Effects of Trace Elements on the Fatty Acid Composition in Danubian Fish Species
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site and Sample Collection
2.2. Elemental Accumulation Analysis
2.3. Fatty Acid Profile Analysis
2.4. Statistical Analysis
3. Results and Discussion
3.1. Metal and Trace Element Concentrations in Fish Muscle
3.2. Fatty Acid Composition in the Muscle Tissue
3.3. PCA Analysis
3.4. Correlation of Metal and Trace Element Concentrations with FA Content
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khoshnoud, M.J.; Mobini, K.; Javidnia, K.; Hosseinkhezri, P.; Aeen Jamshid, K. Heavy metals (Zn, Cu, Pb, Cd and Hg) contents and fatty acids ratios in two fish species (Scomberomorus commerson and Otolithes ruber) of the Persian Gulf. Iran. J. Pharm. Sci. 2011, 7, 191–196. [Google Scholar]
- Milanović, A.; Kovačević-Majkić, J.; Milivojević, M. Water quality analysis of Danube River in Serbia: Pollution and protection problems. Bull. Serb. Geogr. Soc. 2010, 90, 47–68. [Google Scholar] [CrossRef]
- Erdoğrul, Ö.; Erbilir, F. Heavy metal and trace elements in various fish samples from Sir Dam Lake, Kahramanmaraş, Turkey. Environ. Monit. Assess. 2007, 130, 373–379. [Google Scholar] [CrossRef]
- Haseeb, A.; Fozia, F.; Ahmad, I.; Ullah, H.; Iqbal, A.; Ullah, R.; Moharram, B.A.; Kowalczyk, A. Ecotoxicological assessment of heavy metal and its biochemical effect in fishes. Biomed. Res. Int. 2022, 2022, 3787838. [Google Scholar] [CrossRef] [PubMed]
- Abedi, E.; Sahari, M.A. Long-chain polyunsaturated fatty acid sources and evaluation of their nutritional and functional properties. Food Sci. Nutr. 2014, 2, 443–463. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Hu, X. Fish and its multiple human health effects in times of threat to sustainability and affordability: Are there alternatives? Asia Pac. J. Clin. Nutr. 2009, 218, 553–563. [Google Scholar]
- Senthamilselvan, D.; Chezhian, A.; Suresh, E. Synergistic effect of nickel and mercury on fatty acid composition in the muscle of fish Lates calcarifer. J. Fish Aquat. Sci. 2016, 11, 77–84. [Google Scholar]
- Strandberg, U.; Palviainen, M.; Eronen, A.; Piirainen, S.; Laurén, A.; Akkanen, J.; Kankaala, P. Spatial variability of mercury and polyunsaturated fatty acids in the European perch (Perca fluviatilis)–Implications for risk-benefit analyses of fish consumption. Environ. Pollut. 2016, 219, 305–314. [Google Scholar] [CrossRef]
- Duarte, B.; Carreiras, J.; Pérez-Romero, J.A.; Mateos-Naranjo, E.; Redondo-Gómez, S.; Matos, A.R.; Marques, J.C.; Caçador, I. Halophyte fatty acids as biomarkers of anthropogenic-driven contamination in Mediterranean marshes: Sentinel species survey and development of an integrated biomarker response (IBR) index. Ecol. Indic. 2018, 87, 86–96. [Google Scholar] [CrossRef]
- Silva, C.O.; Simões, T.; Novais, S.C.; Pimparel, I.; Granada, L.; Soares, A.M.V.M.; Barata, C.; Lemos, M.F.L. Fatty acid profile of the sea snail Gibbula umbilicalis as a biomarker for coastal metal pollution. Sci. Total Environ. 2017, 586, 542–550. [Google Scholar] [CrossRef]
- Javed, M.; Usmani, N. An overview of the adverse effects of heavy metal contamination on fish health. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2019, 89, 389–403. [Google Scholar] [CrossRef]
