Betaine and L-Carnitine Synergistically Influence the Metabolome and Immune Response in Dogs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Pets
2.2. Foods
2.3. Metabolomics
2.4. TruCulture
2.5. Cytokine Analysis
2.6. Statistical Analysis
3. Results
3.1. Blood Metabolomics
3.2. Immune Response
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, G.; He, F.; Wu, C.; Li, P.; Li, N.; Deng, J.; Zhu, G.; Ren, W.; Peng, Y. Betaine in Inflammation: Mechanistic Aspects and Applications. Front. Immunol. 2018, 9, 1070. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Chen, S.; Zhu, G.; Huang, R.; Yin, Y.; Ren, W. Betaine inhibits interleukin-1β production and release: Potential mechanisms. Front. Immunol. 2018, 9, 2670. [Google Scholar] [CrossRef] [PubMed]
- Hua, X.; Su, Z.; Deng, R.; Lin, J.; Li, D.Q.; Pflugfelder, S.C. Effects of L-carnitine, erythritol and betaine on pro-inflammatory markers in primary human corneal epithelial cells exposed to hyperosmotic stress. Curr. Eye Res. 2015, 40, 657–667. [Google Scholar] [CrossRef] [PubMed]
- Kouttab, N.M.; De Simone, C. Modulation of cytokine production by carnitine. Mediat. Inflamm. 1993, 2, S25–S28. [Google Scholar] [CrossRef] [PubMed]
- Alesci, S.; De Martino, M.U.; Mirani, M.; Benvenga, S.; Trimarchi, F.; Kino, T.; Chrousos, G.P. l-Carnitine: A nutritional modulator of glucocorticoid receptor functions. FASEB J. 2003, 17, 1–20. [Google Scholar] [CrossRef]
- Varney, J.L.; Fowler, J.W.; Gilbert, W.C.; Coon, C.N. Utilisation of supplemented L-carnitine for fuel efficiency, as an antioxidant, and for muscle recovery in Labrador retrievers. J. Nutr. Sci. 2017, 6, e8. [Google Scholar] [CrossRef]
- Flanagan, J.L.; Simmons, P.A.; Vehige, J.; Willcox, M.D.; Garrett, Q. Role of carnitine in disease. Nutr. Metab. 2010, 7, 30. [Google Scholar] [CrossRef]
- Huang, C.; Shi, M.; Wu, H.; Luk, A.O.; Chan, J.C.; Ma, R.C. Human serum metabolites as potential mediators from type 2 diabetes and obesity to COVID-19 severity and susceptibility: Evidence from mendelian randomization study. Metabolites 2022, 12, 598. [Google Scholar] [CrossRef]
- Jewell, D.E.; Jackson, M.I. Predictive equations for dietary energy are improved when independently developed for dry and wet food which could benefit both the pet and the environment. Front. Vet. Sci. 2023, 10, 1104695. [Google Scholar] [CrossRef]
- Hall, J.A.; Jackson, M.I.; Vondran, J.C.; Vanchina, M.A.; Jewell, D.E. Comparison of circulating metabolite concentrations in dogs and cats when allowed to freely choose macronutrient intake. Biol. Open 2018, 7, bio036228. [Google Scholar] [CrossRef]
- Yang, Z.; Asare, E.; Yang, Y.; Yang, J.; Yang, H.; Wang, Z. Dietary supplementation of betaine promotes lipolysis by regulating fatty acid metabolism in geese. Poult. Sci. 2021, 100, 101460. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Fígares, I.; Lachica, M.; Martínez-Pérez, M.; Ramsay, T.G. Conjugated linoleic acid and betaine affect lipolysis in pig adipose tissue explants. Animal 2019, 13, 2840–2846. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Wang, H.; Wang, X.; Wang, Y.; Feng, J. Betaine affects muscle lipid metabolism via regulating the fatty acid uptake and oxidation in finishing pig. J. Anim. Sci. Biotechnol. 2017, 8, 72. [Google Scholar] [CrossRef] [PubMed]
