Water and Animal Mortality in the Gulf of Mexico. Bot. Gaz. 1948, 109, 358–360. [Google Scholar] [CrossRef]
- Steidinger, K.A. Collection, enumeration and identification of free-living marine dinoflagellates. Dev. Mar. Biol. 1979, 1, 435–442. [Google Scholar]
- Steidinger, K.A. Historical perspective on Karenia brevis red tide research in the Gulf of Mexico. Harmful Algae 2009, 8, 549–561. [Google Scholar] [CrossRef]
- Pierce, R.H.; Henry, M.S. Harmful algal toxins of the Florida red tide (Karenia brevis): Natural chemical stressors in South Florida coastal ecosystems. Ecotoxicology 2008, 17, 623–631. [Google Scholar] [CrossRef] [PubMed]
- Poli, M.A.; Mende, T.J.; Baden, D.G. Brevetoxins, unique activators of voltage-sensitive sodium channels, bind to specific sites in rat brain synaptosomes. Mol. Pharmacol. 1986, 30, 129–135. [Google Scholar] [PubMed]
- Foley, A.M.; Stacy, B.A.; Schueller, P.; Flewelling, L.J.; Schroeder, B.; Minch, K.; Fauquier, D.A.; Foote, J.J.; Manire, C.A.; Atwood, K.E.; et al. Assessing Karenia brevis red tide as a mortality factor of sea turtles in Florida, USA. Dis. Aquat. Org. 2019, 132, 109–124. [Google Scholar] [CrossRef] [PubMed]
- Fauquier, D.A.; Flewelling, L.J.; Maucher, J.M.; Keller, M.; Kinsel, M.J.; Johnson, C.K.; Henry, M.; Gannon, J.G.; Ramsdell, J.S.; Landsberg, J.H. Brevetoxicosis in Seabirds Naturally Exposed to Karenia brevis Blooms along the Central West Coast of Florida. J. Wildl. Dis. 2013, 49, 246–260. [Google Scholar] [CrossRef] [PubMed]
- Naar, J.P.; Flewelling, L.J.; Abbott, J.P.; Baden, D.G.; Barros, N.B.; Bossart, G.D.; Bottein, M.D.; Hammond, D.G.; Haubold, E.M.; Heil, C.A.; et al. Brevetoxicosis Red tides and marine mammal mortalities. Nature 2005, 435, 755–756. [Google Scholar]
- Kreuder, C.; Mazet, J.A.K.; Bossart, G.D.; Carpenter, T.E.; Holyoak, M.; Elie, M.S.; Wright, S.D. Clinicopathologic Features of Suspected Brevetoxicosis in Double-Crested Cormorants (Phalacrocorax auritus) along the Florida Gulf Coast. J. Zoo Wildl. Med. 2002, 33, 8–15. [Google Scholar]
- Bossart, G.D.; Baden, D.G.; Ewing, R.Y.; Roberts, B.; Wright, S.D. Brevetoxicosis in Manatees (Trichechus manatus latirostris) from the 1996 Epizootic: Gross, Histologic, and Immunohistochemical Features. Toxicol. Pathol. 1998, 26, 276–282. [Google Scholar] [CrossRef] [PubMed]
- Fire, S.E.; Flewelling, L.J.; Naar, J.; Twiner, M.J.; Henry, M.S.; Pierce, R.H.; Gannon, D.P.; Wang, Z.; Davidson, L.; Wells, R.S. Prevalence of brevetoxins in prey fish of bottlenose dolphins in Sarasota Bay, Florida. Mar. Ecol. Prog. Ser. 2008, 368, 283–294. [Google Scholar] [CrossRef]
- Hart, K.M.; Mooreside, P.; Crowder, L.B. Interpreting the spatio-temporal patterns of sea turtle strandings: Going with the flow. Biol. Conserv. 2006, 129, 283–290. [Google Scholar] [CrossRef]
- Epperly, S.; Braun, J.; Chester, A.; Cross, F.; Merriner, J.; Tester, P.; Churchill, J. Beach Strandings as an Indicator of At-Sea Mortality of Sea Turtles. Bull. Mar. Sci. 1996, 59, 289–297. [Google Scholar]
- Landsberg, J.H.; Balazs, G.H.; Steidinger, K.A.; Baden, D.G.; Work, T.M.; Russell, D.J. The Potential Role of Natural Tumor Promoters in Marine Turtle Fibropapillomatosis. J. Aquat. Anim. Health 1999, 11, 199–210. [Google Scholar] [CrossRef]
- Dujon, A.M.; Schofield, G.; Venegas, R.M.; Thomas, F.; Ujvari, B. Sea Turtles in the Cancer Risk Landscape: A Global Meta-Analysis of Fibropapillomatosis Prevalence and Associated Risk Factors. Pathogens 2021, 10, 1295. [Google Scholar] [CrossRef] [PubMed]
- Perrault, J.R.; Stacy, N.I.; Lehner, A.F.; Mott, C.R.; Hirsch, S.; Gorham, J.C.; Buchweitz, J.P.; Bresette, M.J.; Walsh, C.J. Potential effects of brevetoxins and toxic elements on various health variables in Kemp’s ridley (Lepidochelys kempii) and green (Chelonia mydas) sea turtles after a red tide bloom event. Sci. Total Environ. 2017, 605–606, 967–979. [Google Scholar] [CrossRef]
- Perrault, J.R.; Perkins, C.R.; Ajemian, M.J.; Bresette, M.J.; Mott, C.R.; Page-Karjian, A. Harmful algal and cyanobacterial toxins in foraging green turtles (Chelonia mydas) in Florida’s Big Bend. Toxicon X 2020, 5, 100020. [Google Scholar] [CrossRef]
- Kubanek, J.; Hicks, M.K.; Naar, J.; Villareal, T.A. Does the Red Tide Dinoflagellate Karenia brevis Use Allelopathy to Outcompete Other Phytoplankton? Limnol. Oceanogr. 2005, 50, 883–895. [Google Scholar] [CrossRef]
- Paerl, H.W.; Joyner, J.J.; Joyner, A.R.; Arthur, K.; Paul, V.; O’Neil, J.M.; Heil, C.A. Co-occurrence of dinoflagellate and cyanobacterial harmful algal blooms in southwest Florida coastal waters. Mar. Ecol. Prog. Ser. 2008, 371, 143–153. [Google Scholar] [CrossRef]