- Ahmed, I.; Jan, K.; Fatma, S.; Dawood, M.A.O. Muscle proximate composition of various food fish species and their nutritional significance: A review. J. Anim. Physiol. Anim. Nutr. 2022, 106, 690–719. [Google Scholar] [CrossRef]
- Nordov, A.; Macholi, R.; Arnesen, H.; Videbaek, J. N-3 polyunsaturated fatty acids and cardiovascular diseases. Lipids 2001, 36, 127–129. [Google Scholar]
- Van Dael, P. Role of n-3 long-chain polyunsaturated fatty acids in human nutrition and health: Review of recent studies and recommendations. Nutr. Res. Pract. 2021, 15, 137–159. [Google Scholar] [CrossRef] [PubMed]
- Kehrig, H.A.; Seixas, T.G.; Malm, O.; Di Beneditto, A.P.; Rezende, C.E. Mercury and selenium biomagnification in a Brazilian coastal food web using nitrogen stable isotope analysis: A case study in an area under the influence of the Paraiba do Sul River plume. Mar. Pollut. Bull. 2013, 75, 283–290. [Google Scholar] [CrossRef] [PubMed]
- Has-Schön, E.; Bogut, I.; Strelec, I. Heavy metal profile in five fish species included in human diet, domiciled in the end flow of River Neretva (Croatia). Arch. Environ. Contam. Toxicol. 2006, 50, 545–551. [Google Scholar] [CrossRef] [PubMed]
- Milanov, R.; Krstić, M.; Marković, R.; Jovanović, D.; Baltić, B.; Ivanović, J.; Jovetić, M.; Baltić, M. Analysis of heavy metals concentration in tissues of three different fish species included in human diet from Danube river, in the Belgrade region, Serbia. Acta Vet. 2016, 66, 89–102. [Google Scholar] [CrossRef]
- Lenhardt, M.; Jarić, I.; Višnjić-Jeftić, Ž.; Skorić, S.; Gačić, Z.; Pucar, M.; Hegediš, A. Concentrations of 17 elements in muscle, gills, liver and gonads of five economically important fish species from the Danube River. Knowl. Manag. Aquat. Ecosyst. 2012, 407, 1–10. [Google Scholar] [CrossRef]
- Zrnčić, S.; Oraić, D.; Ćaleta, M.; Mihaljević, Ž.; Zanella, D.; Bilandžić, N. Biomonitoring of heavy metals in fish from the Danube River. Environ. Monit. Assess. 2013, 185, 1189–1198. [Google Scholar] [CrossRef]
- Subotić, S.; Spasić, S.; Višnjić-Jeftić, Ž.; Hegediš, A.; Krpo-Ćetković, J.; Mićković, B.; Skorić, S.; Lenhardt, M. Heavy metal and trace element bioaccumulation in target tissues of four edible fish species from the Danube River (Serbia). Ecotoxicol. Environ. Saf. 2013, 98, 196–202. [Google Scholar] [CrossRef] [PubMed]
- Jezierska, B.; Witeska, M. Metal Toxicity to Fish. In Reviews in Fish Biology and Fisheries; University of Podlasie: Siedlce, Poland, 2002; Volume 11, p. 279. [Google Scholar]
- Filimonova, V.; Goncalves, F.; Marques, J.C.; De Troch, M.; Goncalves, A.M. Fatty acid profiling as bioindicator of chemical stress in marine organisms: A review. Ecol. Indic. 2016, 67, 657–672. [Google Scholar] [CrossRef]
- Fonseca, V.F.; Duarte, I.A.; Feijão, E.; Matos, A.R.; Duarte, B. Fatty acid-based index development in estuarine organisms to pinpoint environmental contamination. Mar. Pollut. Bull. 2022, 180, 113805. [Google Scholar] [CrossRef] [PubMed]
