Effects of Isoflavone Intake on Energy Requirement, Satiety, and Body Composition of Neutered Adult Cats
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Diets
2.2. Experimental Design
2.3. Computed Tomography
2.4. Satiety Challenges
2.5. Hormone Concentrations
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Megha, P.S.; Ramnath, V.; Karthiayini, K.; Beena, V.; Vishnudas, K.V.; Sapna, P.P. Free Isoflavone (Daidzein and Genistein) Content in Soybeans, Soybean Meal and Dried Soy Hypocotyl Sprout Using High Performance Liquid Chromatography (HPLC). J. Sci. Res. Rep. 2024, 30, 803–812. [Google Scholar] [CrossRef]
- Hsiao, Y.H.; Ho, C.T.; Pan, M.H. Bioavailability and Health Benefits of Major Isoflavone Aglycones and Their Metabolites. J. Funct. Foods 2020, 74, 104164. [Google Scholar] [CrossRef]
- Jiang, Y.; Gong, P.; Madak-Erdogan, Z.; Martin, T.; Jeyakumar, M.; Carlson, K.; Khan, I.; Smillie, T.J.; Chittiboyina, A.G.; Rotte, S.C.K.; et al. Mechanisms Enforcing the Estrogen Receptor β Selectivity of Botanical Estrogens. FASEB J. 2013, 27, 4406–4418. [Google Scholar] [CrossRef]
- Kuiper, G.G.J.M.; Lemmen, J.G.; Carlsson, B.O.; Corton, J.C.; Safe, S.H.; Van Der Saag, P.T.; Van Der Burg, B.; Gustafsson, J.-Å. Interaction of Estrogenic Chemicals and Phytoestrogens with Estrogen Receptor. Endocrinoloy 1998, 139, 4252–4263. [Google Scholar] [CrossRef]
- Kurzer, M.S.; Xu, X. Dietary Phytoestrogens. Annu. Rev. Nutr. 1997, 17, 353–381. [Google Scholar] [CrossRef] [PubMed]
- Redmon, J.M.; Shrestha, B.; Cerundolo, R.; Court, M.H. Soy Isoflavone Metabolism in Cats Compared with Other Species: Urinary Metabolite Concentrations and Glucuronidation by Liver Microsomes. Xenobiotica 2016, 46, 406–415. [Google Scholar] [CrossRef]
- Mayo, B.; Vázquez, L.; Flórez, A.B. Equol: A Bacterial Metabolite from the Daidzein Isoflavone and Its Presumed Beneficial Health Effects. Nutrients 2019, 11, 2231. [Google Scholar] [CrossRef]
- Nakai, S.; Fujita, M.; Kamei, Y. Health Promotion Effects of Soy Isoflavones. J. Nutr. Sci. Vitaminol. 2020, 66, 502–507. [Google Scholar] [CrossRef] [PubMed]
- Court, M.H.; Freeman, L.M. Identification and Concentration of Soy in Commercial Cat Foods. Am. J. Vet. Res. 2002, 63, 181–185. [Google Scholar] [CrossRef]
- Bell, K.M.; Rutherfurd, S.M.; Hendriks, W.H. The Iso□avone Content of Commercially-Available Feline Diets in New Zealand. N. Z. Vet. J. 2006, 54, 103–108. [Google Scholar] [CrossRef]
- Cave, N.J.; Backus, R.C.; Marks, S.L.; Klasing, K.C. The Bioavailability and Disposition Kinetics of Genistein in Cats. J. Vet. Pharmacol. Ther. 2007, 30, 327–335. [Google Scholar] [CrossRef] [PubMed]