- Twiner, M.J.; Fire, S.; Schwacke, L.; Davidson, L.; Wang, Z.; Morton, S.; Roth, S.; Balmer, B.; Rowles, T.K.; Wells, R.S. Concurrent Exposure of Bottlenose Dolphins (Tursiops truncatus) to Multiple Algal Toxins in Sarasota Bay, Florida, USA. PLoS ONE 2011, 6, e17394. [Google Scholar] [CrossRef]
- Fire, S.E.; Wang, Z.; Byrd, M.; Whitehead, H.R.; Paternoster, J.; Morton, S.L. Co-occurrence of multiple classes of harmful algal toxins in bottlenose dolphins (Tursiops truncatus) stranding during an unusual mortality event in Texas, USA. Harmful Algae 2011, 10, 330–336. [Google Scholar] [CrossRef]
- Watkins, S.; Reich, A.; Fleming, L.; Hammond, R. Neurotoxic Shellfish Poisoning. Mar. Drugs 2008, 6, 431–455. [Google Scholar] [CrossRef]
- Kirkpatrick, B.; Fleming, L.E.; Squicciarini, D.; Backer, L.C.; Clark, R.; Abraham, W.; Benson, J.; Cheng, Y.S.; Johnson, D.; Pierce, R.; et al. Literature review of Florida red tide: Implications for human health effects. Harmful Algae 2004, 3, 99–115. [Google Scholar] [CrossRef]
- Patel, S.S.; Lovko, V.J.; Lockey, R.F. Red Tide: Overview and Clinical Manifestations. J. Allergy Clin. Immunol. Pract. 2020, 8, 1219–1223. [Google Scholar] [CrossRef] [PubMed]
- Kirkpatrick, B.; Fleming, L.E.; Bean, J.A.; Nierenberg, K.; Backer, L.C.; Cheng, Y.S.; Pierce, R.; Reich, A.; Naar, J.; Wanner, A.; et al. Aerosolized Red Tide Toxins (Brevetoxins) and Asthma: Continued health effects after 1 hour beach exposure. Harmful Algae 2011, 10, 138–143. [Google Scholar] [CrossRef] [PubMed]
- Kirkpatrick, B.; Bean, J.A.; Fleming, L.E.; Kirkpatrick, G.; Grief, L.; Nierenberg, K.; Reich, A.; Watkins, S.; Naar, J. Gastrointestinal emergency room admissions and Florida red tide blooms. Harmful Algae 2010, 9, 82–86. [Google Scholar] [CrossRef] [PubMed]
- Turner, A.D.; Lewis, A.M.; Bradley, K.; Maskrey, B.H. Marine invertebrate interactions with Harmful Algal Blooms—Implications for One Health. J. Invertebr. Pathol. 2021, 186, 107555. [Google Scholar] [CrossRef] [PubMed]
- Al Shehhi, M.R.; Gherboudj, I.; Ghedira, H. An overview of historical harmful algae blooms outbreaks in the Arabian Seas. Mar. Pollut. Bull. 2014, 86, 314–324. [Google Scholar] [CrossRef] [PubMed]
- Capper, A.; Flewelling, L.J.; Arthur, K. Dietary exposure to harmful algal bloom (HAB) toxins in the endangered manatee (Trichechus manatus latirostris) and green sea turtle (Chelonia mydas) in Florida, USA. Harmful Algae 2013, 28, 1–9. [Google Scholar] [CrossRef]
- Metcalf, J.S.; Banack, S.A.; Wessel, R.A.; Lester, M.; Pim, J.G.; Cassani, J.R.; Cox, P.A. Toxin Analysis of Freshwater Cyanobacterial and Marine Harmful Algal Blooms on the West Coast of Florida and Implications for Estuarine Environments. Neurotox. Res. 2021, 39, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Fauquier, D.A.; Flewelling, L.J.; Maucher, J.; Manire, C.A.; Socha, V.; Kinsel, M.J.; Stacy, B.A.; Henry, M.; Gannon, J.; Ramsdell, J.S.; et al. Brevetoxin in Blood, Biological Fluids, and Tissues of Sea Turtles Naturally Exposed to Karenia brevis Blooms in Central West Florida. J. Zoo Wildl. Med. 2013, 44, 364–375. [Google Scholar] [CrossRef]
- Perrault, J.R.; Barron, H.W.; Malinowski, C.R.; Milton, S.L.; Manire, C.A. Use of intravenous lipid emulsion therapy as a novel treatment for brevetoxicosis in sea turtles. Sci. Rep. 2021, 11, 24162. [Google Scholar] [CrossRef]
- Steidinger, K.A.; Vargo, G.A.; Tester, P.; Tomas, C. Bloom dynamics and physiology of Gymnodinium breve with emphasis on the Gulf of Mexico. In Physiological Ecology of Harmful Algal Blooms; Anderson, D.M., Cembella, A.D., Hallegraeff, G.M., Eds.; NATO ASI Series; Springer: Berlin/Heidelberg, Germany, 1998; Volume 41, pp. 133–153. [Google Scholar]
- Glibert, P.M.; Anderson, D.M.; Gentien, P.; Granéli, E.; Selliner, K.G. The Global, Complex Phenomena of Harmful Algal Blooms. Oceanography 2005, 18, 136–147. [Google Scholar] [CrossRef]
- Hallegraeff, G.M. Ocean Climate Change, Phytoplankton Community Responses, and Harmful Algal Blooms: A Formidable Predictive Challenge. J. Phycol. 2010, 46, 220–235. [Google Scholar] [CrossRef]
- Fernández, A.; Sierra, E.; Arbelo, M.; Gago-Martínez, A.; Martins, J.M.L.; García-Álvarez, N.; Bernaldo de Quiros, Y.; Arregui, M.; Vela, A.I.; Díaz-Delgado, J. First Case of Brevetoxicosis Linked to Rough-Toothed Dolphin (Steno bredanensis) Mass-Mortality Event in Eastern Central Atlantic Ocean: A Climate Change Effect? Front. Mar. Sci. 2022, 9, 834051. [Google Scholar] [CrossRef]
- Presencia del Género Karenia y Nuevos Registros de Dinoflagelados (Dinoflagellata) en Aguas de las Islas Canarias, Atlantico Centro-Oriental. Available online: https://www.biodiversidadcanarias.es/biota/documento/D01118 (accessed on 2 February 2024).
