Environmental Impacts of the Brazilian Egg Industry: Life Cycle Assessment of the Battery Cage Production System
Abstract
:Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. Scope of the Study
2.1.1. Brazilian Egg Production Chain
2.1.2. System Boundaries
2.1.3. Functional Unit
2.1.4. Co-Product Allocation
2.1.5. Cutting and Exclusion Criteria
2.2. Life Cycle Inventory—LCI
2.2.1. Data Sources and Assumptions
Modeling N, P and CH4 Emissions from Manure
Modeling of Food Inputs
2.2.2. Assessment of Data Quality and Uncertainty
2.3. Life Cycle Impact Assessment—LCIA
2.3.1. Impact Assessment Method and Indicators
2.3.2. Comparisons with Other Studies
LCIA Egg Production
3. Results
3.1. Life Cycle Inventory Results
3.2. Allocation Results for Co-Products
3.3. Life Cycle Impact Assessment Results
3.3.1. LCIA Results—Feed Production
3.3.2. LCIA Results—Pullets Production
3.3.3. LCIA Results—Egg Production
3.3.4. LCIA Results—Classification Sector
3.3.5. LCIA Results—Liquid Egg Production
4. Discussion
4.1. Result of Data Sensitivity Analysis
4.2. Results of Data Quality and Uncertainty
4.3. Result of Comparisons with Other Studies
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- ABPA. Relatório Anual 2023; Associação Brasileira de Proteína Animal: São Paulo, Brazil, 2023; 147p. [Google Scholar]
- ABIEC—Associação Brasileira das Indústrias Exportadoras de Carnes. Beef Report 2023. Perfil da Pecuária no Brasil; ABIEC: São Paolo, Brazil, 2023; 14p. [Google Scholar]
- Soares, K.R.; Ximenes, L.F. Produção de Ovos; Banco do Nordeste do Brasil: Fortaleza, Brazil, 2022; Volume 214, pp. 1–14. [Google Scholar]
- Alencar, A.; Zimbres, B.; Souza, E.; Tsai, D.; Silva, F.B.E.; de Oliveira Quintana, G.; Graces, I.; Coluna, I.; Shimbo, J.Z.; Carvalho, K.; et al. Estimativa de Emissões de Gases de Efeito Estufa dos Sistemas Alimentares no Brasil; SEEG Observatório do Clima: São Paulo, Brazil, 2023; pp. 1–58. [Google Scholar]
- FAO (Food and Agriculture Organization). World Food and Agriculture—Statistical Yearbook 2021; FAO: Rome, Italy, 2021; Volume 274, ISBN 9789251343326. [Google Scholar]
- IPCC. IPCC Guidelines for National Greenhouse Gas Inventories Intergovernmental Panel on Climate Change (2019); IPCC: Geneva, Switzerland, 2019. [Google Scholar]
- de Oliveira, J.L. Behavior, Welfare, Production and Bioenergetics of Laying Hens in Alternative Housing Systems. Ph.D. Thesis, Iowa State University, Ames, IA, USA, 2019; p. 165. [Google Scholar]
- Lopes, M.A.; Contini, E. Agricultura, Sustentabilidade e Tecnologia. Agroanalysis 2012, 32, 27–34. [Google Scholar]
- da Silva, I.J.O. Sistemas de Produção de Galinhas Poedeiras no Brasil; Diálogos União Europeia Brasil: Brasília, Brazil, 2019; Volume 1, p. 37. [Google Scholar]
- Amaral, G.F.; Guimarães, D.D.; Nascimento, J.C.d.O.F.d.; Custodio, S. Avicultura de Postura: Estrutura da Cadeia Produtiva, Panorama do Setor no Brasil e no Mundo e o Apoio do BNDES; Banco Nacional de Desenvolvimento Econômico e Social: Rio de Janeiro, Brazil, 2016; Volume 43, p. 41. [Google Scholar]
- da Silva, I.J.O.; Abreu, P.G.; Mazzuco, H. Manual de Boas Práticas Para o Bem—Estar de Galinhas Poedeiras Criadas Livres de Gaiolas; EMBRAPA: Brasília, Brazil, 2020; p. 40. [Google Scholar]
- Siqueira, H.G.; Cunha, F.; Campani, L.; Pereira Suñe, L.N. Sistemas Intensivos de Criação de Aves. In Anais Congrega Mic; 2016; ISBN 978-65-86471-05-2. Available online: http://revista.urcamp.tche.br/index.php/congregaanaismic/article/view/2485 (accessed on 4 March 2024).
- Tukker, A. Life Cycle Assessment as a Tool in Environmental Impact Assessment. Environ. Impact Assess. Rev. 2000, 20, 435–456. [Google Scholar] [CrossRef]
- ISO 14040; Environmental Management—Life Cycle Assessment—Principles and Framework. ISO: Geneva, Switzerland, 2006.
