Phytase Improves Zinc Utilization by Broiler Chickens
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Bird Husbandry and Dietary Treatments
2.2. Growth Performance, Total Excreta, Ileal Contents
2.3. Analyses and Calculations
2.4. Blood and Tissue Sampling
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McCall, K.A.; Huang, C.; Fierke, C.A. Function and Mechanism of Zinc Metalloenzymes. J. Nutr. 2000, 130, 1437S–1446S. [Google Scholar] [CrossRef] [PubMed]
- Raulin, J. Etudes clinques sur la vegetation. Ann. Sci. Nat. Bot. 1869, 11, 93. [Google Scholar]
- Vallee, B.L. A Synopsis of Zinc Biology and Pathology in Zinc Enzymes. In Zinc Enzymes; Bertini, I., Gary, H.B., Eds.; Birkhauser: Boston, MA, USA, 1986. [Google Scholar]
- McCance, R.A.; Widdowson, E.M. The Absorption and Excretion of Zinc. Biochem. J. 1942, 36, 692–696. [Google Scholar] [CrossRef] [PubMed]
- Oestreicher, P.; Cousins, R.J. Zinc Uptake by Basolateral Membrane Vesicles from Rat Small Intestine. J. Nutr. 1989, 119, 639–646. [Google Scholar] [CrossRef]
- Tacnet, F.D.; Watkins, W.; Ripoche, P. Studies of Zinc Transport into Brush-Border Membrane Vesicles Isolated from Pig Small Intestine. Biochim. Biophys. Acta 1990, 1024, 323–330. [Google Scholar] [CrossRef]
- Yu, Y.; Lu, L.; Luo, X.G.; Liu, B. Kinetics of Zinc Absorption by In Situ Ligated Intestinal Loops of Broilers Involved in Zinc Transporters. Poult. Sci. 2008, 87, 1146–1155. [Google Scholar] [CrossRef]
- Cherian, M.G.; Goyer, R.A. Metallothioneins and Their Role in the Metabolism and Toxicity of Metals. Life Sci. 1978, 23, 1–9. [Google Scholar] [CrossRef]
- Davis, S.R.; Cousins, R.J. Metallothionein Expression in Animals: A Physiological Perspective on Function. J. Nutr. 2000, 130, 1085–1088. [Google Scholar] [CrossRef]
- NRC-National Research Council. Nutrient Requirements of Poultry, 9th ed.; National Academy Press: Washington, DC, USA, 1994.
- Underwood, E.J.; Suttle, N.F. Zinc. In The Mineral Nutrition of Livestock, 3rd ed.; CABI Publishing: Wallingford, UK, 1999; pp. 477–512. [Google Scholar]
- Sandström, B.; Lönnerdal, B. Promoters and Antagonists of Zinc Absorption. In Zinc in Human Biology; Mills, C.F., Ed.; Springer: New York, NY, USA, 1989; pp. 59–68. [Google Scholar]
- Angel, R.; Tamim, N.M.; Applegate, T.J.; Dhandu, A.S.; Ellestad, L.E. Phytic Acid Chemistry: Influence on Phytin-Phosphorus Availability and Phytase Efficacy. J. Appl. Poult. Res. 2002, 11, 471–480. [Google Scholar] [CrossRef]
- Eeckhout, W.; De Paepe, M. Total Phosphorus, Phytate-Phosphorus and Phytase Activity in Plant Feedstuffs. Anim. Feed Sci. Technol. 1994, 47, 19–29. [Google Scholar] [CrossRef]
- Rostagno, H.S.; Albino, L.F.T.; Calderano, A.A.; Hannas, M.I.; Sakomura, N.K.; Perazzo, F.G.; Rocha, G.C.; Saraiva, A.; Abreu, M.L.T.; Genova, J.L.; et al. Brazilian Tables for Poultry and Swine: Composition of Foods and Nutritional Requirements, 5th ed.; UFV: Viçosa, Brazil, 2024. [Google Scholar]