- Dupont, J.M.; Hallock, P.; Jaap, W.C. Ecological impacts of the 2005 red tide on artificial reef epibenthic macroinvertebrate and fish communities in the eastern Gulf of Mexico. Mar. Ecol. Prog. Ser. 2010, 415, 189–200. [Google Scholar] [CrossRef]
- Balaji-Prasath, B.; Wang, Y.; Su, Y.P.; Hamilton, D.P.; Lin, H.; Zheng, L.; Zhang, Y. Methods to control harmful algal blooms: A review. Environ. Chem. Lett. 2022, 20, 3133–3152. [Google Scholar] [CrossRef]
- Anderson, D.M.; Cembella, A.D.; Hallegraeff, G.M. Progress in Understanding Harmful Algal Blooms: Paradigm Shifts and New Technologies for Research, Monitoring, and Management. Ann. Rev. Mar. Sci. 2012, 4, 143–176. [Google Scholar] [CrossRef]
- Pettersson, L.H.; Pozdnyakov, D. Monitoring of Harmful Algal Blooms; Springer: Berlin/Heidelberg, Germany, 2008; pp. 154–196. [Google Scholar]
- Weisberg, R.H.; Zheng, L.; Liu, Y.; Lembke, C.; Lenes, J.M.; Walsh, J.J. Why no red tide was observed on the West Florida Continental Shelf in 2010. Harmful Algae 2014, 38, 119–126. [Google Scholar] [CrossRef]
- Anderson, D.M. Prevention, control and mitigation of harmful algal blooms: Multiple approaches to HAB management. Harmful Algae Manag. Mitig. 2004, 123–130. Available online: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=6580a21f7e15804a1ebb734224efd5c2e415adbb (accessed on 27 February 2024).
- Brown, A.F.M.; Dortch, Q.; Dolah, F.M.V.; Leighfield, T.A.; Morrison, W.; Thessen, A.E.; Steidinger, K.; Richardson, B.; Moncreiff, C.A.; Pennock, J.R. Effect of salinity on the distribution, growth, and toxicity of Karenia spp. Harmful Algae 2006, 5, 199–212. [Google Scholar] [CrossRef]
- Vermeylen, M.K.; Knowles, T.G.; Barron, H.W. The influence of Lake Okeechobee discharges on Karenia brevis blooms and the effects on wildlife along the central west coast of Florida. Harmful Algae 2022, 115, 102237. [Google Scholar] [CrossRef]
- Medina, M.; Huffaker, R.; Jawitz, J.W.; Muñoz-Carpena, R. Seasonal dynamics of terrestrially sourced nitrogen influenced Karenia brevis blooms off Florida’s southern Gulf Coast. Harmful Algae 2020, 98, 101900. [Google Scholar] [CrossRef]
- Sengco, M.R. Prevention and control of Karenia brevis blooms. Harmful Algae 2009, 8, 623–628. [Google Scholar] [CrossRef]
- Bodeanu, N.; Ruta, G. The development of planktonic algae in the Romanian black sea sector, 1981–1996. Harmful Algae 1998, 188–191. [Google Scholar]
- Okaichi, T. The Seto-Inland Sea: Sustainable Development from the View Point of Fisheries. In Sustainable Development in the Seto Inland Sea, Japan: From the Viewpoint of Fisheries; Terra Scientific Publishing Company: Tokyo, Japan, 1997; p. 63. [Google Scholar]
- Hofmann, E.E.; Klinck, J.M.; Filippino, K.C.; Egerton, T.; Davis, L.B.; Echevarría, M.; Pérez-Vega, E.; Mulholland, M.R. Understanding controls on Margalefidinium polykrikoides blooms in the lower Chesapeake Bay. Harmful Algae 2021, 107, 102064. [Google Scholar] [CrossRef] [PubMed]
- Shumway, S.E.; Burkholder, J.M.; Morton, S.L. Food Web and Ecosystem Impacts of Harmful Algae. In Harmful Algal Blooms; John Wiley & Sons, Incorporated: Chichester, UK, 2018; pp. 243–336. [Google Scholar]
- Li, F.; Liang, Z.; Zheng, X.; Zhao, W.; Wu, M.; Wang, Z. Toxicity of nano-TiO2 on algae and the site of reactive oxygen species production. Environ. Toxicol. Pharmacol. 2015, 158, 1–13. [Google Scholar] [CrossRef]
- Schneider, K.R.; Pierce, R.H.; Rodrick, G.E. The degradation of Karenia brevis toxins utilizing ozonated seawater. Harmful Algae 2003, 2, 101–107. [Google Scholar] [CrossRef]
- Doucette, G.J.; Kodama, M.; Franca, S.; Gallacher, S. Bacterial interactions with harmful algal bloom species: Bloom ecology, toxigenesis, and cytology. Physiol. Ecol. Harmful Algal Bloom 1998, 41, 619–648. [Google Scholar]
- Mayali, X.; Doucette, G.J. Microbial community interactions and population dynamics of an algicidal bacterium active against Karenia brevis (Dinophyceae). Harmful Algae 2002, 1, 277–293. [Google Scholar] [CrossRef]
- Yoo, Y.D.; Yoon, E.Y.; Jeong, H.J.; Lee, K.H.; Hwang, Y.J.; Seong, K.A.; Kim, J.S.; Park, J.Y. The Newly Described Heterotrophic Dinoflagellate Gyrodinium moestrupii, an Effective Protistan Grazer of Toxic Dinoflagellates. J. Eukaryot. Microbiol. 2013, 60, 13–24. [Google Scholar] [CrossRef]
- Tian, Z.J. Inhibition Effect of Allelochemicals from Large Seaweeds on Gymnodinium breve. Master’s Thesis, Ocean University of China, Qingdao, China, 2009. [Google Scholar]
- McCoy, L.F.; Martin, D.F. The influence of Gomphosphaeria aponina on the growth of Gymnodinium breve and the effect of aponin on the ichthyotoxicity of Gymnodinium breve. Chem. Biol. Interact. 1977, 17, 17–24. [Google Scholar] [CrossRef]
- Kang, X.; Zhou, M.; Fukuyo, Y.; Matsuda, O.; Lee, S.; Kim, H.; Shulkin, V.; Orlova, T.; Yu, R. Booklet of Countermeasures against Harmful Algal Blooms (HABs) in the NOWPAP Region: CEARAC Report 2007; NOWPAP Special Monitoring & Coastal Environmental Assessment Regional Centre: Toyama, Japan, 2007. [Google Scholar]
- Zhan, M.; Liu, P.; Liu, X.; Hong, Y.; Xie, X. Inactivation and Removal Technologies for Algal-Bloom Control: Advances and Challenges. Curr. Pollut. Rep. 2021, 7, 392–406. [Google Scholar] [CrossRef]
- Gallardo-Rodríguez, J.J.; Astuya-Villalón, A.; Llanos-Rivera, A.; Avello-Fontalba, V.; Ulloa-Jofré, V. A critical review on control methods for harmful algal blooms. Rev. Aquac. 2019, 11, 661–684. [Google Scholar] [CrossRef]