- Pekkinen, J.; Olli, K.; Huotari, A.; Tiihonen, K.; Keski-Rahkonen, P.; Lehtonen, M.; Auriola, S.; Kolehmainen, M.; Mykkänen, H.; Poutanen, K.; et al. Betaine supplementation causes increase in carnitine metabolites in the muscle and liver of mice fed a high-fat diet as studied by nontargeted LC-MS metabolomics approach. Mol. Nutr. Food Res. 2013, 57, 1959–1968. [Google Scholar] [CrossRef] [PubMed]
- Cholewa, J.M.; Guimarães-Ferreira, L.; Zanchi, N. Effects of betaine on performance and body composition: A review of recent findings and potential mechanisms. Amino Acids 2014, 46, 1785–1793. [Google Scholar] [CrossRef] [PubMed]
- Jewell, D.E.; Jackson, M.I. Dietary Betaine and Fatty Acids Change Circulating Single-Carbon Metabolites and Fatty Acids in the Dog. Animals 2022, 12, 768. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Huang, D.; Hu, Q.; Wu, J.; Wang, Y.; Feng, J. Betaine alleviates hepatic lipid accumulation via enhancing hepatic lipid export and fatty acid oxidation in rats fed with a high-fat diet. Br. J. Nutr. 2015, 113, 1835–1843. [Google Scholar] [CrossRef] [PubMed]
- Saker, K.E. Nutrition and immune function. Vet. Clin. Small Anim. Pract. 2006, 36, 1199–1224. [Google Scholar] [CrossRef]
- Martínez, Y.; Li, X.; Liu, G.; Bin, P.; Yan, W.; Más, D.; Valdivié, M.; Hu, C.A.A.; Ren, W.; Yin, Y. The role of methionine on metabolism, oxidative stress, and diseases. Amino Acids 2017, 49, 2091–2098. [Google Scholar] [CrossRef]
- Pfalzer, A.C.; Choi, S.W.; Tammen, S.A.; Park, L.K.; Bottiglieri, T.; Parnell, L.D.; Lamon-Fava, S. S-adenosylmethionine mediates inhibition of inflammatory response and changes in DNA methylation in human macrophages. Physiol. Genom. 2014, 46, 617–623. [Google Scholar] [CrossRef]
- Li, P.; Yin, Y.L.; Li, D.; Kim, S.W.; Wu, G. Amino acids and immune function. Br. J. Nutr. 2007, 98, 237–252. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, F.; Okayasu, H.; Tashiro, M.; Hashimoto, K.; Yokote, Y.; Akahane, K.; Hongo, S.; Sakagami, H. Effect of lignins and their precursors on nitric oxide, citrulline and asparagine production by mouse macrophage-like Raw 264.7 cells. Anticancer. Res. 2002, 22, 2719–2724. [Google Scholar] [PubMed]
- Kanamoto, R.; Boyle, S.M.; Oka, T.; Hayashi, S.I. Molecular mechanisms of the synergistic induction of ornithine decarboxylase by asparagine and glucagon in primary cultured hepatocytes. J. Biol. Chem. 1987, 262, 14801–14805. [Google Scholar] [CrossRef] [PubMed]
- Brand, K. Role of ornithine decarboxylase on glycolytic enzyme induction during thymocyte proliferation. J. Biol. Chem. 1987, 262, 15232–15235. [Google Scholar] [CrossRef] [PubMed]
- Duval, D.; Demangel, C.; Munier-Jolain, K.; Miossec, S.; Geahel, I. Factors controlling cell proliferation and antibody production in mouse hybridoma cells: I. Influence of the amino acid supply. Biotechnol. Bioeng. 1991, 38, 561–570. [Google Scholar] [CrossRef]
- Konashi, S.; Takahashi, K.; Akiba, Y. Effects of dietary essential amino acid deficiencies on immunological variables in broiler chickens. Br. J. Nutr. 2000, 83, 449–456. [Google Scholar] [PubMed]