- Whitehouse-Tedd, K.M.; Cave, N.J.; Ugarte, C.E.; Waldron, L.A.; Prasain, J.K.; Arabshahi, A.; Barnes, S.; Hendriks, W.H.; Thomas, D.G. Isoflavone Metabolism in Domestic Cats (Felis catus): Comparison of Plasma Metabolites Detected after Ingestion of Two Different Dietary Forms of Genistein and Daidzein. J. Anim. Sci. 2013, 91, 1295–1306. [Google Scholar] [CrossRef] [PubMed]
- Nogowski, L.; Nowicka, E.; Szkudelskil, T.; Szkudelska, K. The Effect of Genistein on Some Hormones and Metabolic Parameters in the Immature, Female Rats. J. Anim. Feed Sci. 2007, 16, 274–282. [Google Scholar] [CrossRef]
- Shrode, R.L.; Cady, N.; Jensen, S.N.; Borcherding, N.; Mangalam, A.K. Isoflavone Consumption Reduces Inflammation through Modulation of Phenylalanine and Lipid Metabolism. Metabolomics 2022, 18, 84. [Google Scholar] [CrossRef] [PubMed]
- Pinto, D.C.G.A.; Simões, M.A.M.; Silva, A.M.S. Genista tridentata L.: A Rich Source of Flavonoids with Anti-Inflammatory Activity. Medicines 2020, 7, 31. [Google Scholar] [CrossRef]
- Fusi, F.; Trezza, A.; Tramaglino, M.; Sgaragli, G.; Saponara, S.; Spiga, O. The Beneficial Health Effects of Flavonoids on the Cardiovascular System: Focus on K+ Channels. Pharmacol. Res. 2020, 152, 104625. [Google Scholar] [CrossRef]
- Rivera, P.; Pérez-Martín, M.; Pavón, F.J.; Serrano, A.; Crespillo, A.; Cifuentes, M.; López-Ávalos, M.D.; Grondona, J.M.; Vida, M.; Fernández-Llebrez, P.; et al. Pharmacological Administration of the Isoflavone Daidzein Enhances Cell Proliferation and Reduces High Fat Diet-Induced Apoptosis and Gliosis in the Rat Hippocampus. PLoS ONE 2013, 8, e64750. [Google Scholar] [CrossRef]
- Jeong, E.W.; Dhungana, S.K.; Yang, Y.S.; Baek, Y.; Seo, J.H.; Kang, B.K.; Jung, C.S.; Han, S.I.; Lee, H.G. Black and Yellow Soybean Consumption Prevents High-Fat Diet-Induced Obesity by Regulating Lipid Metabolism in C57BL/6 Mice. Evid.-Based Complement. Altern. Med. 2023, 2023, 6139667. [Google Scholar] [CrossRef]
- Naaz, A.; Yellayi, S.; Zakroczymski, M.A.; Bunick, D.; Doerge, D.R.; Lubahn, D.B.; Helferich, W.G.; Cooke, P.S. The Soy Isoflavone Genistein Decreases Adipose Deposition in Mice. Endocrinology 2003, 144, 3315–3320. [Google Scholar] [CrossRef]
- Wall, M.; Cave, N.J.; Vallee, E. Owner and Cat-Related Risk Factors for Feline Overweight or Obesity. Front. Vet. Sci. 2019, 6, 266. [Google Scholar] [CrossRef]
- Smit, M.; Corner-Thomas, R.A.; Weidgraaf, K.; Thomas, D.G. Association of Age and Body Condition with Physical Activity of Domestic Cats (Felis catus). Appl. Anim. Behav. Sci. 2022, 248, 105584. [Google Scholar] [CrossRef]
- Shepherd, M. Canine and Feline Obesity Management. Vet. Clin. N. Am.-Small Anim. Pract. 2021, 51, 653–667. [Google Scholar] [CrossRef] [PubMed]
- Laflamme, D.P. Development and Validation of a Body Condition Score System for Cats: A Clinical Tool. Feline Pract. 1997, 25, 13–18. [Google Scholar]