- Shirota, A. Red tide problem and countermeasures. Int. J. Aqua Fish. Technol. 1989, 1, 195–293. [Google Scholar]
- Anderson, D.; Sengco, M.; Li, A.; Beaulieu, S. Control of Florida Red Tides Using Phosphatic Clay; Florida Institute of Phosphate Research: Bartow, FL, USA, 2004. [Google Scholar]
- Gustafsson, S.; Hultberg, M.; Figueroa, R.I.; Rengefors, K. On the control of HAB species using low biosurfactant concentrations. Harmful Algae 2009, 8, 857–863. [Google Scholar] [CrossRef]
- Sun, X.; Han, K.; Choi, J.; Kim, E. Screening of surfactants for harmful algal blooms mitigation. Mar. Pollut. Bull. 2004, 48, 937–945. [Google Scholar] [CrossRef]
- Lee, Y.; Choi, J.; Kim, E.; Youn, S.; Yang, E. Field experiments on mitigation of harmful algal blooms using a Sophorolipid—Yellow clay mixture and effects on marine plankton. Harmful Algae 2008, 7, 154–162. [Google Scholar] [CrossRef]
- Wang, W.; Yan, X.; Li, Y.; Yu, D.; Li, H.; Yang, W.; Liu, J. Removal Efficiency of Different Gemini Surfactants and Related Modified Clay to Chattonella marina. Water Environ. Res. 2017, 89, 1981–1987. [Google Scholar] [CrossRef]
- Wu, T.; Yan, X.; Cai, X.; Tan, S.; Li, H.; Liu, J.; Yang, W. Removal of Chattonella marina with clay minerals modified with a gemini surfactant. Appl. Clay Sci. 2010, 50, 604–607. [Google Scholar] [CrossRef]
- Saxena, P. Harish Nanoecotoxicological Reports of Engineered Metal Oxide Nanoparticles on Algae. Curr. Pollution Rep. 2018, 4, 128–142. [Google Scholar] [CrossRef]
- Rounsefell, G.A.; Evans, J.E. Large-Scale Experimental Test of Copper Sulfate as a Control for the Florida Red Tide; US Department of the Interior, Fish and Wildlife Service: Washington, DC, USA, 1958.
- Calbet, A.; Vaque, D.; Felipe, J.; Vila, M.; Sala, M.M.; Alcaraz, M.; Estrada, M. Relative grazing impact of microzooplankton and mesozooplankton on a bloom of the toxic dinoflagellate Alexandrium minutum. Mar. Ecol. Prog. Ser. 2003, 259, 303–309. [Google Scholar] [CrossRef]
- Zhang, F.; Ye, Q.; Chen, Q.; Yang, K.; Zhang, D.; Chen, Z.; Lu, S.; Shao, X.; Fan, Y.; Yao, L.; et al. Algicidal Activity of Novel Marine Bacterium Paracoccus sp. Strain Y42 against a Harmful Algal-Bloom-Causing Dinoflagellate, Prorocentrum donghaiense. Environ. Microbiol. 2018, 84, e01015-18. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.; Jeong, H.; Yoon, E.; Jang, S.; Kim, H.; Yih, W. Feeding by common heterotrophic dinoflagellates and a ciliate on the red-tide ciliate Mesodinium rubrum. Algae 2014, 29, 153–163. [Google Scholar] [CrossRef]
- Xiao, X.; Li, C.; Huang, H.; Lee, Y.P. Inhibition effect of natural flavonoids on red tide alga Phaeocystis globosa and its quantitative structure-activity relationship. Environ. Sci. Pollut. Res. 2019, 26, 23763–23776. [Google Scholar] [CrossRef] [PubMed]
- Bai, S.J.; Huang, L.P.; Su, J.Q.; Tian, Y.; Zheng, T.L. Algicidal Effects of a Novel Marine Actinomycete on the Toxic Dinoflagellate Alexandrium tamarense. Curr. Microbiol. 2011, 62, 1774–1781. [Google Scholar] [CrossRef]
- Yu, X.; Cai, G.; Wang, H.; Hu, Z.; Zheng, W.; Lei, X.; Zhu, X.; Chen, Y.; Chen, Q.; Din, H.; et al. Fast-growing algicidal Streptomyces sp. U3 and its potential in harmful algal bloom controls. J. Hazard. Mater. 2018, 341, 138–149. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhang, S.; Peng, Y.; Li, Y.; Cai, G.; Chen, Z.; Zheng, W.; Tian, Y.; Xu, H.; Zheng, T. Effectiveness and toxicity of a novel isolated actinomycete strain Streptomyces sp. JS01 on a harmful alga Phaeocystis globosa. Appl. Microbiol. Biotechnol. 2015, 99, 4807–4814. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Zhang, B.; Zhang, J.; Huang, L.; Lin, J.; Li, X.; Zhou, Y.; Wang, H.; Yang, X.; Su, J.; et al. A marine algicidal actinomycete and its active substance against the harmful algal bloom species Phaeocystis globosa. Appl. Microbiol. Biotechnol. 2013, 97, 9207–9215. [Google Scholar] [CrossRef]
- Chen, T.; Liu, Y.; Song, S.; Li, C. Characterization of the Parasitic Dinoflagellate Amoebophrya sp. Infecting Akashiwo sanguinea in Coastal Waters of China. J. Eukaryot. Microbiol. 2018, 65, 448–457. [Google Scholar] [CrossRef]
- Fuhrma, J.A.; Suttle, C.A. Viruses in Marine Planktonic Systems. Oceanography 1993, 6, 51–63. [Google Scholar] [CrossRef]
- Cocilova, C.C.; Milton, S.L. Characterization of brevetoxin (PbTx-3) exposure in neurons of the anoxia-tolerant freshwater turtle (Trachemys scripta). Aquat. Toxicol. 2016, 180, 115–122. [Google Scholar] [CrossRef]
- Landsberg, J.H.; Flewelling, L.J.; Naar, J. Karenia brevis red tides, brevetoxins in the food web, and impacts on natural resources: Decadal advancements. Harmful Algae 2009, 8, 598–607. [Google Scholar] [CrossRef]
- Hitchcock, G.L.; Fourqurean, J.W.; Drake, J.L.; Mead, R.N.; Heil, C.A. Brevetoxin persistence in sediments and seagrass epiphytes of east Florida coastal waters. Harmful Algae 2012, 13, 89–94. [Google Scholar] [CrossRef]
- Tester, P.A.; Turner, J.T.; Shea, D. Vectorial transport of toxins from the dinoflagellate Gymnodinium breve through copepods to fish. J. Plankton Res. 2000, 22, 47–62. [Google Scholar] [CrossRef]
- Naar, J.P.; Flewelling, L.J.; Lenzi, A.; Abbott, J.P.; Granholm, A.; Jacocks, H.M.; Gannon, D.; Henry, M.; Pierce, R.; Baden, D.G.; et al. Brevetoxins, like ciguatoxins, are potent ichthyotoxic neurotoxins that accumulate in fish. Toxicon 2007, 50, 707–723. [Google Scholar] [CrossRef] [PubMed]
