Comparison of Hydroxychloride Versus Oxide and Sulfate Sources of Manganese, Zinc, and Copper in Rearing Diets on Pullet Growth, Tibia Traits, and Egg Production and Eggshell Quality in ISA Brown Hens up to 50 Weeks
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Management
2.2. Experimental Treatments
2.3. Laying Phase
2.4. Feed Analysis
2.5. Measurments and Sample Analysis
2.6. Statistical Analysis
3. Results
3.1. Growth Performance
3.2. Egg Production Performance
3.3. Egg Quality
3.4. Tibia Quality
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bakhshalinejad, R.; Torrey, S.; Kiarie, E.G. Comparative efficacy of hydroxychloride and organic sources of zinc, copper, and manganese on egg production and concentration of trace minerals in eggs, plasma, and excreta in female broiler breeders from 42 to 63 weeks of age. Poult. Sci. 2024, 103, 103522. [Google Scholar] [CrossRef] [PubMed]
- Stefanello, C.; Santos, T.C.; Murakami, A.E.; Martins, E.N.; Carneiro, T.C. Productive performance, eggshell quality, and eggshell ultrastructure of laying hens fed diets supplemented with organic trace minerals. Poult. Sci. 2014, 93, 104–113. [Google Scholar] [CrossRef] [PubMed]
- Lilburn, M.S.; McIntyre, D.R. An historical overview of zinc in poultry nutrition. Poult. Sci. 2024, 103, 104294. [Google Scholar] [CrossRef]
- Leach, R., Jr. Metabolism and function of manganese. In Essential and Toxic Element; Academic Press: Cambridge, MA, USA, 1976; pp. 235–247. [Google Scholar]
- Liu, A.-H.; Heinrichs, B.; Leach, R., Jr. Influence of manganese deficiency on the characteristics of proteoglycans of avian epiphyseal growth plate cartilage. Poult. Sci. 1994, 73, 663–669. [Google Scholar] [CrossRef]
- Opsahl, W.; Zeronian, H.; Ellison, M.; Lewis, D.; Rucker, R.B. Role of copper in collagen cross-linking and its influence on selected mechanical properties of chick bone and tendon. J. Nutr. 1982, 112, 708–716. [Google Scholar] [CrossRef]
- Leach, R., Jr.; Gross, J. The effect of manganese deficiency upon the ultrastructure of the eggshell. Poult. Sci. 1983, 62, 499–504. [Google Scholar] [CrossRef]
- Nys, Y.; Hincke, M.; Arias, J.; Garcia-Ruiz, J.; Solomon, S. Avian eggshell mineralization. Poult. Avian. Biol. Rev. 1999, 10, 143–166. [Google Scholar]
- Elaroussi, M.A.; Forte, L.R.; Eber, S.L.; Biellier, H.V. Calcium Homeostasis in the Laying Hen: 1. Age and dietary calcium effects. Poult. Sci. 1994, 73, 1581–1589. [Google Scholar] [CrossRef]
- Hamilton, R.M.G.; Bryden, W.L. Relationship between egg shell breakage and laying hen housing systems—An overview. World’s Poult. Sci. J. 2021, 77, 249–266. [Google Scholar] [CrossRef]
- Sandoval, M.; Henry, P.R.; Littell, R.C.; Miles, R.D.; Butcher, G.D.; Ammerman, C.B. Effect of dietary zinc source and method of oral administration on performance and tissue trace mineral concentration of broiler chicks. J. Anim. Sci. 1999, 77, 1788–1799. [Google Scholar] [CrossRef]