- ISO 14044; Environmental Management—Life Cycle Assessment—Requirements and Guidelines Management. ISO: Geneva, Switzerland, 2006.
- Guinée, J.B. Handbook on Life Cycle Assessment Operational Guide to the ISO Standards; Springer: Dordrecht, The Netherlands, 2002. [Google Scholar] [CrossRef]
- Maciel, F.d.F.; Gates, R.S.; Tinôco, I.d.F.F.; Sousa, F.C.d.; Pelletier, N.; Ibarburu-Blanc, M.A.; Oliveira, C.E.A. Life Cycle Assessment Project for the Brazilian Egg Industry. Animals 2023, 13, 1479. [Google Scholar] [CrossRef] [PubMed]
- Guinée, J.B.; de Koning, A.; Heijungs, R. Life Cycle Assessment-Based Absolute Environmental Sustainability Assessment Is Also Relative. J. Ind. Ecol. 2022, 26, 673–682. [Google Scholar] [CrossRef]
- GreenDelta. OpenLCA. Available online: https://www.openlca.org/openlca/ (accessed on 11 October 2022).
- GreenDelta. OpenLCA 2 Manual; GreenDelta: Berlin, Germany, 2007; p. 266. Available online: https://greendelta.github.io/openLCA2-manual/ (accessed on 5 November 2022).
- Ciroth, A.; Noi, C.; Lohse, T.; Srocka, M. OpenLCA 1.10—Comprehensive User Manual; GreenDelta: Berlin, Germany, 2020; p. 127. [Google Scholar]
- Guillaume, A.; Hubatová-Vacková, A.; Kočí, V. Environmental Impacts of Egg Production from a Life Cycle Perspective. Agriculture 2022, 12, 355. [Google Scholar] [CrossRef]
- Turner, I.; Heidari, D.; Pelletier, N. Life Cycle Assessment of Contemporary Canadian Egg Production Systems during the Transition from Conventional Cage to Alternative Housing Systems: Update and Analysis of Trends and Conditions. Resour. Conserv. Recycl. 2022, 176, 105907. [Google Scholar] [CrossRef]
- Pelletier, N. Life Cycle Assessment of Canadian Egg Products, with Differentiation by Hen Housing System Type. J. Clean. Prod. 2017, 152, 167–180. [Google Scholar] [CrossRef]
- Pelletier, N. Changes in the Life Cycle Environmental Footprint of Egg Production in Canada from 1962 to 2012. J. Clean. Prod. 2018, 176, 1144–1153. [Google Scholar] [CrossRef]
- Vergé, X.P.C.; Dyer, J.A.; Desjardins, R.L.; Worth, D. Long-Term Trends in Greenhouse Gas Emissions from the Canadian Poultry Industry. J. Appl. Poult. Res. 2009, 18, 210–222. [Google Scholar] [CrossRef]
- Estrada-González, I.E.; Taboada-González, P.A.; Guerrero-García-Rojas, H.; Márquez-Benavides, L. Decreasing the Environmental Impact in an Egg-Producing Farm through the Application of LCA and Lean Tools. Appl. Sci. 2020, 10, 1352. [Google Scholar] [CrossRef]
- Pelletier, N.; Ibarburu, M.; Xin, H. Comparison of the Environmental Footprint of the Egg Industry in the United States in 1960 and 2010. Poult. Sci. 2014, 93, 241–255. [Google Scholar] [CrossRef] [PubMed]
- Abín, R.; Laca, A.; Laca, A.; Dias, M. Environmental Assesment of Intensive Egg Production: A Spanish Case Study. J. Clean. Prod. 2018, 179, 160–168. [Google Scholar] [CrossRef]
- Leinonen, I.; Williams, A.G.; Wiseman, J.; Guy, J.; Kyriazakis, I. Predicting the Environmental Impacts of Chicken Systems in the United Kingdom through a Life Cycle Assessment: Egg Production Systems. Poult. Sci. 2012, 91, 26–40. [Google Scholar] [CrossRef] [PubMed]
- Leinonen, I.; Williams, A.G.; Waller, A.H.; Kyriazakis, I. Comparing the Environmental Impacts of Alternative Protein Crops in Poultry Diets: The Consequences of Uncertainty. Agric. Syst. 2013, 121, 33–42. [Google Scholar] [CrossRef]
- Wiedemann, S.G.; McGahan, E.J. Environmental Assessment of an Egg Production Supply Chain Using Life Cycle Assessment; FAO: Geneva, Switzerland, 2011; ISBN 1920835318. [Google Scholar]