- FEDIAF. Nutritional Guidelines For Complete and Complementary Pet Food for Cats and Dogs; FEDIAF: Bruxelles, Belgium, 2017. [Google Scholar]
- Ishioka, K.; Okumura, M.; Sagawa, M.; Nakadomo, F.; Kimura, K.; Saito, M. Computed Tomographic Assessment of Body Fat in Beagles. Vet. Radiol. Ultrasound 2005, 46, 49–53. [Google Scholar] [CrossRef]
- Buelund, L.E.; Nielsen, D.H.; Mcevoy, F.J.; Svalastoga, E.L.; Bjornvad, C.R. Measurement of Body Composition in Cats Using Computed Tomography and Dual Energy X-Ray Absorptiometry. Vet. Radiol. Ultrasound 2011, 52, 179–184. [Google Scholar] [CrossRef]
- Bosch, G.; Verbrugghe, A.; Hesta, M.; Holst, J.J.; Van Der Poel, A.F.B.; Janssens, G.P.J.; Hendriks, W.H. The Effects of Dietary Fibre Type on Satiety-Related Hormones and Voluntary Food Intake in Dogs. Br. J. Nutr. 2009, 102, 318–325. [Google Scholar] [CrossRef]
- Ferreira, E.B.; Cavalcanti, P.P.; Nogueira, D.A. ExpDes.Pt: Pacote Experimental Designs (Portuguese). R Package Version 1.2.0. 2018. Available online: https://CRAN.R-project.org/package=ExpDes.pt (accessed on 3 March 2019).
- Fox, J.; Weisberg, S. An {R} Companion to Applied Regression; Sage: Thousand Oaks, CA, USA, 2011. [Google Scholar]
- Pinheiro, J.; Bates, D.; Debroy, S.; Sarkar, D.R. Core Team: Linear and Nonlinear Mixed Effects Models. R Package Version 3.1-137 2018. Available online: https://CRAN.R-project.org/package=nlme (accessed on 3 March 2019).
- Cave, N.J.; Backus, R.C.; Marks, S.L.; Klasing, K.C. Oestradiol, but Not Genistein, Inhibits the Rise in Food Intake Following Gonadectomy in Cats, but Genistein Is Associated with an Increase in Lean Body Mass. J. Anim. Physiol. Anim. Nutr. 2007, 91, 400–410. [Google Scholar] [CrossRef]
- Fernandez-Garcia, J.M.; Carrillo, B.; Tezanos, P.; Collado, P.; Pinos, H. Genistein during Development Alters Differentially the Expression of POMC in Male and Female Rats. Metabolites 2021, 11, 293. [Google Scholar] [CrossRef]
- Parker, M.; Challet, E.; Deputte, B.; Ract-Madoux, B.; Faustin, M.; Serra, J. Seasonal Effects on Locomotor and Feeding Rhythms in Indoor Cats. J. Vet. Behav. 2022, 48, 56–67. [Google Scholar] [CrossRef]
- Cave, N.J.; Backus, R.C.; Marks, S.L.; Klasing, K.C. Oestradiol and Genistein Reduce Food Intake in Male and Female Overweight Cats after Gonadectomy. N. Z. Vet. J. 2007, 55, 113–119. [Google Scholar] [CrossRef]
- Mamagkaki, A.; Bouris, I.; Parsonidis, P.; Vlachou, I.; Gougousi, M.; Papasotiriou, I. Genistein as a Dietary Supplement; Formulation, Analysis and Pharmacokinetics Study. PLoS ONE 2021, 16, e0250599. [Google Scholar] [CrossRef] [PubMed]