- Signa, G.; Di Leonardo, R.; Vaccaro, A.; Tramati, C.D.; Mazzola, A.; Vizzini, S. Lipid and fatty acid biomarkers as proxies for environmental contamination in caged mussels Mytilus galloprovincialis. Ecol. Indic. 2015, 57, 384–394. [Google Scholar] [CrossRef]
- Fokina, N.N.; Ruokolainen, T.R.; Nemova, N.N.; Bakhmet, I.N. Changes of blue mussels Mytilus edulis L. lipid composition under cadmium and copper toxic effect. Biol. Trace Elem. Res. 2013, 154, 217–225. [Google Scholar] [CrossRef]
- Łuczyńska, J.; Paszczyk, B. Health risk assessment of heavy metals and lipid quality indexes in freshwater fish from lakes of Warmia and Mazury region, Poland. Int. J. Environ. Res. Public Health 2019, 16, 3780. [Google Scholar] [CrossRef] [PubMed]
- Jovičić, K.; Janković, S.; Nikolić, D.; Đikanović, V.; Skorić, S.; Krpo-Ćetković, J.; Jarić, I. Prospects of fish scale and fin samples usage for nonlethal monitoring of metal contamination: A study on five fish species from the Danube River. Knowl. Manag. Aquat. Ecosyst. 2023, 424, 4. [Google Scholar] [CrossRef]
- Linhartová, Z.; Krejsa, J.; Zajíc, T.; Másílko, J.; Sampels, S.; Mráz, J. Proximate and fatty acid composition of 13 important freshwater fish species in central Europe. Aquacult. Int. 2018, 26, 695–711. [Google Scholar] [CrossRef]
- Nędzarek, A.; Formicki, K.; Kowalska-Góralska, M.; Dobrzański, Z. Concentration and risk of contamination with trace elements in acipenserid and salmonid roe. J. Food Compos. Anal. 2022, 110, 104525. [Google Scholar] [CrossRef]
- Zhang, X.; Ning, X.; He, X.; Sun, X.; Yu, X.; Cheng, Y.; Yu, R.Q.; Wu, Y. Fatty acid composition analyses of commercially important fish species from the Pearl River Estuary, China. PLoS ONE 2020, 15, e0228276. [Google Scholar] [CrossRef]
- Kottelat, M.; Freyhof, J. Handbook of European Freshwater Fishes; Publications Kottelat, Cornol and Freyhof: Berlin, Germany, 2007; p. 646. [Google Scholar]
- Ali, M.M.; Ali, M.L.; Proshad, R.; Islam, S.; Rahman, Z.; Kormoker, T. Assessment of trace elements in the demersal fishes of a Coastal River in Bangladesh: A public health concern Thalassas. Int. J. Mar. Sci. 2020, 36, 641–655. [Google Scholar] [CrossRef]
- Tepe, Y. Metal concentrations in eight fish species from Aegean and Mediterranean Seas, Environ. Monit. Assess. 2009, 159, 501–509. [Google Scholar] [CrossRef]
- Töre, Y.; Ustaoğlu, F.; Tepe, Y.; Kalipci, E. Levels of toxic metals in edible fish species of the Tigris River (Turkey); Threat to public health. Ecol. Indic. 2021, 123, 107361. [Google Scholar] [CrossRef]
- EU. Commission Regulation (EC) No. 1881/2006 of 19 december 2006 setting maximum levels for certain contaminants in foodstuffs (text with EEA relevance). Off. J. Eur. Union 2006, 364, 5–24. [Google Scholar]
- Official Gazette of the Republic of Serbia Nos 22/2018 & 90/2018, 2018. Regulation on the Maximum Permitted Residue Levels of Pesticides in Food and Animal Feed and Feed and Animal Feed for Which Maximum Quantities of Residues of Pesticides Are Permitted. Annex 5 e Regulation on Maximum Allowed Amounts of Certain Contaminants in Food and Feed for Animals of Plant and Animal origin. Available online: https://leap.unep.org/en/countries/rs/national-legislation/regulation-maximum-allowed-quantities-residues-plant-protection (accessed on 4 December 2023).