- Cowieson, A.J.; Ruckebusch, J.P.; Sorbara, J.O.B.; Wilson, J.W.; Guggenbuhl, P.; Roos, F.F. A Systematic View on the Effect of Phytase on Ileal Amino Acid Digestibility in Broilers. Anim. Feed Sci. Technol. 2017, 225, 182–194. [Google Scholar] [CrossRef]
- Feijo, J.C.; Vieira, S.L.; Horn, R.M.; Altevogt, W.E.; Tormes, G. Iron Requirements of Broiler Chickens as Affected by Supplemental Phytase. J. Anim. Sci. 2023, 101, skad265. [Google Scholar] [CrossRef] [PubMed]
- Soster, P.; Vieira, S.L.; Feijo, J.C.; Altevogt, W.E.; Tormes, G.B. Dietary Phytase Effects on Copper Requirements of Broilers. Front. Vet. Sci. 2023, 10, 1170488. [Google Scholar] [CrossRef] [PubMed]
- Young, R.J.; Edwards, H.M.; Gillis, M.B. Studies on Zinc in Poultry Nutrition: 2. Zinc Requirement and Deficiency Symptoms of Chicks. Poult. Sci. 1958, 37, 1100–1107. [Google Scholar] [CrossRef]
- Fundación Española para el Desarrollo de la Nutrición Animal. Necesidades Nutriticionales Para Avicultura: Normas FEDNA, 2nd ed.; Fundación Española para el Desarrollo de la Nutrición Animal: Madrid, Spain, 2018. [Google Scholar]
- Cobb-Vantress. Cobb500 Broiler Performance & Nutrition Supplement; Cobb-Vantress, Inc.: Siloam Springs, AR, USA, 2022. [Google Scholar]
- Aviagen. Ross 308, Ross 308 FF. Performance Objectives; Aviagen: Huntsville, AL, USA, 2022. [Google Scholar]
- EFSA FEEDAP Panel (EFSA Panel on Additives and Products or Substances Used in Animal Feed). Scientific Opinion on the Potential Reduction of the Currently Authorised Maximum Zinc Content in Complete Feed. EFSA J. 2014, 12, 3668. [Google Scholar] [CrossRef]
- Engelen, A.J.; Van der Heeft, F.C.; Randsdorp, P.H.G.; Smit, E.L.C. Simple and Rapid Determination of Phytase Activity. J. AOAC Int. 1994, 77, 760–764. [Google Scholar] [CrossRef]
- AOAC-International. Official Methods of Analysis, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2006. [Google Scholar]
- Vogtmann, H.; Pfirter, H.P.; Prabuck, A.L. A New Method of Determining Metabolisability of Energy and Digestibility of Fatty Acids in Broiler Diets. Br. Poult. Sci. 1975, 16, 531–534. [Google Scholar] [CrossRef]
- Choct, M.; Annison, G. Anti-Nutritive Effect of Wheat Pentosans in Broiler Chickens: Roles of Viscosity and Gut Microflora. Br. Poult. Sci. 1992, 33, 821–834. [Google Scholar] [CrossRef]
- Kong, C.; Adeola, O. Evaluation of Amino Acid and Energy Utilization in Dietstuff for Swine and Poultry Diets. Asian-Australas. J. Anim. Sci. 2014, 27, 917–925. [Google Scholar] [CrossRef]
- Leung, K.Y.; Mills, K.; Burren, K.A.; Copp, A.J.; Greene, N.D.E. Quantitative Analysis of Myo-Inositol in Urine, Blood, and Nutritional Supplements by High-Performance Liquid Chromatography Tandem Mass Spectrometry. J. Chromatogr. B Biomed. Appl. 2011, 879, 2759–2763. [Google Scholar] [CrossRef]
- Gao, R.; Yuan, Z.; Zhao, Z.; Gao, X. Mechanism of Pyrogallol Autoxidation and Determination of Superoxide Dismutase Enzyme Activity. Bioelectrochem. Bioenerg. 1998, 45, 41–45. [Google Scholar] [CrossRef]