- Xiao, C.W.; Carbonel, A.A.; Lima, P.D.A.; Hendry, A.; Tsang, B.K. Consumption of Soya Isoflavones Improved Polycystic Ovary Syndrome (PCOS)-Associated Metabolic Disorders in a Rat Model. Br. J. Nutr. 2024, 132, 416–424. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.R.; Shim, J.; Kim, M.J. Genistin: A Novel Potent Anti-Adipogenic and Anti-Lipogenic Agent. Molecules 2020, 25, 2042. [Google Scholar] [CrossRef] [PubMed]
- Szkudelska, K.; Nogowski, L.; Szkudelski, T. Genistein Affects Lipogenesis and Lipolysis in Isolated Rat Adipocytes. J. Steroid Biochem. Mol. Biol. 2000, 75, 265–271. [Google Scholar] [CrossRef]
- Tan, J.; Huang, C.; Luo, Q.; Liu, W.; Cheng, D.; Li, Y.; Xia, Y.; Li, C.; Tang, L.; Fang, J.; et al. Soy Isoflavones Ameliorate Fatty Acid Metabolism of Visceral Adipose Tissue by Increasing the AMPK Activity in Male Rats with Diet-Induced Obesity (DIO). Molecules 2019, 24, 2809. [Google Scholar] [CrossRef]
- Bosch, G.; Gilbert, M.; Beerda, B. Properties of Foods That Impact Appetite Regulation in Cats. Front. Anim. Sci. 2022, 3, 873924. [Google Scholar] [CrossRef]
- Wei, A.; Fascetti, A.J.; Kim, K.; Lee, A.; Graham, J.L.; Havel, P.J.; Ramsey, J.J. Early Effects of Neutering on Energy Expenditure in Adult Male Cats. PLoS ONE 2014, 9, e89557. [Google Scholar] [CrossRef]
- Merenda, M.E.Z.; Sato, J.; Scheibel, S.; Uemoto, A.T.; Rossoni, D.F.; dos Santos, M.P.; Pereira, L.C.; Ribeiro, L.B.; Vasconcellos, R.S. Growth Curve and Energy Intake in Male and Female Cats. Top. Companion Anim. Med. 2021, 44, 100518. [Google Scholar] [CrossRef]
- Allaway, D.; Gilham, M.; Colyer, A.; Morris, P.J. The Impact of Time of Neutering on Weight Gain and Energy Intake in Female Kittens. J. Nutr. Sci. 2017, 6, e19. [Google Scholar] [CrossRef]
- Salt, C.; Butterwick, R.F.; Henzel, K.S.; German, A.J. Comparison of Growth in Neutered Domestic Shorthair Kittens with Growth in Sexually-Intact Cats. PLoS ONE 2023, 18, e0283016. [Google Scholar] [CrossRef]
- Tack, J.; Verbeure, W.; Mori, H.; Schol, J.; Van den Houte, K.; Huang, I.H.; Balsiger, L.; Broeders, B.; Colomier, E.; Scarpellini, E.; et al. The Gastrointestinal Tract in Hunger and Satiety Signalling. United Eur. Gastroenterol. J. 2021, 9, 727–734. [Google Scholar] [CrossRef] [PubMed]
- Neyens, D.; Zhao, H.; Huston, N.J.; Wayman, G.A.; Ritter, R.C.; Appleyard, S.M. Leptin Sensitizes NTS Neurons to Vagal Input by Increasing Postsynaptic NMDA Receptor Currents. J. Neurosci. 2020, 40, 7054–7064. [Google Scholar] [CrossRef] [PubMed]
- Havel, P.J. Mechanisms Regulating Leptin Production: Implications for Control of Energy Balance: Editorial. Am. J. Clin. Nutr. 1999, 70, 305–306. [Google Scholar] [CrossRef] [PubMed]