- Echevarria, M.; Naar, J.P.; Tomas, C.; Pawlik, J.R. Effects of Karenia brevis on clearance rates and bioaccumulation of brevetoxins in benthic suspension feeding invertebrates. Aquat. Toxicol. 2012, 106, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Bricelj, V.M.; Haubois, A.-G.; Sengco, M.R.; Pierce, R.H.; Culter, J.K.; Anderson, D.M. Trophic transfer of brevetoxins to the benthic macrofaunal community during a bloom of the harmful dinoflagellate Karenia brevis in Sarasota Bay, Florida. Harmful Algae 2012, 16, 27–34. [Google Scholar] [CrossRef]
- Bjorndal, K.A. Foraging Ecology and Nutrition of Sea Turtles. In The Biology of Sea Turtles, 1st ed.; CRC Press: Abingdon, UK, 1997; Volume 12, pp. 199–231. [Google Scholar]
- Witherington, B.E. Ecology of neonate loggerhead turtles inhabiting lines of downwelling near a Gulf Stream front. Mar. Biol. 2002, 140, 843–853. [Google Scholar]
- Seney, E.E.; Musick, J.A. Historical Diet Analysis of Loggerhead Sea Turtles (Caretta caretta) in Virginia. Copeia 2007, 2007, 478–489. [Google Scholar] [CrossRef]
- Shaver, D.J. Feeding Ecology of Wild and Head-Started Kemp’s Ridley Sea Turtles in South Texas Waters. J. Herpetol. 1991, 25, 327–334. [Google Scholar] [CrossRef]
- Witzell, W.; Schmid, J. Diet of immature Kemp’s ridley turtles (Lepidochelys kempi) from Gullivan Bay, Ten Thousand Islands, southwest Florida. Bull. Mar. Sci. 2005, 77, 191–200. [Google Scholar]
- Williams, N.C.; Bjorndal, K.A.; Lamont, M.M.; Carthy, R.R. Winter Diets of Immature Green Turtles (Chelonia mydas) on a Northern Feeding Ground: Integrating Stomach Contents and Stable Isotope Analyses. Estuaries Coasts 2014, 37, 986–994. [Google Scholar] [CrossRef]
- Perrault, J.R.; Schmid, J.R.; Walsh, C.J.; Yordy, J.E.; Tucker, A.D. Brevetoxin exposure, superoxide dismutase activity and plasma protein electrophoretic profiles in wild-caught Kemp’s ridley sea turtles (Lepidochelys kempii) in southwest Florida. Harmful Algae 2014, 37, 194–202. [Google Scholar] [CrossRef]
- Seminoff, J.; Nichols, W.; Hidalgo, A. Movement and Home Range of the East-Pacific Green Turtle at a Gulf of California (Mexico) Feeding Area; NOAA (National Oceanic and Atmospheric Administration): Washington, DC, USA, 2000.
- Avens, L.; Braun-McNeill, J.; Epperly, S.; Lohmann, K.J. Site fidelity and homing behavior in juvenile loggerhead sea turtles (Caretta caretta). Mar. Biol. 2003, 143, 211–220. [Google Scholar] [CrossRef]
- Shaver, D.J.; Hart, K.M.; Fujisaki, I.; Rubio, C.; Sartain, A.R.; Peña, J.; Burchfield, P.M.; Gamez, D.G.; Ortiz, J. Foraging area fidelity for Kemp’s ridleys in the Gulf of Mexico. Ecol. Evol. 2013, 3, 2002–2012. [Google Scholar] [CrossRef]
- Schmid, J.R.; Tucker, A.D. Behavior of Kemp’s ridley sea turtles during southwest Florida red tide events. In Proceedings of the Thirty-Fourth Annual Symposium on Sea Turtle Biology and Conservation, New Orleans, LA, USA, 14–17 April 2014. [Google Scholar]
- Dyc, C.; Covaci, A.; Debier, C.; Leroy, C.; Delcroix, E.; Thomé, J.; Das, K. Pollutant exposure in green and hawksbill marine turtles from the Caribbean region. Reg. Stud. Mar. Sci. 2015, 2, 158–170. [Google Scholar] [CrossRef]
- Mehta, M.; Kemppainen, B.W.; Stafford, R.G. In vitro penetration of tritium-labelled water (THO) and [3H]PbTx-3 (a red tide toxin) through monkey buccal mucosa and skin. Toxicol. Lett. 1991, 55, 185–194. [Google Scholar] [CrossRef]
- Kemppainen, B.W.; Mehta, M.; Clarke, C.R. Effect of vehicle on in vitro percutaneous penetration of [3H] PbTx-3 (a red tide toxin) in human and guinea-pig skin. Toxicon 1989, 27, 54–55. [Google Scholar]
- Kemppainen, B.W.; Reifenrath, W.G.; Stafford, R.G.; Mehta, M. Methods for in vitro skin absorption studies of a lipophilic toxin produced by red tide. Toxicology 1991, 66, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.S.; Zhou, Y.; Irvin, C.M.; Pierce, R.H.; Naar, J.; Backer, L.C.; Fleming, L.E.; Kirkpatrick, B.; Baden, D.G. Characterization of Marine Aerosol for Assessment of Human Exposure to Brevetoxins. Environ. Health Perspect. 2005, 113, 638–643. [Google Scholar] [CrossRef] [PubMed]
- Baden, D.G.; Mende, T.J.; Bikhazi, G.; Leung, I. Bronchoconstriction caused by Florida red tide toxins. Toxicon 1982, 20, 929–932. [Google Scholar] [CrossRef]
- Cocilova, C.C.; Flewelling, L.J.; Bossart, G.D.; Granholm, A.A.; Milton, S.L. Tissue uptake, distribution and excretion of brevetoxin-3 after oral and intratracheal exposure in the freshwater turtle Trachemys scripta and the diamondback terrapin Malaclemys terrapin. Aquat. Toxicol. 2017, 187, 29–37. [Google Scholar] [CrossRef]
- Walsh, C.J.; Cocilova, C.; Restivo, J.; Flewelling, L.; Milton, S. Immune function in Trachemys scripta following exposure to a predominant brevetoxin congener, PbTx-3, as a model for potential health impacts for sea turtles naturally exposed to brevetoxins. Ecotoxicology 2019, 28, 1085–1104. [Google Scholar] [CrossRef] [PubMed]
- Walsh, C.J.; Leggett, S.R.; Carter, B.J.; Colle, C. Effects of brevetoxin exposure on the immune system of loggerhead sea turtles. Aquat. Toxicol. 2010, 97, 293–303. [Google Scholar] [CrossRef] [PubMed]