- AOAC-International. Official Methods of Analysis, 16th ed.; AOAC International: Washington, DC, USA, 1995. [Google Scholar]
- Shapiro, S.S.; Wilk, M.B. An Analysis of Variance Test for Normality (Complete Samples). Biometrikam 1965, 52, 591–611. [Google Scholar] [CrossRef]
- Levene, H. Robust Tests for the Equality of Variance. In Contributions to Probability and Statistics; Olkin, I., Ed.; Stanford University Press: Palo Alto, CA, USA, 1960; pp. 278–292. [Google Scholar]
- SAS Institute Inc. SAS User’s Guide: Statistics, Version 9, 4th ed.; SAS Institute: Cary, NC, USA, 2012. [Google Scholar]
- Tukey, J.W. The Philosophy of Multiple Comparisons. Stat. Sci. 1991, 6, 100–116. [Google Scholar] [CrossRef]
- López-Gambero, A.J.; Sanjuan, C.; Castro, P.J.S.; Suárez, J.; Fonseca, F.R. The Biomedical Uses of Inositols: A Nutraceutical Approach to Metabolic Dysfunction in Aging and Neurodegenerative Diseases. Biomedicines 2020, 8, 295. [Google Scholar] [CrossRef] [PubMed]
- Aksorn, S.; Kanokkantapong, V.; Polprasert, C.; Noophan, P.; Khanal, S.K.; Wongkiew, S. Effects of Cu and Zn Contamination on Chicken Manure-Based Bioponics: Nitrogen Recovery, Bioaccumulation, Microbial Community, and Health Risk Assessment. J. Environ. Manag. 2022, 311, 114837. [Google Scholar] [CrossRef]
- Pereira, N.M.Z.; Ernani, P.B.; Sangoi, L. Disponibilidade de Zinco para o Milho Afetada pela Adição de Zn e pelo pH do Solo. Rev. Bras. Milho Sorgo 2007, 6, 273–284. [Google Scholar] [CrossRef]
- Addison, T.; Ghoshray, A. Discerning Trends in International Metal Prices in the Presence of Nonstationary Volatility. Resour. Energy Econ. 2023, 71, 101334. [Google Scholar] [CrossRef]
- Philippi, H.; Sommerfeld, V.; Olukosi, O.A.; Windisch, W.; Monteiro, A.; Rodehutscord, M. Effect of dietary zinc source, zinc concentration, and exogenous phytase on intestinal phytate degradation products, bone mineralization, and zinc status of broiler chickens. Poult. Sci. 2023, 102, 103160. [Google Scholar] [CrossRef]
- Valente, J.D.T.; Genova, J.L.; Kim, S.W.; Saraiva, A.; Rocha, G.C. Carbohydrases and Phytase in Poultry and Pig Nutrition: A Review beyond the Nutrients and Energy Matrix. Animals 2024, 14, 226. [Google Scholar] [CrossRef]
- Chang, L.; Chiang, S.H.; Saltiel, A.R. Insulin signaling and the regulation of glucose transport. Mol. Med. 2004, 10, 65–71. [Google Scholar] [CrossRef]
- Cowieson, A.J.; Aureli, R.; Guggenbuhl, P.; Fru-Nji, F. Possible Involvement of Myo-Inositol in the Physiological Response of Broilers to High Doses of Microbial Phytase. Anim. Prod. Sci. 2015, 55, 710. [Google Scholar] [CrossRef]
- Bassi, L.S.; Teixeira, L.V.; Sens, R.F.; Almeida, L.; Zavelinski, V.A.B.; Maiorka, A. High Doses of Phytase on Growth Performance, Bone Mineralization, Diet Utilization, and Plasmatic Myo-Inositol of Turkey Poults. Poult. Sci. 2021, 100, 101050. [Google Scholar] [CrossRef] [PubMed]
- Sens, R.F.; Bassi, L.S.; Almeida, L.M.; Rosso, D.F.; Teixeira, L.V.; Maiorka, A. Effect of Different Doses of Phytase and Protein Content of Soybean Meal on Growth Performance, Nutrient Digestibility, and Bone Characteristics of Broilers. Poult. Sci. 2021, 100, 100917. [Google Scholar] [CrossRef]