- Kostić-Vuković, J.; Kolarević, S.; Kračun-Kolarević, M.; Višnjić-Jeftić, Ž.; Rašković, B.; Poleksić, V.; Gačić, Z.; Lenhardt, M.; Vuković-Gačić, B. Temporal variation of biomarkers in common bream Abramis brama (L., 1758) exposed to untreated municipal wastewater in the Danube River in Belgrade, Serbia. Environ. Monit. Assess. 2021, 193, 465. [Google Scholar] [CrossRef]
- Subotić, S.; Višnjić-Jeftić, Ž.; Spasić, S.; Hegediš, A.; Krpo-Ćetković, J.; Lenhardt, M. Concentrations of 18 Elements in Muscle, Liver, Gills, and Gonads of Sichel (Pelecus cultratus), Ruffe (Gymnocephalus cernua), and European Perch (Perca fluviatilis) in the Danube River near Belgrade (Serbia). Water Air Soil Pollut. 2015, 226, 287. [Google Scholar] [CrossRef]
- Subotić, S.; Višnjić-Jeftić, Ž.; Đikanović, V.; Spasić, S.; Krpo-Ćetković, J.; Lenhardt, M. Metal Accumulation in Muscle and Liver of the Common Nase (Chondrostoma nasus) and Vimba Bream (Vimba vimba) from the Danube River, Serbia: Bioindicative Aspects. Bull. Environ. Contam. Toxicol. 2019, 103, 261–266. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Zhang, J.; Zhang, D.; Tu, T.; Luo, L. Metal concentrations in various fish organs of different fish species from Poyang Lake, China. Ecotoxicol. Environ. Saf. 2014, 104, 182–188. [Google Scholar] [CrossRef] [PubMed]
- Wood, C.; Farrell, A.; Brauner, C. Homeostasis and Toxicology of Essential Metals; Academic Press: Cambridge, MA, USA, 2012; Volume 31. [Google Scholar]
- Griboff, J.; Horacek, M.; Wunderlin, D.A.; Monferran, M.V. Bioaccumulation and trophic transfer of metals, As and Se through a freshwater food web affected by antrophic pollution in Córdoba, Argentina. Ecotox. Environ. Saf. 2018, 148, 275–284. [Google Scholar] [CrossRef]
- Zhong, W.; Zhang, Y.; Wu, Z.; Yang, R.; Chen, X.; Yang, J.; Zhu, L. Health risk assessment of heavy metals in freshwater fish in the central and eastern North China. Ecotoxicol. Environ. Saf. 2018, 157, 343–349. [Google Scholar] [CrossRef]
- Xia, W.; Chen, L.; Deng, X.; Liang, G.; Giesy, J.P.; Rao, Q.; Wen, Z.; Wu, Y.; Chen, J.; Xie, P. Spatial and interspecies differences in concentrations of eight trace elements in wild freshwater fishes at different trophic levels from middle and eastern China. Sci. Total Environ. 2019, 672, 883–892. [Google Scholar] [CrossRef]
- Lescord, G.L.; Johnston, T.A.; Heerschap, M.J.; Keller, W.B.; Southee, F.M.; O’Connor, C.M.; Dyer, R.D.; Branfireun, B.A.; Gunn, J.M. Arsenic, chromium, and other elements of concern in fish from remote boreal lakes and rivers: Drivers of variation and implications for subsistence consumption. Environ. Pollut. 2020, 259, 113878. [Google Scholar] [CrossRef]
- Bazarsadueva, S.V.; Radnaeva, L.D.; Shiretorova, V.G.; Dylenova, E.P. The comparison of fatty acid composition and lipid quality indices of roach, perch, and pike of Lake Gusinoe (Western Transbaikalia). Int. J. Environ. Res. Public Health 2021, 18, 9032. [Google Scholar] [CrossRef] [PubMed]
- Özogul, Y.; Özogul, F.; Alagoz, S. Fatty acid profiles and fat contents of commercially important seawater and freshwater fish species of Turkey: A comparative study. Food Chem. 2007, 103, 217–223. [Google Scholar] [CrossRef]