- Huang, Y.L.; Lu, L.; Xie, J.J.; Li, S.F.; Li, X.L.; Liu, S.B.; Zhang, L.Y.; Xi, L.; Luo, X.G. Relative bioavailabilities of organic zinc sources with different chelation strengths for broilers fed diets with low or high phytate content. Anim. Feed. Sci. Technol. 2013, 179, 144–148. [Google Scholar] [CrossRef]
- Nguyen, H.T.T.; Morgan, N.; Roberts, J.R.; Swick, R.A.; Toghyani, M. Copper hydroxychloride is more efficacious than copper sulfate in improving broiler chicken’s growth performance, both at nutritional and growth-promoting levels. Poult. Sci. 2020, 99, 6964–6973. [Google Scholar] [CrossRef] [PubMed]
- Palanisamy, V.; Sakthivel, P.C.; Pineda, L.; Han, Y. Effect of supplementing hydroxy trace minerals (Cu, Zn, and Mn) on egg quality and performance of laying hens under tropical conditions. Anim. Biosci. 2023, 36, 1709. [Google Scholar] [CrossRef] [PubMed]
- Akbari Moghaddam Kakhki, R.; Alfonso-Carrillo, C.; Garcia-Ruiz, A.I. Comparative Impact of Hydroxychloride and Organic Sources of Manganese, Zinc, and Copper in Rearing Diets on Pullet Growth, Tibia Traits, Egg Production, and Eggshell Quality in Lohmann Brown Birds Up to 50 Weeks of Age. Vet. Sci. 2024, 11, 245. [Google Scholar] [CrossRef]
- Boletín Oficial del Estado. Real Decreto 53/2013 Sobre Protección de Animales Utilizados en Experimentación y Otros Fines Científicos. BOE 2013, 34, 11370–11471. Available online: https://www.boe.es/eli/es/rd/2013/02/01/53/con (accessed on 15 April 2024).
- CVB. Chemical Composition and Nutritional Values of Feedstuffs; Central Bureau for Livestock Feeding (CVB): Lelystad, The Netherlands, 2018. [Google Scholar]
- Leeson, S.; Summers, J.D. Commercial Poultry Nutrition; Nottingham University Press: Nottingham, UK, 2009. [Google Scholar]
- AOAC International. Official Methods of Analysis of the Association of Official Analytical Chemists; AOAC International: Gaithersburg, MD, USA, 2019. [Google Scholar]
- Gitelman, H.J. An improved automated procedure for the determination of calcium in biological specimens. Anal. Biochem. 1967, 18, 521–531. [Google Scholar] [CrossRef]
- Murphy, J.; Riley, J.P. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 1962, 27, 31–36. [Google Scholar] [CrossRef]
- DIN EN 17053; Animal Feeding Stuffs: Methods of Sampling and Analysis—Determination of Trace Elements, Heavy Metals and Other Elements in Feed by ICP-MS. Spanish Association for Standardization and Certification (AENOR): Madrid, Spain, 2018.
- Sanchez-Rodriguez, E.; Benavides-Reyes, C.; Torres, C.; Dominguez-Gasca, N.; I Garcia-Ruiz, A.; Gonzalez-Lopez, S.; Rodriguez-Navarro, A.B. Changes with age (from 0 to 37 D) in tibiae bone mineralization, chemical composition and structural organization in broiler chickens. Poult. Sci. 2019, 98, 5215–5225. [Google Scholar] [CrossRef]