- Garcia, M.; Mamedova, L.K.; Barton, B.; Bradford, B.J. Choline regulates the function of bovine immune cells and alters the mRNA abundance of enzymes and receptors involved in its metabolism in vitro. Front. Immunol. 2018, 9, 2448. [Google Scholar] [CrossRef]
- Tavener, S.K.; Jewell, D.E.; Panickar, K.S. The increase in circulating levels of pro-inflammatory chemokines, cytokines, and complement C5 in canines with impaired kidney function. Curr. Issues Mol. Biol. 2022, 44, 1664–1676. [Google Scholar] [CrossRef]
- Makinodan, T. Nature of the decline in antigen-induced humoral immunity with age. Mech Ageing Dev. 1980, 14, 165–172. [Google Scholar] [CrossRef]
- Piantedosi, D.; Musco, N.; Palatucci, A.T.; Carriero, F.; Rubino, V.; Pizzo, F.; Nasir, S.; Molinaro, G.; Ruggiero, G.; Terrazzano, G.; et al. Pro-inflammatory and immunological profile of dogs with myxomatous mitral valve disease. Vet. Sci. 2022, 9, 326. [Google Scholar] [CrossRef]
- Bastien, B.C.; Patil, A.; Satyaraj, E. The impact of weight loss on circulating cytokines in Beagle dogs. Vet. Immunol. Immunopathol. 2015, 3–4, 174–182. [Google Scholar] [CrossRef] [PubMed]
- Wdowiak, M.; Rychlik, A.; Kolodziejska-Sawerska, A. Biomarkers in canine inflammatory bowel disease diagnostics. Pol. J. Vet. Sci. 2013, 16, 601–610. [Google Scholar] [CrossRef] [PubMed]
- Hall, J.A.; Chinn, R.M.; Vorachek, W.R.; Gorman, M.E.; Jewell, D.E. Aged Beagle dogs have decreased neutrophil phagocytosis and neutrophil-related gene expression compared to younger dogs. Vet. Immunol. Immunopathol. 2010, 137, 130–135. [Google Scholar] [CrossRef] [PubMed]
- Aiello, A.; Farzaneh, F.; Candore, G.; Caruso, C.; Davinelli, S.; Gambino, C.M.; Ligotti, M.E.; Zareian, N.; Accardi, G. Immunosenescence and Its Hallmarks: How to Oppose Aging Strategically? A Review of Potential Options for Therapeutic Intervention. Front. Immunol. 2019, 10, 2247. [Google Scholar] [CrossRef] [PubMed]
- Greeley, E.H.; Spitznagel, E.; Lawler, D.F.; Kealy, R.D.; Segre, M. Modulation of canine immunosenescence by life-long caloric restriction. Vet. Immunol. Immunopathol. 2006, 111, 287–299. [Google Scholar] [CrossRef]
- Day, M.J. Ageing, immunosenescence and inflammageing in the dog and cat. J. Comp. Pathol. 2010, 142, S60–S69. [Google Scholar] [CrossRef]
- Alexander, J.E.; Colyer, A.; Haydock, R.M.; Hayek, M.G.; Park, J. Understanding how dogs age: Longitudinal analysis of markers of inflammation, immune function, and oxidative stress. J. Gerontol. Ser. A 2018, 73, 720–728. [Google Scholar] [CrossRef]
- Junginger, J.; Schwittlick, U.; Lemensieck, F.; Nolte, I.; Hewicker-Trautwein, M. Immunohistochemical investigation of Foxp3 expression in the intestine in healthy and diseased dogs. Vet. Res. 2012, 43, 23. [Google Scholar] [CrossRef]
- Fujiwara, M.; Yonezawa, T.; Arai, T.; Yamamoto, I.; Ohtsuka, H. Alterations with age in peripheral blood lymphocyte subpopulations and cytokine synthesis in beagles. Vet. Med. Res. Rep. 2012, 3, 79–84. [Google Scholar]