- Parzanini, C.; Colombo, S.M.; Kainz, M.J.; Wacker, A.; Parrish, C.C.; Arts, M.T. Discrimination between freshwater and marine fish using fatty acids: Ecological implications and future perspectives. Environ. Rev. 2020, 28, 546–559. [Google Scholar] [CrossRef]
- Jardine, T.D.; Galloway, A.W.E.; Kainz, M.J. Unlocking the power of fatty acids as dietary tracers and metabolic signals in fishes and aquatic invertebrates. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2020, 375, 20190639. [Google Scholar] [CrossRef] [PubMed]
- Glencross, B.D. Exploring the nutritional demand for essential fatty acids by aquaculture species. Rev. Aquacult. 2009, 1, 71–124. [Google Scholar] [CrossRef]
- Hundal, B.K.; Liland, N.S.; Rosenlund, G.; Bou, M.; Stubhaug, I.; Sissener, N.H. Increasing dietary n-6 fatty acids while keeping n-3 fatty acids stable decreases EPA in polar lipids of farmed Atlantic salmon (Salmo salar). Br. J. Nutr. 2021, 125, 10–25. [Google Scholar] [CrossRef]
- Jin, M.; Lu, Y.; Pan, T.; Zhu, T.; Yuan, Y.E.; Sun, P.; Zhou, F.; Ding, X.; Zhou, Q. Effects of dietary n-3 LC-PUFA/n-6 C18 PUFA ratio on growth, feed utilization, fatty acid composition and lipid metabolism related gene expression in black seabream, Acanthopagrus schlegelii. Aquaculture 2019, 500, 521–531. [Google Scholar] [CrossRef]
- Dong, Y.; Wei, Y.; Wang, L.; Song, K.; Zhang, C.; Lu, K.; Rahimnejad, S. Dietary n-3/n-6 polyunsaturated fatty acid ratio modulates growth performance in spotted seabass (Lateolabrax maculatus) through regulating lipid metabolism, hepatic antioxidant capacity and intestinal health. Anim. Nutr. 2023, 14, 20–31. [Google Scholar] [CrossRef]
- Tortosa-Caparros, E.; Navas-Carrillo, D.; Marin, F.; Orenes-Pinero, E. Anti-inflammatory effects of omega 3 and omega 6 polyunsaturated fatty acids in cardiovascular disease and metabolic syndrome. Crit. Rev. Food Sci. Nutr. 2017, 57, 3421–3429. [Google Scholar] [CrossRef]
- Zhang, L.; Geng, Y.; Yin, M.; Mao, L.; Zhang, S.; Pan, J. Low omega-6/omega-3 polyunsaturated fatty acid ratios reduce hepatic C-reactive protein expression in apolipoprotein E-null mice. Nutrition 2010, 26, 829–834. [Google Scholar] [CrossRef]
- Ferain, A.; Delbecque, E.; Neefs, I.; Dailly, H.; Saeyer, N.D.; Larebeke, M.V.; Cornet, V.; Larondelle, Y.; Rees, J.F.; Kestemont, P.; et al. Interplay between dietary lipids and cadmium exposure in rainbow trout liver: Influence on fatty acid metabolism, metal accumulation and stress response. Aquat. Toxicol. 2021, 231, 105676. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Xie, Q.; Yu, R.Q.; Xie, Z.; Wu, J.; Zhang, X.; Wu, Y. Fatty acids as bioindicators of organohalogen exposure in marine fish from a highly polluted estuary: First insight into small-scale regional differences. J. Hazard. Mater. 2023, 452, 131337. [Google Scholar] [CrossRef] [PubMed]
- Statistical Office of the Republic of Serbia—Municipalities and Regions of the Republic of Serbia. 2018; p. 18. Available online: http://publikacije.stat.gov.rs/G2018/PdfE/G201813045 (accessed on 4 December 2023).
- Gabryelak, T.; Filipiak, A.; Brichon, G. Effects of zinc on lipids of erythrocytes from carp (Cyprinus carpio L.) acclimated to different temperatures. Comp. Biochem. Physiol. C Pharmacol. Toxicol. Endocrinol. 2000, 127, 335–343. [Google Scholar] [CrossRef] [PubMed]