- Carter, T.C. The hen’s egg: Estimation of shell superficial area and egg volume, using measurements of fresh egg weight and shell length and breadth alone or in combination. Br. Poult. Sci. 1975, 5, 541–543. [Google Scholar] [CrossRef]
- Clarkson, D.T. Factors affecting mineral nutrient acquisition by plants. Annu. Rev. Plant Physiol. 1985, 36, 77–115. [Google Scholar] [CrossRef]
- Olukosi, O.A.; van Kuijk, S.; Han, Y. Copper and zinc sources and levels of zinc inclusion influence growth performance, tissue trace mineral content, and carcass yield of broiler chickens. Poult. Sci. 2018, 97, 3891–3898. [Google Scholar] [CrossRef] [PubMed]
- Caramalac, L.S.; Saran Netto, A.; Martins, P.G.M.A.; Moriel, P.; Ranches, J.; Fernandes, H.J.; Arthington, J.D. Effects of hydroxychloride sources of copper, zinc, and manganese on measures of supplement intake, mineral status, and pre- and postweaning performance of beef calves. J. Anim. Sci. 2017, 95, 1739–1750. [Google Scholar] [PubMed]
- Macelline, S.P.; Selle, P.H.; Liu, S.Y.; Pineda, L.; Han, Y.; Toghyani, M. Inclusion of complexed trace minerals enhances performance of broiler chickens. J. Appl. Poult. Res. 2024, 33, 100465. [Google Scholar] [CrossRef]
- Bao, Y.M.; Choct, M. Trace mineral nutrition for broiler chickens and prospects of application of organically complexed trace minerals: A review. Anim. Prod. Sci. 2009, 49, 269–282. [Google Scholar] [CrossRef]
- De Mille, C.; Burrough, E.; Kerr, B.; Schweer, W.; Gabler, N. Dietary Pharmacological Zinc and Copper Enhances Voluntary Feed Intake of Nursery Pigs. Front. Anim. Sci. 2022, 3, 874284. [Google Scholar] [CrossRef]
- Olukosi, O.A.; Van Kuijk, S.J.; Han, Y. Sulfate and hydroxychloride trace minerals in poultry diets–comparative effects on egg production and quality in laying hens, and growth performance and oxidative stress response in broilers. Poult. Sci. 2019, 98, 4961–4971. [Google Scholar] [CrossRef]
- Jiang, Q.; Sun, J.; He, Y.; Ma, Y.; Zhang, B.; Han, Y.; Wu, Y. Hydroxychloride trace elements improved eggshell quality partly by modulating uterus histological structure and inflammatory cytokines expression in aged laying hens. Poult. Sci. 2021, 100, 101453. [Google Scholar] [CrossRef]
- Swiatkiewicz, S.; Koreleski, J. The effect of zinc and manganese source in the diet for laying hens on eggshell and bones quality. Vet. Med. 2008, 53, 555–563. [Google Scholar] [CrossRef]
- Nguyen, H.T.T.; Morgan, N.; Roberts, J.R.; Wu, S.-B.; Swick, R.A.; Toghyani, M. Zinc hydroxychloride supplementation improves tibia bone development and intestinal health of broiler chickens. Poult. Sci. 2021, 100, 101254. [Google Scholar] [CrossRef]
- Sadr, V.; Nguyen, H.T.T.; Pineda, L.; Han, Y.; Toghyani, M. Synergistic Effects of Hydroxychloride and Organic Zinc on Performance, Carcass Characteristics, Liver and Tibia Mineral Profiles of Broiler Chickens. Biol. Trace Elem. Res. 2024. [Google Scholar] [CrossRef]