- Norton, L.; Shannon, C.; Gastaldelli, A.; DeFronzo, R.A. Insulin: The Master Regulator of Glucose Metabolism. Metabolism 2022, 129, 155142. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Liu, R.; Hawkins, M.; Barzilai, N.; Rossetti, L. A Nutrient-Sensing Pathway Regulates Leptin Gene Expression in Muscle and Fat. Nature 1998, 393, 684–688. [Google Scholar] [CrossRef]
- Szkudelski, T.; Nogowski, L.; Pruszyńska-Oszmałek, E.; Kaczmarek, P.; Szkudelska, K. Genistein Restricts Leptin Secretion from Rat Adipocytes. J. Steroid Biochem. Mol. Biol. 2005, 96, 301–307. [Google Scholar] [CrossRef]
Control Diet | |
---|---|
Dry matter (%) | 90.94 |
Chemical composition on DM basis (%) | |
Organic matter | 93.41 |
Crude protein | 46.27 |
Fat | 12.64 |
Ash | 6.59 |
Crude fiber | 1.73 |
Nitrogen-free extract | 17.13 |
Gross energy (kcal/kg) | 5265.57 |
Metabolizable energy (kcal/kg) | 4098.05 |
Group | Time (Days) | Mean | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|---|
1–24 | 25–48 | 49–72 | 73–97 | Group | Time | GxT | |||
Control | 3.73 | 3.77 | 3.81 | 3.83 | 3.790 | 0.027 | 0.477 | 0.967 | 0.781 |
Isoflavone | 3.61 | 3.68 | 3.72 | 3.71 | 3.680 | ||||
Mean | 3.67 | 3.75 | 3.76 | 3.76 |
Group | Time (Days) | Mean | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|---|
1–24 | 25–48 | 49–72 | 73–97 | Group | Time | GxT | |||
Control | 71.36 | 79.46 | 84.36 | 79.02 | 78.50 | 1.660 | 0.073 | <0.0001 | 0.085 |
Isoflavone | 67.76 | 72.69 | 79.10 | 76.67 | 74.01 | ||||
Mean | 69.41 c | 75.93 b | 81.35 a | 78.64 ab |
Group | Time (Days) | Mean | SEM | p-Value | |||
---|---|---|---|---|---|---|---|
0 | 97 | Group | Time | GxT | |||
Total body adipose tissue (%) | |||||||
Control | 24.81 | 22.88 | 23.85 | 2.732 | 0.105 | 0.461 | 0.574 |
Isoflavone | 20.16 | 22.38 | 21.27 | ||||
Mean | 22.49 | 22.63 | |||||
Intra-abdominal adipose tissue (%) | |||||||
Control | 22.51 | 18.84 | 20.68 | 2.495 | 0.091 | 0.176 | 0.829 |
Isoflavone | 17.64 | 18.34 | 17.99 | ||||
Mean | 20.08 | 18.59 | |||||
Subcutaneous adipose tissue (%) | |||||||
Control | 2.30 | 4.04 | 3.17 | 0.551 | 0.441 | 0.0001 | 0.432 |
Isoflavone | 2.52 | 4.04 | 3.28 | ||||
Mean | 2.41 | 4.04 |
Group | Time (h) | Mean | SEM | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Day 19 | 1 | 2 | 3 | 4 | 5 | Group | Time | GxT | ||
Control | 22.50 | 28.88 | 32.63 | 37.13 | 41.00 | 32.42 | 1.187 | 0.534 | <0.0001 | 0.116 |
Isoflavone | 26.50 | 33.25 | 36.38 | 38.75 | 40.00 | 34.97 | ||||
Mean | 24.50 d | 31.06 c | 34.50 b | 37.94 a | 40.50 a | |||||
Day 44 | 1 | 2 | 3 | 4 | 5 | Mean | SEM | Group | Time | GxT |
Control | 18.13 | 23.50 | 28.75 | 29.50 | 35.00 | 26.97 | 1.540 | 0.215 | <0.0001 | 0.591 |
Isoflavone | 25.88 | 29.00 | 34.88 | 37.50 | 42.50 | 33.95 | ||||
Mean | 22.00 d | 26.25 c | 31.81 b | 33.50 b | 38.75 a |
Group | Time (h) | Mean | SEM | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|---|
0 (Fast) | 1 | 2 | 4 | 6 | Group | Time | GxT | |||