- Mollenhorst, H.; Berentsen, P.B.M.; de Boer, I.J.M. On-Farm Quantification of Sustainability Indicators: An Application to Egg Production Systems. Br. Poult. Sci. 2006, 47, 405–417. [Google Scholar] [CrossRef] [PubMed]
- Cederberg, C.; Sonesson, U.; Henriksson, M.; Sund, V.; Davis, J. Greenhouse Gas Emissions from Swedish Consumption of Meat, Milk and Eggs 1990 and 2005; Swedish Institute for Food and Biotechnology: Goteborg, Sweden, 2009; ISBN 9789172902848. [Google Scholar]
- Ershadi, S.Z.; Heidari, M.D.; Dutta, B.; Dias, G.; Pelletier, N. Comparative Life Cycle Assessment of Technologies and Strategies to Improve Nitrogen Use Efficiency in Egg Supply Chains. Resour. Conserv. Recycl. 2021, 166, 105275. [Google Scholar] [CrossRef]
- Kanani, F. Regionalized Life Cycle Assessment of Renewable Enery and Waste Valorization Technologies for the Canadian Egg Industry. Master’s Thesis, University of British Columbia, Vancouver, BC, Canada, 2021. [Google Scholar]
- Kanani, F.; Heidari, M.D.; Gilroyed, B.H.; Pelletier, N. Waste Valorization Technology Options for the Egg and Broiler Industries: A Review and Recommendations. J. Clean. Prod. 2020, 262, 121129. [Google Scholar] [CrossRef]
- Turner, I.; Heidari, D.; Pelletier, N. Environmental Impact Mitigation Potential of Increased Resource Use Efficiency in Industrial Egg Production Systems. J. Clean. Prod. 2022, 354, 131743. [Google Scholar] [CrossRef]
- Embrapa. EMBRAPA—Contando Ciência. 2022. Available online: https://www.embrapa.br/contando-ciencia/regiao-centro-oeste (accessed on 11 April 2023).
- Kakimoto, S.K.; de Souza Filho, H.M.; Pizzolante, C.C.; de Moraes, J.E. Determinantes da Competitividade da Cadeia Produtiva do Ovo no Estado de São Paulo. Informações Econômicas 2013, 43, 46–56. [Google Scholar]
- Rostagno, H.S.; Albino, L.F.T.; Donzele, J.L.; Gomes, P.C.; de Oliveira, R.F.; Lopes, D.C.; Ferreira, A.S.; Barreto, S.L.T.; Euclides, R. Brazilian Tables for Poultry and Swine: Composition of Feedstuffs and Nutritional Requirements; Universidade Federal de Viçosa, Departamento de Zootecnia: Viçosa, Brazil, 2017; ISBN 9788560249725. [Google Scholar]
- Ijassi, W.; Rejeb, H.B.; Zwolinski, P. Environmental Impact Allocation of Agri-Food Co-Products. Procedia CIRP 2021, 98, 252–257. [Google Scholar] [CrossRef]
- CEPEA Centro de Estudos Avançados Em Economia Aplicada Departamento de Economia, Administração e Sociologia. CEPEA, ESALQ, USP 2021. Available online: https://www.cepea.esalq.usp.br/br/indicador/ovos.aspx (accessed on 25 June 2021).
- Costantini, M.; Lovarelli, D.; Orsi, L.; Ganzaroli, A.; Ferrante, V.; Febo, P.; Guarino, M.; Bacenetti, J. Investigating on the Environmental Sustainability of Animal Products: The Case of Organic Eggs. J. Clean. Prod. 2020, 274, 123046. [Google Scholar] [CrossRef]
- Ibarburu, M.; Plastina, A.; Gates, R.; Vold, L. Egg Processing, Cartoning and Transportation Costs: 2021 Updates; Egg Industry Center: Ames, IA, USA, 2022. [Google Scholar]
- Willers, C.D.; Rodrigues, L.B. A Critical Evaluation of Brazilian Life Cycle Assessment Studies. Int. J. Life Cycle Assess. 2014, 19, 144–152. [Google Scholar] [CrossRef]
- Burhan, S.; Srocka, M.; Ciroth, A.; Lemberger, P. Ecoinvent v.3.7 in OpenLCA; GreenDelta: Berlin, Germany, 2020. [Google Scholar]
- EMBRAPA. Inventários de Ciclo de Vida de Produtos Agrícolas Brasileiros: Uma Contribuição ao Banco de Dados Ecoinvent. Available online: https://www.embrapa.br/en/busca-de-projetos/-/projeto/214336/inventarios-de-ciclo-de-vida-de-produtos-agricolas-brasileiros-uma-contribuicao-ao-banco-de-dados-ecoinvent (accessed on 25 June 2021).