- Hentrix Genetics. ISA Brown Commercial Product Guide; Hendrix Genetics BV: Boxmeer, The Netherlands, 2017. [Google Scholar]
Items | Starter (1–3 Week) | Grower (4–10 Week) | Developer (11–16 Week) | |||
---|---|---|---|---|---|---|
Oxide/Sulfate | Hydroxychloride | Oxide/Sulfate | Hydroxychloride | Oxide/Sulfate | Hydroxychloride | |
Ingredient, g/kg | ||||||
Maize | 400.00 | 400.00 | 400.00 | 400.00 | 612.00 | 612.00 |
Wheat | 226.00 | 226.00 | 108.00 | 108.00 | 60.00 | 60.00 |
Soybean meal, CP = 480 g/kg | 286.00 | 286.00 | 250.00 | 250.00 | 65.00 | 65.00 |
Sunflower meal, CP = 310 g/kg | 120.00 | 120.00 | ||||
Barley | 150.00 | 150.00 | ||||
Barley straw | 41.00 | 41.00 | ||||
Potato protein | 43.00 | 43.00 | ||||
Wheat bran | 30.00 | 30.00 | ||||
Soybean oil | 17.40 | 17.40 | 5.00 | 5.00 | 5.00 | 5.00 |
Oat hulls | 30.00 | 30.00 | 30.00 | 30.00 | 30.00 | 30.00 |
Calcium carbonate | 16.16 | 16.22 | 12.58 | 12.64 | 7.91 | 8.10 |
Monocalcium phosphate | 4.81 | 4.81 | 2.25 | 2.25 | 2.12 | 2.12 |
Filler (magnesium silicate) | 4.11 | 4.05 | 1.35 | 1.29 | 4.07 | 3.89 |
Sodium chloride | 2.79 | 2.79 | 3.03 | 3.03 | 2.52 | 2.51 |
Sodium bicarbonate | 2.29 | 2.29 | 0.47 | 0.47 | 0.85 | 0.85 |
Dl-Methionine 99% | 2.23 | 2.23 | 1.22 | 1.22 | 0.16 | 0.16 |
L-Lysine HCl 98% | 1.39 | 1.39 | 0.10 | 0.10 | 0.37 | 0.37 |
AXTRA XAP 1 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
L-Threonine 98% | 0.82 | 0.82 | ||||
Premix (oxide and sulfate) 2,3 | 5.00 | 5.00 | 5.00 | |||
Premix (hydroxychloride) 2,3 | 5.00 | 5.00 | 5.00 | |||
Calculated nutrients (analyzed nutrients 4) | ||||||
AME, Kcal/kg | 2850 | 2850 | 2750 | 2750 | 2700 | 2700 |
Crude protein, g/kg | 190.45 (196.5) | 190.45 (194.8) | 177.54 (172.0) | 177.54 (177.5) | 150.00 (155.3) | 150.00 (148.3) |
Crude fiber, g/kg | 34.18 (31.9) | 34.18 (31.0) | 38.37 (34.8) | 38.37 (39.0) | 70.93 (66.3) | 70.93 (67.4) |
Crude fat, g/kg | 43.98 (36.0) | 43.98 (35.0) | 32.34 (23.0) | 32.34 (22.0) | 35.46 (27.5) | 35.46 (23.5) |
Dig lysine, g/kg 5 | 9.50 | 9.50 | 7.80 | 7.80 | 6.20 | 6.20 |
Dig methionine, g/kg | 4.98 | 4.98 | 3.57 | 3.57 | 2.80 | 2.80 |
Dig methionine + cystine, g/kg | 7.70 | 7.70 | 6.01 | 6.01 | 4.84 | 4.84 |
Dig threonine, g/kg | 6.84 | 6.84 | 5.30 | 5.30 | 4.20 | 4.20 |
Calcium, g/kg | 9.00 (7.6) | 9.00 (7.7) | 7.60 (5.5) | 7.60 (5.5) | 6.70 (5.2) | 6.70 (5.5) |
Digestible phosphorus, g/kg | 3.80 | 3.80 | 3.30 | 3.30 | 2.90 | 2.90 |
Total phosphorus, g/kg | 4.53 (4.3) | 4.53 (4.1) | 3.99 (3.7) | 3.99 (3.9) | 3.44 (2.6) | 3.44 (2.9) |
Sodium, g/kg | 1.80 | 1.80 | 1.40 | 1.40 | 1.40 | 1.40 |
Chloride, g/kg | 2.50 | 2.50 | 2.50 | 2.50 | 2.50 | 2.50 |
Potassium, g/kg | 8.77 | 8.77 | 8.58 | 8.58 | 6.42 | 6.42 |
Magnesium, g/kg | 1.61 | 1.61 | 1.61 | 1.61 | 1.63 | 1.63 |
Manganese, mg/kg | 110 (90) | 110 (88) | 111 (81) | 111 (96) | 105 (72) | 105 (87) |