- Yamauchi, A.; Yoshimoto, S.; Kudo, A.; Takagi, S. Negative Influence of Aging on Differentiation and Proliferation of CD8+ T-Cells in Dogs. Vet. Sci. 2023, 10, 541. [Google Scholar] [CrossRef]
Control | Control + Betaine | Control + Carnitine | Control + Betaine and Carnitine | |
---|---|---|---|---|
Number of dogs | 8 | 8 | 8 | 8 |
Male Neutered | 4 | 4 | 4 | 4 |
Female Spayed | 4 | 4 | 4 | 4 |
Mean weight kg (std deviation) | 10.7 (2.4) | 11.2 (1.7) | 11.4 (1.8) | 10.7 (1.1) |
Mean age years (range) | 5.5 (2–10) | 6.0 (2–10) | 5.9 (2–11) | 4.9 (2–9) |
Analyte | Control | Control + Betaine | Control + L-Carnitine | Control + Betaine + L-Carnitine |
---|---|---|---|---|
Moisture | 8.24 | 8.34 | 8.30 | 8.04 |
Protein | 35.2 | 35.1 | 34.5 | 34.5 |
Fat | 11.0 | 11.0 | 11.1 | 10.7 |
Crude Fiber | 9.00 | 9.15 | 9.20 | 9.15 |
Ash | 5.69 | 5.62 | 5.72 | 5.67 |
Calcium | 0.86 | 0.88 | 0.89 | 0.90 |
Phosphorus | 0.72 | 0.74 | 0.72 | 0.70 |
Sodium | 0.35 | 0.36 | 0.36 | 0.35 |
C08:0 Octanoic (Caprylic) | 0.14 | 0.18 | 0.16 | 0.18 |
C10:0 Decanoic (Capric) | 0.11 | 0.14 | 0.12 | 0.14 |
C12:0 Dodecanoic (Lauric) | 0.80 | 1.07 | 0.93 | 1.07 |
C14:0 Tetradecanoic (Myristic) | 0.35 | 0.45 | 0.40 | 0.45 |
C16:0 Hexadecanoic (Palmitic) | 1.67 | 1.71 | 1.69 | 1.74 |
C18:0 Octadecanoic (Stearic) | 0.50 | 0.51 | 0.50 | 0.52 |
Sum Saturated Fatty Acids | 3.63 | 4.13 | 3.86 | 4.17 |
Sum Monosaturated Fatty Acids | 2.85 | 2.84 | 2.85 | 2.88 |
Sum Omega 3 Fatty Acids | 0.67 | 0.65 | 0.65 | 0.68 |
Sum Omega 6 Fatty Acids | 2.24 | 2.16 | 2.25 | 2.17 |
Lysine | 2.03 | 2.03 | 2.07 | 2.00 |
Threonine | 1.21 | 1.21 | 1.25 | 1.19 |
Methionine | 1.33 | 1.25 | 1.26 | 1.25 |
Tryptophan | 0.31 | 0.30 | 0.30 | 0.29 |
Betaine mg/kg | 388 | 5860 | 257 | 5950 |
L-Carnitine mg/kg | 23 | 29 | 374 | 392 |
Metabolizable Energy kcal/kg | 3341 | 3382 | 3417 | 3399 |
Fold Change (Treatment/Control) at End of Study Measurement | |||
---|---|---|---|
−Car + Bet | +Car-Bet | +Car + Bet | |
Biochemical Name | −Car-Bet | −Car-Bet | −Car-Bet |
Sarcosine | 1.86 | 1.04 | 1.86 |
Dimethylglycine | 2.49 | 1.17 | 2.51 |
Betaine | 2.2 | 0.99 | 2.19 |
Serine | 1.21 | 1.12 | 1.34 |
N-acetylserine | 1.54 | 1 | 1.37 |
Alanine | 1.3 | 1.28 | 1.31 |
N-acetylalanine | 1.27 | 0.97 | 1.12 |
N-methylalanine | 2.44 | 1.14 | 2.12 |
N,N-dimethylalanine | 0.2 | 0.88 | 0.08 |
Asparagine | 1.21 | 1.21 | 1.33 |
alpha-ketoglutaramate | 1.81 | 1.09 | 1.97 |
N-acetylglutamate | 1.35 | 1.01 | 1.16 |
pyroglutamine | 0.78 | 0.94 | 0.71 |
S-1-pyrroline-5-carboxylate | 1.94 | 1.62 | 1.99 |
N6-acetyllysine | 1.15 | 1.34 | 1.15 |
N,N,N-trimethyl-5-aminovalerate | 0.52 | 0.46 | 0.27 |
isovalerylcarnitine (C5) | 0.54 | 1.79 | 0.98 |
2-methylbutyrylcarnitine (C5) | 0.52 | 1.07 | 0.77 |
isobutyrylcarnitine (C4) | 0.57 | 1.76 | 1.13 |
Methionine | 7.13 | 1.23 | 8.04 |
N-acetylmethionine | 5.94 | 1.08 | 4.65 |
N-formylmethionine | 1.5 | 0.99 | 1.45 |
methionine sulfoxide | 5.48 | 1.05 | 6.71 |
N-acetylmethionine sulfoxide | 8.97 | 1.4 | 8.26 |
S-adenosylhomocysteine (SAH) | 3.76 | 1.12 | 3.56 |
5-methylthioribose | 2.2 | 1.55 | 1.94 |
2,3-dihydroxy-5-methylthio-4-pentenoate (DMTPA) | 7.06 | 1.46 | 6.14 |
S-methylcysteine sulfoxide | 1.08 | 1.25 | 0.9 |