- Gavrilova, O.; Leip, A.; Dong, H.; MacDonald, J.D.; Bravo, C.A.G.; Amon, B.; Rosales, R.B.; del Prado, A.; de Lima, M.A.; Oyhantçabal, W.; et al. Chapter 10: Emissions from Livestoch and Manure Management. In 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories; IPCC: Geneva, Switzerland, 2019; Volume 4, pp. 10.1–10.209. [Google Scholar]
- Hergoualc’h, K.; Akiyama, H.; Bernoux, M.; Chirinda, N.; del Prado, A.; Kasimir, Å.; MacDonald, J.D.; Ogle, S.M.; Regina, K.; van der Weerden, T.J. Chapter 11: N2O Emissions from Managed Soils, and CO2 Emissions from Lime and Urea Application. In 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories; IPCC: Geneva, Switzerland, 2019; pp. 11.1–11.48. [Google Scholar]
- ASAE—American Society of Agricultural Engineers. Manure Production and Characteristics; American Society of Agricultural Engineers: St. Joseph, MI, USA, 2005; pp. 1–19. [Google Scholar]
- França, L.G.F. Excreção de Nitrogênio por Galinhas Poedeiras Submetidas a Diferentes Temperaturas e Níveis de Energia Metabolizável na Ração. Ph.D. Thesis, Universidade Federal de Viçosa, Viçosa, Brazil, 2017. [Google Scholar]
- Rittmann, B.E.; Mayer, B.; Westerhoff, P.; Edwards, M. Capturing the Lost Phosphorus. Chemosphere 2011, 84, 846–853. [Google Scholar] [CrossRef] [PubMed]
- Piovesan, R.P. Perdas de Nutrientes via Subsuperfície em Colunas de Solo Sob Adubação Mineral e Orgânica. Master’s Thesis, Universidade Federal do Paraná, Curitiba, Brazil, 2006. [Google Scholar]
- Peles, D. Perdas de Solo, Água e Nutrientes Sob Aplicação de Gesso e Dejeto Líquido de Suínos. Master’s Thesis, Universidade Federal do Paraná, Curitiba, Brazil, 2007. [Google Scholar]
- Ecoinvent. Database Initiatives. Available online: https://ecoinvent.org/the-ecoinvent-association/database-initiatives/ (accessed on 25 June 2021).
- IBICT. Banco Nacional de Inventários do Ciclo de Vida de Produtos Brasileiros. Available online: https://www.ibict.br/sala-de-imprensa/noticias/item/2600-pesquisador-do-ibict-explica-como-funciona-o-sicv-brasil-em-entrevista-a-revista-da-industria (accessed on 10 August 2021).
- DSM Sustell. Available online: https://www.sustell.com/en_US/about.html (accessed on 13 October 2022).
- Ciroth, A.; Muller, S.; Weidema, B.; Lesage, P. Empirically Based Uncertainty Factors for the Pedigree Matrix in Ecoinvent. Int. J. Life Cycle Assess. 2016, 21, 1338–1348. [Google Scholar] [CrossRef]
- Bamber, N.; Turner, I.; Arulnathan, V.; Li, Y.; Ershadi, S.Z.; Smart, A.; Pelletier, N. Comparing Sources and Analysis of Uncertainty in Consequential and Attributional Life Cycle Assessment: Review of Current Practice and Recommendations. Int. J. Life Cycle Assess. 2020, 25, 168–180. [Google Scholar] [CrossRef]
- Dick, M.; Abreu da Silva, M.; Dewes, H. Life Cycle Assessment of Beef Cattle Production in Two Typical Grassland Systems of Southern Brazil. J. Clean. Prod. 2015, 96, 426–434. [Google Scholar] [CrossRef]
- Cardoso, A.S.; Berndt, A.; Leytem, A.; Alves, B.J.R.; de Carvalho, I.d.N.O.; de Barros Soares, L.H.; Urquiaga, S.; Boddey, R.M. Impact of the Intensification of Beef Production in Brazil on Greenhouse Gas Emissions and Land Use. Agric. Syst. 2016, 143, 86–96. [Google Scholar] [CrossRef]
- Willers, C.D.; Maranduba, H.L.; de Almeida Neto, J.A.; Rodrigues, L.B. Environmental Impact Assessment of a Semi-Intensive Beef Cattle Production in Brazil’s Northeast. Int. J. Life Cycle Assess. 2017, 22, 516–524. [Google Scholar] [CrossRef]