Zinc, mg/kg | 108 (79) | 108 (78) | 109 (73) | 109 (83) | 111 (78) | 111 (80) |
Copper, mg/kg | 20 (11) | 20 (9) | 21 (8) | 21 (9) | 21 (10) | 21 (10) |
Items | Oxide/Sulfate 1 | Hydroxychloride 2 | p-Value |
---|---|---|---|
Starter (1 to 3 weeks) 3 | |||
Body weight at 3 weeks, g | 221 ± 3.1 | 219 ± 3.1 | 0.615 |
Daily feed intake, g/bird/day | 15.6 ± 0.33 | 15.6 ± 0.33 | 0.973 |
Feed conversion ratio | 1.88 ± 0.012 | 1.90 ± 0.012 | 0.318 |
Grower (4 to 10 weeks) 3 | |||
Body weight at 10 weeks, g | 1131 ± 12.4 | 1152 ± 11.2 | 0.227 |
Daily feed intake, g/bird/day | 56.0 ± 0.97 | 59.7 ± 0.94 | 0.004 |
Feed conversion ratio | 3.02 ± 0.018 | 3.13 ± 0.016 | 0.002 |
Developer (11 to 16 weeks) 3 | |||
Body weight at 16 weeks, g | 1636 ± 22.5 | 1663 ± 20.3 | 0.355 |
Daily feed intake, g/bird/day | 81.1 ± 2.55 | 83.1 ± 2.25 | 0.167 |
Feed conversion ratio | 6.80 ± 0.205 | 6.84 ± 0.184 | 0.865 |
Overall (1 to 16 weeks) 3 | |||
Daily feed intake, g/bird/day | 54.3 ± 0.92 | 56.5 ± 0.85 | 0.059 |
Feed conversion ratio | 3.803 ± 0.0298 | 3.891 ± 0.0280 | 0.023 |
Items | Oxide/Sulfate 1 | Hydroxychloride 2 | p-Value |
---|---|---|---|
18–24 weeks 3 | |||
Daily feed intake, g | 115.7 ± 1.73 | 114.6 ± 1.75 | 0.674 |
Hen-day egg production, % | 97.91 ± 0.834 | 98.63 ± 0.851 | 0.570 |
Egg weight, g | 55.4 ± 0.58 | 56.3 ± 0.58 | 0.270 |
Egg mass, g/d | 54.24 ± 0.654 | 55.53 ± 0.662 | 0.172 |
Feed conversion ratio | 2.149 ± 0.0436 | 2.107 ± 0.0438 | 0.501 |
Body weight at 25 weeks of age, g | 1853 ± 30.3 | 1896 ± 30.3 | 0.322 |
25–37 weeks 3 | |||
Daily feed intake, g | 123.3 ± 2.18 | 129.4 ± 2.13 | <0.001 |
Hen-day egg production, % | 98.32 ± 0.256 | 99.07 ± 0.243 | 0.589 |
Egg weight, g | 60.1 ± 0.70 | 62.4 ± 0.68 | 0.003 |
Egg mass, g/d | 59.09 ± 0.770 | 61.82 ± 0.753 | <0.001 |
Feed conversion ratio | 2.102 ± 0.0269 | 2.098 ± 0.0257 | 0.880 |
38–50 weeks 3 | |||
Daily feed intake, g | 121.3 ± 2.47 | 128.7 ± 2.42 | <0.001 |
Hen-day egg production, % | 98.16 ± 0.404 | 96.70 ± 0.392 | 0.760 |
Egg weight, g | 61.5 ± 0.81 | 64.2 ± 0.78 | <0.001 |
Egg mass, g/d | 60.37 ± 0.959 | 62.08 ± 0.931 | 0.076 |
Feed conversion ratio | 2.019 ± 0.0582 | 2.145 ± 0.0557 | 0.081 |
Body weight at 50 weeks of age, g | 2055 ± 56.0 | 2107 ± 52.1 | 0.502 |
Items | Oxide/Sulfate 1 | Hydroxychloride 2 | p-Value |
---|---|---|---|
25 to 37 weeks 3 | |||
Albumin percentage | 63.50 ± 0.367 | 64.62 ± 0.354 | 0.813 |
Yolk percentage | 26.27 ± 0.317 | 25.48 ± 0.329 | 0.092 |
Eggshell percentage | 10.23 ± 0.126 | 9.99 ± 0.128 | 0.206 |
Breaking strength, g | 6131 ± 161.5 | 5935 ± 153.9 | 0.382 |
Eggshell thickness, mm | 0.379 ± 0.0075 | 0.367 ± 0.0073 | 0.265 |
Shell weight per unit surface area | 85.97 ± 0.999 | 84.89 ± 1.118 | 0.453 |
38 to 50 weeks 3 | |||
Albumin percentage | 63.05 ± 0.452 | 62.60 ± 0.468 | 0.191 |