- Bassi, L.S.; Teixeira, L.V.; Sens, R.F.; Sonálio, K.C.; Santos, M.C.; Kuritza, L.N.; Maiorka, A. Effect of Phytase Supplementation and Drinking Water pH for Turkey Poults. Livest. Sci. 2022, 265, 105069. [Google Scholar] [CrossRef]
- Onosaka, S.; Cherian, M.G. The Induced Synthesis of Metallothionein in Various Tissues of Rat in Response to Metals. I. Effect of Repeated Injection of Cadmium Salts. Toxicology 1981, 22, 91–101. [Google Scholar] [CrossRef] [PubMed]
- Searle, P.F.; Davison, B.L.; Stuart, G.W.; Wilkie, T.M.; Norstedt, G.; Palmiter, R.D. Regulation, Linkage, and Sequence of Mouse Metallothionein I and II Genes. Mol. Cell. Biol. 1984, 4, 1221–1230. [Google Scholar] [CrossRef]
- Karin, M.; Slater, E.P.; Herschman, H.R. Regulation of Metallothionein Synthesis in HeLa Cells by Heavy Metals and Glucocorticoids. J. Cell. Physiol. 1981, 106, 63–74. [Google Scholar] [CrossRef]
- Noor, R.; Mittal, S.; Iqbal, J. Superoxide Dismutase: Applications and Relevance to Human Disease. Med. Sci. Monit. 2002, 8, RA210–RA215. [Google Scholar]
- Potter, S.Z.; Zhu, H.; Shaw, B.F.; Rodriguez, J.A.; Doucette, P.A.; Sohn, S.H.; Durazo, A.; Faull, K.F.; Gralla, E.B.; Nersissian, A.M.; et al. Binding of a Single Zinc Ion to One Subunit of Copper-Zinc Superoxide Dismutase Apoprotein Substantially Influences the Structure and Stability of the Entire Homodimeric Protein. J. Am. Chem. Soc. 2007, 129, 4575–4583. [Google Scholar] [CrossRef]
- Reeves, P.G.; Briske-Anderson, M.; Johnson, L. Physiologic Concentrations of Zinc Affect the Kinetics of Copper Uptake and Transport in the Human Intestinal Cell Model, Caco-2. J. Nutr. 1998, 128, 1794–1801. [Google Scholar] [CrossRef]
- Ogiso, T.; Ogawa, N.; Miura, T. Inhibitory Effect of High Dietary Zinc on Copper Absorption in Rats. II. Binding of Copper and Zinc to Cytosol Proteins in the Intestinal Mucosa. Chem. Pharm. Bull. 1979, 27, 515–521. [Google Scholar] [CrossRef] [PubMed]
- Samman, S. Dietary versus Cellular Zinc: The Antioxidant Paradox. Free Radic. Biol. Med. 1993, 14, 95–96. [Google Scholar] [CrossRef] [PubMed]
- Liao, X.; Ang, L.; Lu, L.; Li, S.; Liu, S.; Zhang, L.; Luo, X. Effects of Graded Levels of Zinc Oxide with an Organic Source of Zinc on Growth Performance, Carcass Traits, Meat Quality, and Zinc Status in Broilers. Biol. Trace Elem. Res. 2022, 200, 595–603. [Google Scholar]
- Zhang, T.Y.; Liu, L.L.; Zhang, J.L.; Zhang, N.; Yang, X.; Qu, H.X.; Xi, L.; Han, J.C. Effects of Dietary Zinc Levels on the Growth Performance, Organ Zinc Content, and Zinc Retention in Broiler Chickens. Rev. Bras. Cienc. Avic. 2018, 20, 127–132. [Google Scholar] [CrossRef]
- Chen, X.; He, C.; Zhang, K.; Wang, J.; Ding, X.; Zeng, Q.; Peng, H.; Bai, J.; Li, L.; Xuan, Y.; et al. Comparison of Zinc Bioavailability in Zinc-Glycine and Zinc-Methionine Chelates for Broilers Fed with a Corn-Soybean Meal Diet. Front. Physiol. 2022, 13, 983954. [Google Scholar] [CrossRef]