- Manire, C.A.; Anderson, E.T.; Byrd, L.; Fauquier, D.A. Dehydration as an Effective Treatment for Brevetoxicosis in Loggerhead Sea Turtles (Caretta caretta). J. Zoo Wildl. Med. 2013, 44, 447–452. [Google Scholar] [CrossRef] [PubMed]
- Flewelling, L.J.; Adams, D.H.; Naar, J.P.; Atwood, K.E.; Granholm, A.A.; O’Dea, S.N.; Landsberg, J.H. Brevetoxins in sharks and rays (Chondrichthyes, Elasmobranchii) from Florida coastal waters. Mar. Biol. 2010, 157, 1937–1953. [Google Scholar] [CrossRef]
- Kwan, D. Fat reserves and reproduction in the green turtle, Chelonia mydas. Wildl. Res. 1994, 21, 257–265. [Google Scholar] [CrossRef]
- Perrault, J.R.; Bauman, K.D.; Greenan, T.M.; Blum, P.C.; Henry, M.S.; Walsh, C.J. Maternal transfer and sublethal immune system effects of brevetoxin exposure in nesting loggerhead sea turtles (Caretta caretta) from western Florida. Aquat. Toxicol. 2016, 180, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Guirlet, E.; Das, K.; Thomé, J.; Girondot, M. Maternal transfer of chlorinated contaminants in the leatherback turtles, Dermochelys coriacea, nesting in French Guiana. Chemosphere 2010, 79, 720–726. [Google Scholar] [CrossRef] [PubMed]
- Berman, F.W.; Murray, T.F. Brevetoxins Cause Acute Excitotoxicity in Primary Cultures of Rat Cerebellar Granule Neurons. 1999, 290, 439–444. J. Pharmacol. Exp. Ther. 1999, 290, 439–444. [Google Scholar]
- Sattler, R.; Tymianski, M. Molecular mechanisms of calcium-dependent excitotoxicity. J. Pharmacol. Exp. Ther. 2000, 78, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Murrell, R.N.; Gibson, J.E. Brevetoxins 2, 3, 6, and 9 show variability in potency and cause significant induction of DNA damage and apoptosis in Jurkat E6-1 cells. Arch. Toxicol. 2009, 83, 1009–1019. [Google Scholar] [CrossRef]
- Dechraoui, M.B.; Ramsdell, J.S. Type B brevetoxins show tissue selectivity for voltage-gated sodium channels: Comparison of brain, skeletal muscle and cardiac sodium channels. Toxicon 2003, 41, 919–927. [Google Scholar] [CrossRef]
- Dechraoui, M.B.; Wacksman, J.J.; Ramsdell, J.S. Species selective resistance of cardiac muscle voltage gated sodium channels: Characterization of brevetoxin and ciguatoxin binding sites in rats and fish. Toxicon 2006, 48, 702–712. [Google Scholar] [CrossRef] [PubMed]
- Pamenter, M.E.; Buck, L.T. Neuronal membrane potential is mildly depolarized in the anoxic turtle cortex. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2008, 150, 410–414. [Google Scholar] [CrossRef]
- Bickler, P.E.; Donohoe, P.H.; Buck, L.T. Hypoxia-Induced Silencing of NMDA Receptors in Turtle Neurons. J. Neurosci. 2000, 20, 3522–3528. [Google Scholar] [CrossRef] [PubMed]
- Zimmerman, L.M.; Vogel, L.A.; Bowden, R.M. Understanding the vertebrate immune system: Insights from the reptilian perspective. J. Exp. Biol. 2010, 213, 661–671. [Google Scholar] [CrossRef]
- Liu, H.; Zheng, F.; Cao, Q.; Ren, B.; Zhu, L.; Striker, G.; Vlassara, H. Amelioration of oxidant stress by the defensin lysozyme. Am. J. Physiol. Endocrinol. Metab. 2006, 290, E824–E832. [Google Scholar] [CrossRef]
- Benson, J.M.; Tischler, D.L.; Baden, D.G. Uptake, Tissue Distribution, and Excretion of Brevetoxin 3 Administered to Rats by Intratracheal Instillation. J. Toxicol. Environ. Health A 1999, 57, 345–355. [Google Scholar]
- Benson, J.M.; Hahn, F.F.; March, T.H.; McDonald, J.D.; Sopori, M.L.; Seagrave, J.; Gomez, A.P.; Bourdelais, A.J.; Naar, J.; Zaias, J.; et al. Inhalation Toxicity of Brevetoxin 3 in Rats Exposed for 5 Days. J. Toxicol. Environ. Health A 2004, 67, 1443–1456. [Google Scholar] [CrossRef] [PubMed]
- Walsh, C.J.; Luer, C.A.; Noyes, D.R. Effects of environmental stressors on lymphocyte proliferation in Florida manatees, Trichechus manatus latirostris. Vet. Immunol. Immunopathol. 2005, 103, 247–256. [Google Scholar] [CrossRef] [PubMed]
- Walsh, C.J.; Stuckey, J.E.; Cox, H.; Smith, B.; Funke, C.; Stott, J.; Colle, C.; Gaspard, J.; Manire, C.A. Production of nitric oxide by peripheral blood mononuclear cells from the Florida manatee, Trichechus manatus latirostris. Vet. Immunol. Immunopathol. 2007, 118, 199–209. [Google Scholar] [CrossRef]
- Walsh, C.J.; Leggett, S.R.; Henry, M.S.; Blum, P.C.; Osborn, S.; Pierce, R.H. Cellular metabolism of brevetoxin (PbTx-2) by a monocyte cell line (U-937). Toxicon 2009, 53, 135–145. [Google Scholar] [CrossRef] [PubMed]
- Stacy, B.A.; Wellehan, J.F.X.; Foley, A.M.; Coberley, S.S.; Herbst, L.H.; Manire, C.A.; Garner, M.M.; Brookins, M.D.; Childress, A.L.; Jacobson, E.R. Two herpesviruses associated with disease in wild Atlantic loggerhead sea turtles (Caretta caretta). Vet. Microbiol. 2008, 126, 63–73. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Tuladhar, A.; Rolle, S.; Lai, Y.; Rodriguez del Rey, F.; Zavala, C.E.; Liu, Y.; Rein, K.S. Brevetoxin-2, is a unique inhibitor of the C-terminal redox center of mammalian thioredoxin reductase-1. Toxicol. Appl. Pharmacol. 2017, 329, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Cocilova, C.C.; Flewelling, L.J.; Granholm, A.A.; Manire, C.A.; Milton, S.L. Intravenous Lipid Emulsion Treatment Reduces Symptoms of Brevetoxicosis in Turtles (Trachemys scripta). J. Zoo Wildl. Med. 2019, 50, 33–44. [Google Scholar] [PubMed]
- Woofter, R.T.; Ramsdell, J.S. Distribution of Brevetoxin to Lipoproteins in human plasma. Toxicon 2007, 49, 1010–1018. [Google Scholar] [CrossRef]
- Bast, R.; Clinic for the Rehabilitation of Wildlife, Sanibel, FL, USA. Personal communication, 2024.