- Islam, F.; Imran, A.; Nosheen, F.; Fatima, M.; Arshad, M.U.; Afzaal, M.; Ijaz, N.; Noreen, R.; Mehta, S.; Biswas, S.; et al. Functional roles and novel tools for improving-oxidative stability of polyunsaturated fatty acids: A comprehensive review. Food Sci. Nutr. 2023, 11, 2471–2482. [Google Scholar] [CrossRef]
- Vlahogianni, T.H.; Valavanidis, A. “Heavy-metal effects on lipid peroxidation and antioxidant defence enzymes in mussels Mytilus galloprovincialis”. Chem. Ecol. 2007, 23.5, 361–371. [Google Scholar] [CrossRef]
- Bonsignore, M.; Messina, C.M.; Bellante, A.; Manuguerra, S.; Arena, R.; Santulli, A.; Maricchiolo, G.; Del Core, M.; Sprovieri, M. Chemical and biochemical responses to sub−lethal doses of mercury and cadmium in gilthead seabream (Sparus aurata). Chemosphere 2022, 307, 135822. [Google Scholar]
- Valavanidis, A.; Vlahogiannia, T.; Dassenakisb, M.; Scoullosb, M. Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants. Ecotoxicol. Environ. Saf. 2006, 64, 178–189. [Google Scholar] [CrossRef]
- Fokina, N. Copper and Nickel Induce Changes in the Lipid and Fatty Acid Composition of Anodonta cygnea. J. Xenobiot. 2023, 13, 132–147. [Google Scholar] [CrossRef]
Metal (µg g−1) | VRO | VIS | ||
---|---|---|---|---|
R. rutilus | B. bjoerkna | R. rutilus | B. bjoerkna | |
As | 0.019 ± 0.003 | 0.115 ± 0.067 | 0.072 ± 0.016 * | 0.048 ± 0.019 |
Cd | bdl # | bdl | bdl | bdl |
Co | bdl | bdl | bdl | bdl |
Cr | 0.019 ± 0.003 | 0.110 ± 0.021 | 0.020 ± 0.004 | 0.051 ± 0.013 |
Cu | 0.264 ± 0.025 | 0.202 ± 0.024 | 0.566 ± 0.107 | 0.269 ± 0.019 |
Hg | 0.080 ± 0.007 | 0.109 ± 0.043 | 0.081 ± 0.031 | 0.050 ± 0.029 |
Ni | 0.480 ± 0.024 | 0.317 ± 0.051 | 0.158 ± 0.008 | 0.591 ± 0.054 |
Pb | 0.023 ± 0.003 | 0.028 ± 0.007 | 0.029 ± 0.002 * | 0.024 ± 0.007 |
Zn | 9.002 ± 0.840 | 12.935 ± 0.760 | 27.641 ± 0.789 * | 12.228 ± 0.773 |
Fatty Acid | VRO | VIS | ||
---|---|---|---|---|
R. rutilus | B. bjoerkna | R. rutilus | B. bjoerkna | |
C11:0 | 0.009 ± 0.008 | / | 0.008 ± 0.006 | / |
C12:0 | 0.592 ± 0.145 | 0.400 ± 0.060 | 0.707 ± 0.327 | 0.653 ± 0.271 |
C13:0 | 0.099 ± 0.027 | 0.082 ± 0.029 | 0.156 ± 0.133 | 0.189 ± 0.047 |
C14:0 | 6.517 ± 0.963 | 5.035 ± 0.530 | 7.545 ± 2.456 | 6.477 ± 1.471 |
C14:1 | 0.099 ± 0.049 | 0.076 ± 0.034 | 0.144 ± 0.093 | 0.133 ± 0.036 |
C15:0 | 1.381 ± 0.242 | 0.825 ± 0.153 | 1.767 ± 0.841 | 1.320 ± 0.328 |
C15:1 | 0.876 ± 0.172 | / | 1.328 ± 0.928 | / |
C16:0 | 19.255 ± 13.279 | 38.399 ± 2.296 | 25.456 ± 10.740 | 35.152 ± 3.605 |
C16:1 | 14.210 ± 2.222 | 11.379 ± 0.648 | 10.063 ± 7.105 | 11.973 ± 1.705 |
C17:0 | 0.988 ± 0.435 | 0.528 ± 0.185 | 1.346 ± 0.699 | 0.949 ± 0.325 |
C17:1 | 0.692 ± 0.208 | / | 0.928 ± 0.469 | / |
C18:0 | 7.123 ± 2.120 | 4.975 ± 0.461 | 7.711 ± 3.395 | 6.887 ± 1.292 |
C18:1 | 0.157 ± 0.051 | 27.772 ± 1.551 | 0.185 ± 0.090 | 24.905 ± 1.381 |
C18:1 | 19.360 ± 10.579 | 4.056 ± 0.123 | 19.512 ± 12.102 | 5.090 ± 0.832 |
C18:2 | 11.770 ± 2.241 | 3.556 ± 2.464 | 10.551 ± 1.807 | 3.256 ± 2.010 |
C18:2 | / | 0.090 ± 0.057 | / | 0.076 ± 0.012 |
C18:3 | 0.289 ± 0.054 | 0.231 ± 0.033 | 0.299 ± 0.109 | 0.378 ± 0.360 |
C18:3 | 1.635 ± 0.469 | / | 1.284 ± 0.512 | / |