- Dick, M.; Abreu da Silva, M.; Franklin da Silva, R.R.; Lauz Ferreira, O.G.; de Souza Maia, M.; Ferreira de Lima, S.; Borges de Paiva Neto, V.; Dewes, H. Environmental Impacts of Brazilian Beef Cattle Production in the Amazon, Cerrado, Pampa, and Pantanal Biomes. J. Clean. Prod. 2021, 311, 127750. [Google Scholar] [CrossRef]
- de Léis, C.M.; Cherubini, E.; Ruviaro, C.F.; Prudêncio da Silva, V.; do Nascimento Lampert, V.; Spies, A.; Soares, S.R. Carbon Footprint of Milk Production in Brazil: A Comparative Case Study. Int. J. Life Cycle Assess. 2014, 20, 46–60. [Google Scholar] [CrossRef]
- Carvalho, L.S.; Willers, C.D.; Soares, B.B.; Nogueira, A.R.; de Almeida Neto, J.A.; Rodrigues, L.B. Environmental Life Cycle Assessment of Cow Milk in a Conventional Semi-Intensive Brazilian Production System. Environ. Sci. Pollut. Res. 2021, 29, 21259–21274. [Google Scholar] [CrossRef] [PubMed]
- Barros, M.V.; Salvador, R.; Maciel, A.M.; Ferreira, M.B.; de Paula, V.R.; de Francisco, A.C.; Rocha, C.H.B.; Piekarski, C.M. An Analysis of Brazilian Raw Cow Milk Production Systems and Environmental Product Declarations of Whole Milk. J. Clean. Prod. 2022, 367, 133067. [Google Scholar] [CrossRef]
- Martins Maciel, A.; Henrique Otenio, M.; Romário de Paula, V.; Mendonça Lourenço Benhami, V.; Moro Piekarski, C.; Marçal da Rocha, C.; Oliveira Barros, N. Life Cycle Assessment of Milk Production System in Brazil: Environmental Impact Reduction Linked with Anaerobic Treatment of Dairy Manure. Sustain. Energy Technol. Assess. 2022, 54, 102883. [Google Scholar] [CrossRef]
- Prudêncio da Silva, V.; van der Werf, H.M.G.; Soares, S.R.; Corson, M.S. Environmental Impacts of French and Brazilian Broiler Chicken Production Scenarios: An LCA Approach. J. Environ. Manag. 2014, 133, 222–231. [Google Scholar] [CrossRef] [PubMed]
- Duarte da Silva Lima, N.; de Alencar Nääs, I.; Garcia, R.G.; Jorge de Moura, D. Environmental Impact of Brazilian Broiler Production Process: Evaluation Using Life Cycle Assessment. J. Clean. Prod. 2019, 237, 117752. [Google Scholar] [CrossRef]
- Alves, E.C.; dos Santos Alves, I.H.; Soares, B.B.; Borges, A.F.; Jalal, A.; Jani, A.D.; Abreu-Junior, C.H.; Capra, G.F.; Rodrigues Nogueira, T.A. Resource Recovery of Biological Residues from the Brazilian Poultry Industry in Mitigating Environmental Impacts: A Life Cycle Assessment (LCA) Approach. J. Clean. Prod. 2023, 416, 137895. [Google Scholar] [CrossRef]
- Cherubini, E.; Zanghelini, G.M.; Alvarenga, R.A.F.; Franco, D.; Soares, S.R. Life Cycle Assessment of Swine Production in Brazil: A Comparison of Four Manure Management Systems. J. Clean. Prod. 2015, 87, 68–77. [Google Scholar] [CrossRef]
- de Alvarenga, R.A.F.; da Silva Júnior, V.P.; Soares, S.R. Comparison of the Ecological Footprint and a Life Cycle Impact Assessment Method for a Case Study on Brazilian Broiler Feed Production. J. Clean. Prod. 2012, 28, 25–32. [Google Scholar] [CrossRef]
- Morais, H.B.; Chardulo, L.A.L.; Baldassini, W.A.; Lippi, I.C.d.C.; Orsi, G.B.; Ruviaro, C.F. Environmental Impacts of High-Quality Brazilian Beef Production: A Comparative Life Cycle Assessment of Premium and Super-Premium Beef. Animals 2023, 13, 3578. [Google Scholar] [CrossRef]