- Stacy, B.A.; Foley, A.M.; Greiner, E.; Herbst, L.H.; Bolten, A.; Klein, P.; Manire, C.A.; Jacobson, E.R. Spirorchiidiasis in stranded loggerhead Caretta caretta and green turtles Chelonia mydas in Florida (USA): Host pathology and significance. Dis. Aquat. Organ. 2010, 89, 237–259. [Google Scholar] [CrossRef]
- Jacobson, E.R.; Homer, B.L.; Flewelling, L.; Ewing, R.Y.; Moretti, R.; Schaf, S.; Rose, C.; Mader, D.R.; Harman, G.R.; Manire, C.A.; et al. Neurological disease in wild loggerhead sea turtles Caretta caretta. Dis. Aquat. Organ. 2006, 70, 139–154. [Google Scholar] [CrossRef]
- Naar, J.; Bourdelais, A.; Tomas, C.; Kubanek, J.; Whitney, P.L.; Flewelling, L.; Steidinger, K.; Lancaster, J.; Baden, D.G. A Competitive ELISA to Detect Brevetoxins from Karenia brevis (Formerly Gymnodinium breve) in Seawater, Shellfish, and Mammalian Body Fluid. Environ. Health Perspect. 2002, 110, 179–185. [Google Scholar] [CrossRef]
- Javaruski, J.; Adhikari, P.L.; Muller, J.; Parsons, M.L. Preservation of brevetoxins in Southwest Florida coastal sediments. Harmful Algae 2022, 114, 102222. [Google Scholar] [CrossRef]
- Poli, M.A.; Templeton, C.B.; Pace, J.G.; Hines, H.B. Detection, metabolism, and pathophysiology of brevetoxins. ACS Symp. Ser. Am. Chem. Soc. 1990, 418, 176–191. [Google Scholar]
- Cunningham, B.R.; Coleman, R.M.; Schaefer, A.M.; Hamelin, E.I.; Johnson, R.C. Detection of Brevetoxin in Human Plasma by ELISA. J. Anal. Toxicol. 2022, 46, 322–327. [Google Scholar] [CrossRef]
- Woofter, R.; Dechraoui, M.-Y.B.; Garthwaite, I.; Towers, N.R.; Gordon, C.J.; Córdova, J.; Ramsdell, J.S. Measurement of Brevetoxin Levels by Radioimmunoassay of Blood Collection Cards after Acute, Long-Term, and Low-Dose Exposure in Mice. Environ. Health Perspect. 2003, 111, 1595–1600. [Google Scholar] [CrossRef]
- Jamaty, C.; Bailey, B.; Larocque, A.; Notebaert, E.; Sanogo, K.; Chauny, J. Lipid emulsions in the treatment of acute poisoning: A systematic review of human and animal studies. Clin. Toxicol. 2010, 48, 1–27. [Google Scholar] [CrossRef]
- Rothschild, L.; Bern, S.; Oswald, S.; Weinberg, G. Intravenous lipid emulsion in clinical toxicology. Scand. J. Trauma Resusc. Emerg. Med. 2010, 18, 51. [Google Scholar] [CrossRef]
- Neal, J.; Barrington, M.; Fettiplace, M.; Gitman, M.; Memtsoudis, S.; Mörwald, E.; Rubin, D.; Weinberg, G. The Third American Society of Regional Anesthesia and Pain Medicine Practice Advisory on Local Anesthetic Systemic Toxicity: Executive Summary 2017. Reg. Anesth. Pain Med. 2018, 43, 113–123. [Google Scholar] [CrossRef]
- Manire, C.A.; Mongtgomery, N.B.; Cassle, S.E.; Walsh, M.T. Slow Bolus Administration of Parenteral Nutrition to Chronic Debilitated Sea Turtles. In Proceedings of the IAAAM Conference, Gold Coast, QL, Australia, 17–22 May 2014. [Google Scholar]
- Rankin, K.A.; Alroy, K.A.; Kudela, R.M.; Oates, S.C.; Murray, M.J.; Miller, M.A. Treatment of Cyanobacterial (Microcystin) Toxicosis Using Oral Cholestyramine: Case Report of a Dog from Montana. Toxins 2013, 5, 1051–1063. [Google Scholar] [CrossRef]
- Bourdelais, A.J.; Jacocks, H.M.; Wright, J.L.C.; Bigwarfe, P.M., Jr.; Baden, D.G. New polyether ladder compound produced by the dinoflagellate Karenia brevis. J. Nat. Prod. 2005, 68, 2–6. [Google Scholar] [CrossRef]
- Bast, R. CROW. Clinic for the Rehabilitation of Wildlife, Inc., Sanibel, FL, USA. Unpublished work. 2024. [Google Scholar]
- Barron, H.W.; Loggerhead Marinelife Center, Juno Beach, FL, USA. Personal communication, 2024.