Yolk percentage | 26.91 ± 0.350 | 27.72 ± 0.354 | 0.116 |
Eggshell percentage | 10.04 ± 0.120 | 9.68 ± 0.117 | 0.039 |
Breaking strength, g | 5802 ± 206.1 | 5528 ± 203.0 | 0.346 |
Eggshell thickness, mm | 0.376 ± 0.0066 | 0.372 ± 0.0067 | 0.685 |
Shell weight per unit surface area | 85.13 ± 0.975 | 83.05 ± 0.954 | 0.138 |
Items | Oxide/Sulfate 1 | Hydroxychloride 2 | p-Value |
---|---|---|---|
16 weeks 3 | |||
Dry weight, g | 10.1 ± 0.20 | 10.3 ± 0.20 | 0.529 |
Ash content, g | 3.3 ± 0.07 | 3.4 ± 0.07 | 0.186 |
Ash, % | 32.3 ± 0.53 | 33.0 ± 0.53 | 0.311 |
Breaking strength, g | 15,380 ± 432.4 | 14,652 ± 432.4 | 0.247 |
Cortical composition, % of DM | |||
Organic matter | 23.0 ± 6.54 | 22.3 ± 6.54 | 0.637 |
Carbonate | 27.8 ± 0.80 | 28.3 ± 0.80 | 0.678 |
Phosphate | 49.1 ± 4.16 | 49.2 ± 4.16 | 0.914 |
50 weeks 4 | |||
Dry weight, g | 7.6 ± 0.28 | 9.0 ± 0.24 | 0.014 |
Ash content, g | 3.9 ± 0.32 | 4.0 ± 0.32 | 0.908 |
Ash, % | 46.6 ± 1.12 | 44.6 ± 1.12 | 0.252 |
Breaking strength, g | 20,293 ± 2137.2 | 20,772 ± 2137.2 | 0.879 |
Cortical composition, % of DM | |||
Organic matter | 25.6 ± 1.80 | 26.4 ± 1.38 | 0.600 |
Carbonate | 41.0 ± 3.30 | 32.2 ± 3.30 | 0.132 |
Phosphate | 33.9 ± 11.16 | 41.7 ± 8.05 | 0.347 |
Medullary composition, % of DM | |||
Organic matter | 60.6 ± 6.25 | 59.0 ± 5.11 | 0.418 |
Carbonate | 6.0 ± 1.02 | 5.1 ± 0.59 | 0.320 |
Phosphate | 33.4 ± 9.24 | 35.9 ± 5.34 | 0.833 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alfonso-Carrillo, C.; Akbari Moghaddam Kakhki, R.; Garcia-Ruiz, A.I. Comparison of Hydroxychloride Versus Oxide and Sulfate Sources of Manganese, Zinc, and Copper in Rearing Diets on Pullet Growth, Tibia Traits, and Egg Production and Eggshell Quality in ISA Brown Hens up to 50 Weeks. Animals 2024, 14, 3581. https://doi.org/10.3390/ani14243581
Alfonso-Carrillo C, Akbari Moghaddam Kakhki R, Garcia-Ruiz AI. Comparison of Hydroxychloride Versus Oxide and Sulfate Sources of Manganese, Zinc, and Copper in Rearing Diets on Pullet Growth, Tibia Traits, and Egg Production and Eggshell Quality in ISA Brown Hens up to 50 Weeks. Animals. 2024; 14(24):3581. https://doi.org/10.3390/ani14243581
Chicago/Turabian StyleAlfonso-Carrillo, Clara, Reza Akbari Moghaddam Kakhki, and Ana Isabel Garcia-Ruiz. 2024. "Comparison of Hydroxychloride Versus Oxide and Sulfate Sources of Manganese, Zinc, and Copper in Rearing Diets on Pullet Growth, Tibia Traits, and Egg Production and Eggshell Quality in ISA Brown Hens up to 50 Weeks" Animals 14, no. 24: 3581. https://doi.org/10.3390/ani14243581
APA StyleAlfonso-Carrillo, C., Akbari Moghaddam Kakhki, R., & Garcia-Ruiz, A. I. (2024). Comparison of Hydroxychloride Versus Oxide and Sulfate Sources of Manganese, Zinc, and Copper in Rearing Diets on Pullet Growth, Tibia Traits, and Egg Production and Eggshell Quality in ISA Brown Hens up to 50 Weeks. Animals, 14(24), 3581. https://doi.org/10.3390/ani14243581