C20:0 | 0.347 ± 0.144 | 0.181 ± 0.039 | 0.419 ± 0.271 | 0.167 ± 0.038 |
C20:1 | 1.106 ± 0.459 | 0.419 ± 0.063 | 1.402 ± 0.795 | 0.788 ± 0.264 |
C20:2 | 2.095 ± 0.602 | 0.299 ± 0.219 | 1.446 ± 0.474 | 0.394 ± 0.196 |
C20:3 | 0.593 ± 0.117 | 0.097 ± 0.054 | 0.547 ± 0.148 | 0.057 ± 0.046 |
C20:4 | 2.543 ± 0.885 | 0.313 ± 0.057 | 1.857 ± 0.558 | 0.241 ± 0.041 |
C20:4 | / | 0.048 ± 0.040 | / | 0.051 ± 0.019 |
C20:5 | 3.719 ± 2.439 | 0.603 ± 0.030 | 2.563 ± 1.871 | 0.508 ± 0.297 |
C22:6 | 4.546 ± 2.799 | 0.635 ± 0.087 | 2.774 ± 1.713 | 0.354 ± 0.169 |
ΣSFA | 36.311 | 50.424 | 45.116 | 51.794 |
ΣMUFA | 36.499 | 43.703 | 33.563 | 42.890 |
Σn-3 PUFA | 12.443 | 1.782 | 8.478 | 1.481 |
Σn-6 PUFA | 14.746 | 4.091 | 12.843 | 3.836 |
n-3/n-6 | 0.844 | 0.436 | 0.660 | 0.386 |
Variable Contributions Based on Correlations | |||
---|---|---|---|
Variable | Factor 1 | Factor 2 | Factor 3 |
As | 0.071439 | 0.123400 | 0.033139 |
Cr | 0.131525 | 0.006070 | 0.091329 |
Cu | 0.053179 | 0.106799 | 0.135462 |
Hg | 0.003158 | 0.069734 | 0.396445 |
Ni | 0.009195 | 0.226482 * | 0.015257 |
Pb | 0.004857 | 0.239604 * | 0.000372 |
Zn | 0.013966 | 0.181396 * | 0.102018 |
SFA | 0.124518 | 0.014713 | 0.096118 |
MUFA | 0.142051 * | 0.027178 | 0.005849 |
n-3 PUFA | 0.149469 * | 0.001584 | 0.038543 |
n-6 PUFA | 0.156076 * | 0.001025 | 0.016599 |
n-3/n-6 | 0.140564 | 0.002013 | 0.068868 |
White Bream | Spearman’s Rank Order Correlations. MD Pairwise Deleted. | ||
---|---|---|---|
Pair of Variables | Spearman’s R | t (N-2) | p-Value |
Locality and Cr | 0.596559 | 2.78122 | 0.014714 |
Locality and Hg | −0.705024 | −3.71971 | 0.002286 |
Locality and C13:0 | 0.866025 | 3.87298 | 0.011725 |
Locality and C14:1 | 0.866025 | 3.87298 | 0.011725 |
Locality and C15:0 | 0.866025 | 3.87298 | 0.011725 |
Locality and C18:1b | 0.866025 | 3.87298 | 0.011725 |
Locality and C20:1 | 0.866025 | 3.87298 | 0.011725 |
Roach | Spearman’s Rank Order Correlations. MD Pairwise Deleted. | ||
---|---|---|---|
Pair of Variables | Spearman’s R | t (N-2) | p-Value |
Locality and Cu | 0.650791 | 3.207135 | 0.006330 |
Locality and Pb | 0.786373 | 4.762975 | 0.000303 |
Locality and Zn | 0.813489 | 5.233670 | 0.000127 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jovičić, K.; Djikanović, V.; Santrač, I.; Živković, S.; Dimitrijević, M.; Vranković, J.S. Effects of Trace Elements on the Fatty Acid Composition in Danubian Fish Species. Animals 2024, 14, 954. https://doi.org/10.3390/ani14060954
Jovičić K, Djikanović V, Santrač I, Živković S, Dimitrijević M, Vranković JS. Effects of Trace Elements on the Fatty Acid Composition in Danubian Fish Species. Animals. 2024; 14(6):954. https://doi.org/10.3390/ani14060954
Chicago/Turabian StyleJovičić, Katarina, Vesna Djikanović, Isidora Santrač, Sanja Živković, Milena Dimitrijević, and Jelena S. Vranković. 2024. "Effects of Trace Elements on the Fatty Acid Composition in Danubian Fish Species" Animals 14, no. 6: 954. https://doi.org/10.3390/ani14060954
APA StyleJovičić, K., Djikanović, V., Santrač, I., Živković, S., Dimitrijević, M., & Vranković, J. S. (2024). Effects of Trace Elements on the Fatty Acid Composition in Danubian Fish Species. Animals, 14(6), 954. https://doi.org/10.3390/ani14060954