Plasma | Whole Blood | Lung | Kidney | Liver | Bile | Stomach Contents | Feces | Urine | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Species | Animal Status | Samples (n) | Mean | Range | Samples (n) | Mean | Range | Samples (n) | Mean | Range | Samples (n) | Mean | Range | Samples (n) | Mean | Range | Samples (n) | Mean | Range | Samples (n) | Mean | Range | Samples (n) | Mean | Range | Samples (n) | Mean | Range | Source |
C. caretta | Dead Stranded | 15 | 63 | <1–438 | 16 | 63 | <1–408 | 17 | 131 | <1–683 | 3 | 23 | <1–50 | 15 | 142 | <1–971 | 13 | 402 | <1–3139 | [40] | |||||||||
C. caretta | Live Stranded | 34 | 32 | <1–107 | 33 | 25 | <1–81 | 13 | 11 | <1–32 | 23 | 17 | <1–138 | 22 | 43 | <1–470 | 20 | 50 | <1–427 | 15 | 865 | <1–11,804 | 8 | 8398 | 30–61,078 | 1 | 1.7 | [40] | |
C. caretta | Live Stranded | 9 | 32.8 | 1.6–64.6 | [41] | ||||||||||||||||||||||||
C. caretta | Live Stranded | 9 | 68 | 34.0–89.0 | [116] | ||||||||||||||||||||||||
C. caretta | Nesting | 48 | 9.1 | 2.1–26.7 | [120] | ||||||||||||||||||||||||
C. mydas | Dead Stranded | 6 | 20 | 5.6–40.9 | [38] | ||||||||||||||||||||||||
C. mydas | Dead Stranded | 5 | 144 | <1–396 | 6 | 90 | <1–200 | 6 | 186 | <1–345 | 1 | 220 | 6 | 677 | <1–1312 | 3 | 968 | <1–1126 | [40] | ||||||||||
C. mydas | Dead Stranded | 5 | 12.8 | 2–34 | 5 | 24.4 | 6–75 | 5 | 56.7 | 7–100 | [3] | ||||||||||||||||||
C. mydas | Live Stranded | 6 | 1.2 | 1–4 | 6 | 1.6 | <1–4 | 4 | 14 | <1–23 | 5 | 102 | <1–382 | [40] | |||||||||||||||
C. mydas | Live Stranded | 4 | 10 | 4.9–15.3 | [41] | ||||||||||||||||||||||||
C. mydas | Wild Caught | 8 | 1.7 | <1.0–5.2 | [25] | ||||||||||||||||||||||||
C. mydas | Wild Caught | 21 | < 75 | [26] | |||||||||||||||||||||||||
L. kempii | Dead Stranded | 19 | 131 | <1–247 | 20 | 151 | <1–348 | 20 | 297 | <1–1006 | 19 | 578 | <1–3522 | 17 | 545 | <1–1832 | [40] | ||||||||||||
L. kempii | Dead Stranded | 2 | 105 | 67–143 | 7 | 215.1 | 25–372 | 7 | 360.3 | 9–1687 | [3] | ||||||||||||||||||
L. kempii | Live Stranded | 5 | 63 | <1–82 | 5 | 36 | <1–82 | 4 | 679 | 390–877 | 1 | 7.4 | [40] | ||||||||||||||||
L. kempii | Live Stranded | 5 | 41.2 | 5.0–93.4 | [41] | ||||||||||||||||||||||||
L. kempii | Wild Caught | 9 | 22.6 | 13.0–33.8 | [103] | ||||||||||||||||||||||||
L. kempii | Wild Caught | 21 | 2.6 | <1.0–8.6 | [25] |
References | Treatment | Species | Turtles Released/Total Turtles Admitted with PbTx-Positive ELISA (%) | Time until Resolution of Neurological Signs (Days) | Time until Plasma PbTx-3 Concentrations Reached < 10 ng PbTx-3/mL (Days) | Time in Rehabilitation (Days) ^ | Comments |
---|---|---|---|---|---|---|---|
[41] | ILE (25 mg/kg) | C. caretta | 9/9 (100%) | 1–2 | 7 | 14–62 | |
[41] | ILE (25 mg/kg) # | L. kempii | 4/5 (80%) | 1–2 | 7 | 14–26 | |
[41] | ILE (25 mg/kg) | C. mydas | 4/4 (100%) | 1–2 | <1 | 14–19 | |
[41] | ILE (25 mg/kg) # | C. caretta, L. kempii, C. mydas | 17/18 (94%) | 1–2 | <1–7 | 14–62 | Combined data across sea turtle species. |
[138] | ILE (50–100 mg/kg) | T. scripta | N/A | N/A | N/A | N/A | |
[117] | Dehydration therapy (Furosemide 5 mg/kg IM) | C. caretta | 5/7 (71%) | N/A ~ | N/A | 41–87 | |
[117] | Dehydration therapy (Mannitol 0.5 mg/kg IV) | C. caretta | 0/2 (0%) | N/A | N/A | N/A | |
[154] | Supportive care | C. caretta | 2/4 (50%) | >7 | N/A | 14–26 | |
[40] | Supportive care | C. caretta | 14/39 (36%) | N/A | 5–60 | 41–330 | |
[117] * | Supportive care | L. kempii | 4/4 (100%) | N/A | N/A | 30–45 | |
[154] | Supportive care | L. kempii | 7/8 (88%) | >7 | N/A | 16–25 | |
[40] | Supportive care | L. kempii | 5/6 (83%) | N/A | 2–15 | 81 | |
[117] * | Supportive care | C. mydas | 1/1 (100%) | N/A | N/A | 30–45 | |
[154] | Supportive care | C. mydas | 4/6 (67%) | >7 | N/A | 13–33 | |
[40] | Supportive care | C. mydas | 2/7 (29%) | N/A | 2–15 | 34–325 | |
[40,117,154] | Supportive care | C. caretta, L. kempii, C. mydas | 39/75 (52%) | N/A | N/A | N/A | Combined data across sea turtle species. |
[117] * | Supportive care + activated charcoal–kaolin suspension (5–10 mL/kg PO) | C. caretta | 2/17 (12%) | N/A | N/A | 49–61 | |
[138] | Cholestyramine (20 mg/kg or 50 mg/kg PO) | T. scripta | N/A | N/A | N/A | N/A | Failure to increase PbTx clearance; non-significant decrease in toxin concentrations in tissues. |
[117] | Diphenhydramine (2 mg/kg IM q24h) | C. caretta | N/A | N/A | N/A | N/A | Successful treatment of conjunctival edema and prevention of corneal ulcers; little efficacy in reducing other symptoms. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nederlof, R.A.; van der Veen, D.; Perrault, J.R.; Bast, R.; Barron, H.W.; Bakker, J. Emerging Insights into Brevetoxicosis in Sea Turtles. Animals 2024, 14, 991. https://doi.org/10.3390/ani14070991
Nederlof RA, van der Veen D, Perrault JR, Bast R, Barron HW, Bakker J. Emerging Insights into Brevetoxicosis in Sea Turtles. Animals. 2024; 14(7):991. https://doi.org/10.3390/ani14070991
Chicago/Turabian StyleNederlof, Remco A., Dion van der Veen, Justin R. Perrault, Robin Bast, Heather W. Barron, and Jaco Bakker. 2024. "Emerging Insights into Brevetoxicosis in Sea Turtles" Animals 14, no. 7: 991. https://doi.org/10.3390/ani14070991
APA StyleNederlof, R. A., van der Veen, D., Perrault, J. R., Bast, R., Barron, H. W., & Bakker, J. (2024). Emerging Insights into Brevetoxicosis in Sea Turtles. Animals, 14(7), 991. https://doi.org/10.3390/ani14070991