Taurine | 1.3 | 1.37 | 1.4 |
Proline | 1.37 | 1.23 | 1.31 |
N-methylproline | 0.56 | 0.85 | 0.38 |
5-methylthioadenosine (MTA) | 6.92 | 1.09 | 5.86 |
2-aminobutyrate | 1.77 | 1.12 | 1.4 |
2-hydroxybutyrate/2-hydroxyisobutyrate | 1.43 | 0.96 | 1.13 |
gamma-glutamylglutamate | 0.72 | 1.04 | 0.53 |
gamma-glutamylmethionine | 9.55 | 1.4 | 9.83 |
Phenylacetylalanine | 2.9 | 2.54 | 2.83 |
succinylcarnitine (C4-DC) | 1.42 | 1.17 | 1.28 |
nonadecanedioate (C19-DC) | 0.86 | 0.62 | 0.95 |
eicosanedioate (C20-DC) | 0.73 | 0.48 | 0.77 |
butyrylcarnitine (C4) | 0.69 | 1.41 | 0.86 |
propionylcarnitine (C3) | 0.65 | 1.78 | 1.22 |
acetylcarnitine (C2) | 0.52 | 1.19 | 0.74 |
stearoylcarnitine (C18) | 0.71 | 0.99 | 0.76 |
cerotoylcarnitine (C26) | 0.51 | 1.61 | 0.84 |
nervonoylcarnitine (C24:1) | 0.44 | 1.28 | 0.8 |
ximenoylcarnitine (C26:1) | 0.42 | 1.74 | 0.73 |
arachidonoylcarnitine (C20:4) | 0.62 | 1.25 | 0.94 |
dihomo-linolenoylcarnitine (C20:3n3 or 6) | 0.71 | 1.3 | 0.88 |
docosatrienoylcarnitine (C22:3) | 0.49 | 1.49 | 0.83 |
adrenoylcarnitine (C22:4) | 0.67 | 1.24 | 1.06 |
3-hydroxypalmitoylcarnitine | 0.53 | 1.08 | 0.8 |
Carnitine | 0.66 | 1.4 | 1.03 |
Choline | 1.23 | 1.11 | 1.16 |
1-stearoyl-2-arachidonoyl-GPE (18:0/20:4) | 0.64 | 1.21 | 0.79 |
1-stearoyl-GPG (18:0) | 1.91 | 1.66 | 1.45 |
1-(1-enyl-stearoyl)-2-oleoyl-GPE (P-18:0/18:1) | 0.66 | 0.97 | 0.78 |
1-(1-enyl-stearoyl)-2-linoleoyl-GPE (P-18:0/18:2) | 0.73 | 0.9 | 0.75 |
palmitoleoyl-linoleoyl-glycerol (16:1/18:2) | 2.16 | 2.05 | 1.53 |
oleoyl-linoleoyl-glycerol (18:1/18:2) | 1.52 | 2.09 | 1.12 |
linoleoyl-linoleoyl-glycerol (18:2/18:2) | 1.66 | 2.51 | 1.12 |
behenoyl dihydrosphingomyelin (d18:0/22:0) | 0.81 | 0.88 | 0.64 |
sphingomyelin (d18:0/18:0, d19:0/17:0) | 0.74 | 0.85 | 0.65 |
xanthine | 1.76 | 1.66 | 1.97 |
5-methyl-2′-deoxycytidine | 1.34 | 0.88 | 1.19 |
nicotinamide riboside | 1.42 | 0.81 | 0.99 |
1-methylnicotinamide | 1.46 | 0.88 | 1.16 |
2-O-methylascorbic acid | 1.7 | 1.08 | 1.26 |
pterin | 0.91 | 0.89 | 0.55 |
methylnaphthyl sulfate (1) | 1.46 | 1.42 | 1.73 |
2-naphthol sulfate | 1.48 | 1.4 | 1.71 |
Food | Unstimulated 1 | Stimulated 2 | Ratio 3 |
---|---|---|---|
Control | 0.00 ± 0.13 a | −0.07 ± 0.09 | −0.07 ± 0.14 a |
Control + Betaine | −0.15 ± 0.13 a,b | 0.09 ± 0.09 | 0.24 ± 0.14 a,b |
Control + Carnitine | 0.04 ± 0.13 a | 0.04 ± 0.09 | 0.00 ± 0.14 a |
Control + Betaine + Carnitine | −0.31 ± 0.13 b* | 0.13 ± 0.09 | 0.44 ± 0.14 b* |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jewell, D.E.; Tavener, S.K.; Creech, R.; Panickar, K.S. Betaine and L-Carnitine Synergistically Influence the Metabolome and Immune Response in Dogs. Animals 2024, 14, 357. https://doi.org/10.3390/ani14030357
Jewell DE, Tavener SK, Creech R, Panickar KS. Betaine and L-Carnitine Synergistically Influence the Metabolome and Immune Response in Dogs. Animals. 2024; 14(3):357. https://doi.org/10.3390/ani14030357
Chicago/Turabian StyleJewell, Dennis E., Selena K. Tavener, Renea Creech, and Kiran S. Panickar. 2024. "Betaine and L-Carnitine Synergistically Influence the Metabolome and Immune Response in Dogs" Animals 14, no. 3: 357. https://doi.org/10.3390/ani14030357