- EPE—Empresa de Pesquisa Energética. Anuário Estatístico de Energia Elétrica 2022 (Ano Base 2021); Ministério Minas e Energia: Brasília, Brazil, 2022; p. 6. [Google Scholar]
- Hsu, J.C.; Lin, C.Y.; Chiou, P.W.S. Effects of Ambient Temperature and Methionine Supplementation of a Low Protein Diet on the Performance of Laying Hens. Anim. Feed Sci. Technol. 1998, 74, 289–299. [Google Scholar] [CrossRef]
Impact Categories | Characterization Factor Unit |
---|---|
Acidification | kg SO2 eq. |
Eutrophication | kg N eq. |
Global warming potential (GWP) | kg CO2 eq. |
Ecotoxicity | CTUe (unidades tóxicas comparativas) |
Ozone depletion | kg CFC-11 eq. |
Cumulative Energy Demand (CED) fossil | MJ eq. |
Ingredients | % Feed Pullets | % Feed Laying Hans |
---|---|---|
Maize | 65.28 | 62.19 |
DDGs | _ | 8.00 |
Limestone | 1.83 | 10.11 |
Methionine | 0.29 | 0.19 |
Meat and Bone Meal | 4.01 | 2.06 |
Salt | 0.35 | 0.20 |
Soybean meal | 20.31 | 14.87 |
Soybean hull | 7.25 | 1.30 |
Vegetable oil | _ | 0.11 |
Vitamins and minerals | 0.34 | 0.65 |
Soy oil | _ | 0.32 |
Others | 0.34 | _ |
2021 Average Pullets Production | |
---|---|
Inputs | |
Chicks (units) a | 1025 |
Mass/Chicks (g) a | 35 |
Transportation (t*km) a | 37.10 |
Feed (tons) a | 5.48 |
Transportation (t*km) a | 7.31 |
Water (m3) ab | 14.38 |
Electricity (kWh) a | 227.32 |
Diesel (L) ab | 80.88 |
Outputs | |
Pullets (unit) | 1000 |
Mass (tons) a | 1.21 |
Manure (tons) ab | 4.27 |
Transportation (t*km) a | 5.71 |
N excreted (kg) b | 162.06 |
P excreted (kg) b | 33.29 |
Mortality rate (%) a | 2.35 |
Transportation (t*km) a | 0.02 |
2021 Average Egg Production | |
---|---|
Inputs | |
Pullets (unit) a | 36.27 |
Distance (t*km) a | 11.54 |
Feed (tons)a | 2.16 |
Distance (t*km) a | 2.89 |
Water (m3) ab | 3.07 |
Electricity (kWh) a | 102.51 |
Diesel (L) ab | 7.63 |
Outputs | |
Eggs (tons) | 1 |
Spent hens (kg) a | 51.50 |
Mass/spent hens (kg/hen) a | 1.80 |
Distance (t*km) a | 77.25 |
Manure (tons) ab | 2.06 |
Distance (t*km) a | 2.75 |
N excreted (kg) b | 57.80 |
P excreted (kg) b | 11.36 |
Mortality rate (%) a | 13.04% |
Distance (t*km) a | 1.34 |
Classified Eggs in 2021 | |
---|---|
Inputs | |
Eggs (kg) a | 1002.56 |
Water (m3) ab | 4.18 |
Electricity (kWh) a | 28.82 |
Packaging (kg) | |
Cardboard (kg) a | 48.36 |
Plastic film and acrylic (kg) a | 34.88 |
Outputs | |
Eggs (Type A) (kg) a | 900.76 |
Eggs (Type B) (kg) a | 94.19 |
Eggs (Type C) (kg) a | 2.50 |
Discarded eggs (kg) a | 2.56 |
Production of Liquid Eggs in 2021 | |
---|---|
Inputs | |
Eggs (kg) a | 1299.13 |
Transportation (t*km) a | 1295.23 |
Water (m3) a | 9.08 |
Electricity (kWh) a | 195.71 |
GLP gas (m3) a | 9.62 |
Packaging (kg) | 1.89 |
Cardboard (kg)a | 1.02 |
Plastic Film and Acrylic (kg) a | 0.87 |
Outputs | |
Whole Liquid Eggs (kg) a | 1000 |
Eggshells (kg) a | 138.84 |
Discarded Eggs (kg) a | 52.63 |
Production of Organic Compost in 2021 | |
---|---|
Inputs | |
Manure Produced | |
Poultry Manure (kg) ab | 2360.94 |
Carcasses and Other Residues (kg) ab | 33.09 |
Transportation (t*km) a | 28.33 |
Water (m3) ab | 0.08 |
Diesel (L) ab | 20.90 |
Shredded Eucalyptus—Wood Chips(kg) a | 2.78 |
Outputs | |
Organic Compost (kg) a | 1000 |
Product | Mass Production (ton.) | Economic Production (BRL) | Percentage Mass Production (%) | Percentage Economic Production (%) |
---|---|---|---|---|
Egg | 72,698.23 | 742,026,471.7 | 50 | 94 |