Control | 301.30 | 360.00 | 279.20 | 335.50 | 413.30 | 337.84 | 27.399 | 0.555 | 0.028 | 0.275 |
Isoflavone | 231.80 | 228.80 | 282.30 | 379.30 | 361.50 | 296.70 | ||||
Mean | 266.55 b | 294.37 ab | 280.72 b | 357.37 ab | 387.37 a | |||||
Control | 60.18 | 82.26 | 75.23 | 79.37 | 108.82 | 81.17 | 12.937 | 0.719 | 0.094 | 0.072 |
Isoflavone | 53.24 | 62.93 | 100.51 | 76.20 | 62.29 | 71.03 | ||||
Mean | 56.71 | 72.59 | 87.87 | 77.78 | 85.55 | |||||
Control | 5164.00 | 5257.00 | 4751.75 | 5866.25 | 7000.50 | 5607.90 | 511.615 | 0.207 | 0.012 | 0.677 |
Isoflavone | 3738.75 | 3492.25 | 3627.75 | 4782.00 | 4628.00 | 4053.75 | ||||
Mean | 4451.37 b | 4374.62 b | 4189.75 b | 5324.12 ab | 5814.25 a | |||||
Control | 256.75 | 276.00 | 255.50 | 249.25 | 266.25 | 260.75 | 22.853 | 0.888 | 0.651 | 0.365 |
Isoflavone | 234.00 | 248.00 | 258.25 | 267.50 | 259.25 | 253.40 | ||||
Mean | 245.37 | 262.00 | 256.87 | 258.37 | 262.75 | |||||
Control | 8.66 | 29.93 | 20.59 | 17.19 | 17.40 | 18.75 | 4.390 | 0.994 | 0.163 | 0.253 |
Isoflavone | 9.82 | 13.82 | 21.69 | 27.00 | 21.77 | 18.82 | ||||
Mean | 9.24 | 21.87 | 21.14 | 22.09 | 19.58 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yamada, A.L.Y.d.S.; Merenda, M.E.Z.; Pereira, L.C.; Bonneti, N.M.D.; Martins, I.d.O.; Komarcheuski, A.S.; Henríquez, L.B.F.; Watanabe, E.K.; Coelho, G.B.C.; Janeiro, V.; et al. Effects of Isoflavone Intake on Energy Requirement, Satiety, and Body Composition of Neutered Adult Cats. Animals 2024, 14, 3574. https://doi.org/10.3390/ani14243574
Yamada ALYdS, Merenda MEZ, Pereira LC, Bonneti NMD, Martins IdO, Komarcheuski AS, Henríquez LBF, Watanabe EK, Coelho GBC, Janeiro V, et al. Effects of Isoflavone Intake on Energy Requirement, Satiety, and Body Composition of Neutered Adult Cats. Animals. 2024; 14(24):3574. https://doi.org/10.3390/ani14243574
Chicago/Turabian StyleYamada, Ana Lúcia Yoshida da Silva, Mônica Estela Zambon Merenda, Layne Carolina Pereira, Nayara Maira Dalgallo Bonneti, Isabela de Oliveira Martins, Alina Stadnik Komarcheuski, Lucas Ben Fiuza Henríquez, Eduardo Kato Watanabe, Guilherme Bernardo Cornélio Coelho, Vanderly Janeiro, and et al. 2024. "Effects of Isoflavone Intake on Energy Requirement, Satiety, and Body Composition of Neutered Adult Cats" Animals 14, no. 24: 3574. https://doi.org/10.3390/ani14243574
APA StyleYamada, A. L. Y. d. S., Merenda, M. E. Z., Pereira, L. C., Bonneti, N. M. D., Martins, I. d. O., Komarcheuski, A. S., Henríquez, L. B. F., Watanabe, E. K., Coelho, G. B. C., Janeiro, V., Mascarenhas, N. M. F., & Vasconcellos, R. S. (2024). Effects of Isoflavone Intake on Energy Requirement, Satiety, and Body Composition of Neutered Adult Cats. Animals, 14(24), 3574. https://doi.org/10.3390/ani14243574