Organic compost | 68,156 | 40,893,600 | 47 | 5 |
Spent hens | 3744 | 5,616,000 | 3 | 1 |
Impact Category | Pre-Starter Feed | Starter Feed | Grower Feed | Maturity Feed | Pre-Laying Feed |
---|---|---|---|---|---|
Acidifying emissions (kg SO2 eq) | 4.48 | 4.51 | 4.52 | 4.49 | 4.37 |
Eutrophying emissions (kg N eq) | 6.11 | 6.02 | 6.04 | 6.17 | 5.75 |
GHG emissions (kg CO2 eq) | 1285.58 | 1250.66 | 1257.31 | 1303.21 | 1185.97 |
Ecotoxicity (CTUe) | 42,900.81 | 41,391.65 | 41,645.30 | 43,595.72 | 39,042.66 |
Ozone depletion (kg CFC-11 eq) | 1.31 × 10−5 | 1.29 × 10−5 | 1.29 × 10−5 | 1.32 × 10−5 | 1.24 × 10−5 |
CED fossil (MJ eq) | 4332.61 | 4354.86 | 4364.24 | 4348.38 | 4214.02 |
Impact Category | Starter Feed | Peak Feed | Laying Feed 1 | Laying Feed 2 | Laying Feed 3 |
---|---|---|---|---|---|
Acidifying emissions (kg SO2 eq) | 3.93 | 4.01 | 4.03 | 4.04 | 4.01 |
Eutrophying emissions (kg N eq) | 4.73 | 4.68 | 4.71 | 4.64 | 4.66 |
GHG emissions (kg CO2 eq) | 922.55 | 895.66 | 900.45 | 874.64 | 886.68 |
Ecotoxicity (CTUe) | 29,169.63 | 27,897.89 | 28,045.00 | 26,964.00 | 27,534.83 |
Ozone depletion (kg CFC-11 eq) | 1.04 × 10−5 | 1.04 × 10−5 | 1.04 × 10−5 | 1.03 × 10−5 | 1.03 × 10−5 |
CED fossil (MJ eq) | 3771.96 | 3833.92 | 3854.63 | 3857.02 | 3828.50 |
Impact Category | Feed Production (Pullets) | Feed Production (Laying Hens) | Pullets Production | Egg Production | Egg Grading | Liquid Egg Production |
---|---|---|---|---|---|---|
Acidifying emissions (kg SO2 eq) | 4.48 | 4.00 | 129.46 | 65.06 | 65.78 | 85.30 |
Eutrophying emissions (kg N eq) | 6.02 | 4.68 | 64.29 | 27.74 | 28.26 | 36.33 |
GHG emissions (kg CO2 eq) | 1256.54 | 896.00 | 8365.25 | 3086.71 | 3232.93 | 4355.12 |
Ecotoxicity (CTUe) | 41,714.92 | 27,922.16 | 228,568.90 | 75,152.66 | 76,676.23 | 100,286.33 |
Ozone depletion (kg CFC-11 eq) | 1.29 × 10−5 | 1.04 × 10−5 | 7.17 × 10−5 | 2.75 × 10−5 | 3.04 × 10−5 | 4.33 × 10−5 |
CED fossil (kg MJ eq) | 4322.82 | 3829.20 | 24,117.43 | 10,044.68 | 13,541.11 | 18,436.53 |
TRACI 2.1 | IPCC 2021 | CML 2016 | |
---|---|---|---|
GHG emissions (kg CO2 eq.) | 3107.90 | 3033.25 | 2999.53 |
Relative % | 100 | 97.60 | 96.51 |
Reference | Country | Acidification (kg SO2 eq.) | Eutrophication (kg PO4 eq.) | GHG (kg CO2 eq.) | Ecotoxicity (CTUe) | Ozone Depletion (kg CFC-11 eq.) | CED Fossil (MJ eq.) |
---|---|---|---|---|---|---|---|
In this study | Brazil | 0.07 | _ | 3.1 | 75.98 | 2.77 × 10−5 | 10.07 |
Guillaume et al. [22] | Czech Republic | _ | _ | 2.46 | 62.87 | 8.46 × 10−8 | 13.33 |
Turner et al. [23] | Canada | 0.08 | 0.03 | 2.36 | _ | 2.30 × 10−6 | _ |
Estrada-González et al. [27] | Mexico | _ | _ | 5.58 | _ | 2.70 × 10−7 | _ |
Abín et al. [29] | Spain | _ | _ | 3.50 | _ | _ | _ |
Pelletier [24,25] | Canada | 0.08 | 0.02 | 2.44 | _ | _ | 11.25 |
Pelletier et al. [28] | USA | 0.07 | 0.02 | 2.10 | _ | _ | 12.30 |
Leinonen et al. [30,31] | United Kingdom | 0.06 | 0.02 | 2.92 | _ | _ | 16.80 |
Wiedemann e McGahan [32] | Australia | _ | _ | 1.4 | _ | _ | _ |
Mollenhorst et al. [33] | Netherlands | 0.03 | 0.02 | 3.9 | _ | _ | _ |
Cederberg et al. [34] | Sweden | _ | _ | 1.4 | _ | _ | _ |
Vergé et al. [26] | Canada | _ | _ | 2.5 | _ | _ | _ |
Reference | State/Region | Product | Production System | GHG Emissions (kg CO2 eq./kg Produced) |
---|---|---|---|---|
Dick et al. [61] | Rio Grande do Sul | Beef cattle | Extensive and Intensive | 22.52 (Live weight) and 45.05 (Carcass weight) in extensive; 9.16 (Live weight) and 18.32 (Carcass weight) in intensive. |
Cardoso et al. [62] | Central-west (Cerrado) | Beef cattle (in 5 different scenarios) | Extensive e Semi-intensive | 58.3(C1); 40.9(C2); 29.6(C3); 32.4(C4); 29.4(C5) (All in Carcass weight). |
Willers et al. [63] | Bahia | Beef cattle | Semi-intensive | 9.43 (Live weight). |
Dick et al. [64] | Amazonas, Cerrado, Pampa, and Pantanal | Beef cattle | Extensive | Amazonas 13.92, Cerrado 12.10, Pampa 14.62, Pantanal 21.18 (All in live weight). |
Leis et al. [65] | Paraná and Santa Catarina | Dairy cattle (ECM: energy-corrected milk) | Confined, semi-confined, and pasture | 0.54 confined; 0.78 semi-confined; 0.74 pasture. |
Carvalho et al. [66] | Middle Southwest region of Bahia | Dairy cattle (FPCM: fat and protein corrected milk) | Semi-intensive | 1.41 |
Barros et al. [67] | Paraná and Minas Gerais | Dairy cattle (FPCM: fat and protein corrected milk) | Confined, semi-confined | 1.14 confined in PR; 1.64 semi-confined in PR; 1.83 semi-confined in MG. |
Maciel et al. [68] | Minas Gerais | Dairy cattle (with and without manure treatment by anaerobic digestion) | Semi-intensive | 0.88 (with treatment); 1.16 (without treatment) |
Silva et al. [69] | Central west and south of Brazil | Broilers | Intensive | 2.06 (Centro oeste) 1.45 (Sul) |
Lima et al. [70] | Mato Grosso do Sul | Broilers | Intensive | 2.70 |
Alves et al. [71] | Rondônia | Broilers | Intensive | 3.37 |
Cherubini et al. [72] | _ | Swine (in 4 manure management systems) | Intensive | 3.50 in tanks, 3.39 in biodigestor (a), 3.11 in biodigestor (b), 3.55 in composting. |
Alvarenga et al. [73] | Santa Catarina | Broiler feed | _ | 0.75 (CW–CW) *; 0.58 (CW–SO) *; 0.68 (SO–SW) *; 0.51 (SO–SO) *. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maciel, F.d.F.; Gates, R.S.; Tinôco, I.d.F.F.; Pelletier, N.; Ibarburu-Blanc, M.A.; Renato, N.d.S.; Sousa, F.C.d.; Andrade, R.R.; Silva, G.M.d.M.; Becciolini, V. Environmental Impacts of the Brazilian Egg Industry: Life Cycle Assessment of the Battery Cage Production System. Animals 2024, 14, 861. https://doi.org/10.3390/ani14060861
Maciel FdF, Gates RS, Tinôco IdFF, Pelletier N, Ibarburu-Blanc MA, Renato NdS, Sousa FCd, Andrade RR, Silva GMdM, Becciolini V. Environmental Impacts of the Brazilian Egg Industry: Life Cycle Assessment of the Battery Cage Production System. Animals. 2024; 14(6):861. https://doi.org/10.3390/ani14060861
Chicago/Turabian StyleMaciel, Fabiane de Fátima, Richard Stephen Gates, Ilda de Fátima Ferreira Tinôco, Nathan Pelletier, Maro A. Ibarburu-Blanc, Natalia dos Santos Renato, Fernanda Campos de Sousa, Rafaella Resende Andrade, Guilherme Moreira de Melo Silva, and Valentina Becciolini. 2024. "Environmental Impacts of the Brazilian Egg Industry: Life Cycle Assessment of the Battery Cage Production System" Animals 14, no. 6: 861. https://doi.org/10.3390/ani14060861
APA StyleMaciel, F. d. F., Gates, R. S., Tinôco, I. d. F. F., Pelletier, N., Ibarburu-Blanc, M. A., Renato, N. d. S., Sousa, F. C. d., Andrade, R. R., Silva, G. M. d. M., & Becciolini, V. (2024). Environmental Impacts of the Brazilian Egg Industry: Life Cycle Assessment of the Battery Cage Production System. Animals, 14(6), 861. https://doi.org/10.3390/ani14060861