- Foust, R.D.; Phillips, M.; Hull, K.; Yehorova, D. Changes in Arsenic, Copper, Iron, Manganese, and Zinc Levels Resulting from the Application of Poultry Litter to Agricultural Soils. Toxics 2018, 6, 28. [Google Scholar] [CrossRef]
Ingredient, kg/ton | Depletion (1 to 7 d) | Experimental 2 (8 to 28 d) |
---|---|---|
Corn, 7.8% | 12.00 | 51.54 |
Soybean meal, 45% | - | 37.80 |
Soybean protein concentrate (60.0% CP) | 27.69 | - |
Polished white rice | 54.54 | - |
Soybean oil | 0.41 | 4.35 |
Calcium carbonate | 2.64 | 2.42 |
Phosphoric acid, 85% P | 1.49 | 1.46 |
Salt | 0.51 | 0.54 |
DL-Methionine, 99% | 0.30 | 0.32 |
L-Lysine HCl, 78% | 0.04 | 0.19 |
L-Threonine, 98.5% | 0.06 | 0.13 |
Choline chloride, 60% | 0.12 | 0.05 |
Vitamin and mineral mix 3 | 0.20 | 0.20 |
Celite 4 | - | 1.00 |
Total | 100.00 | 100.00 |
Calculated nutrient composition, % unless noted | ||
AMEn, kcal/kg | 2975 | 3000 |
CP | 23.1 (23.2 ± 1.54) | 21.6 (21.4 ± 0.38) |
Ca | 1.10 (1.09 ± 0.15) | 1.00 (1.17 ± 0.03) |
Available P | 0.50 | 0.48 |
Total P | 0.63 (0.67 ± 0.14) | 0.70 (0.69 ± 0.05) |
Na | 0.23 | 0.23 |
Choline, mg/kg | 1600 | 1600 |
Dig. Lys | 1.24 | 1.22 |
Dig. TSAA | 0.93 | 0.91 |
Dig. Thr | 0.84 | 0.82 |
Dig. Trp | 0.27 | 0.24 |
Dig.Val | 0.93 | 0.91 |
Dig. Arg | 1.59 | 1.34 |
Zn, mg/kg | 14.9 (18.9 ± 0.87) | 28.6 (30.1 ± 0.73) |
Phytase, FYT/kg 5 | None | 4000 (4150 ± 320 |
Phytase, FYT/kg 3 | BWG 2, g | FCR | FI, g | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
8–14 | 15–21 | 22–28 | 8–28 | 8–14 | 15–21 | 22–28 | 8–28 | 8–14 | 15–21 | 22–28 | 8–28 | |
None | 222 | 446 | 611 | 1279 | 1.284 | 1.354 | 1.460 | 1.392 | 285 | 604 | 892 | 1781 |
4000 | 241 | 461 | 633 | 1335 | 1.165 | 1.305 | 1.428 | 1.338 | 281 | 602 | 904 | 1787 |
Zn, mg/kg 4 | ||||||||||||
28.6 | 229 | 454 | 623 | 1306 | 1.257 | 1.348 | 1.431 | 1.372 | 288 | 612 | 892 | 1792 |
58.6 | 230 | 453 | 615 | 1298 | 1.204 | 1.348 | 1.450 | 1.371 | 277 | 611 | 892 | 1780 |
88.6 | 231 | 448 | 626 | 1305 | 1.225 | 1.325 | 1.460 | 1.372 | 283 | 594 | 914 | 1791 |
118.6 | 232 | 455 | 624 | 1311 | 1.219 | 1.320 | 1.448 | 1.363 | 283 | 601 | 904 | 1788 |
148.6 | 235 | 456 | 621 | 1312 | 1.212 | 1.307 | 1.430 | 1.348 | 285 | 596 | 888 | 1769 |
SEM | 1.631 | 2.398 | 3.177 | 5.337 | 0.009 | 0.0006 | 0.005 | 0.004 | 1.802 | 3.044 | 4.055 | 6.013 |
Probability | ||||||||||||
Phytase | <0.0001 | 0.0024 | 0.0003 | <0.0001 | <0.0001 | <0.0001 | 0.0023 | <0.0001 | 0.1766 | 0.7133 | 0.1185 | 0.6559 |
Zinc | 0.7699 | 0.8066 | 0.7687 | 0.8623 | 0.2866 | 0.0998 | 0.3025 | 0.0594 | 0.3780 | 0.2145 | 0.2193 | 0.7162 |
Phytase vs. Zinc | 0.6860 | 0.4096 | 0.0604 | 0.0664 | 0.8015 | 0.5554 | 0.1957 | 0.8977 | 0.1840 | 0.5400 | 0.2470 | 0.1588 |
Length | Proximal Epiphysis | Diaphysis | Distal Epiphysis | Weight | Ash | Zn 3 | |
---|---|---|---|---|---|---|---|
Phytase, FYT/kg 1 | cm | g | % | mg/kg | |||
None | 7.42 | 1.95 | 0.77 | 1.64 | 7.00 | 23.7 | 4.70 |
4000 | 7.46 | 1.98 | 0.76 | 1.66 | 7.12 | 23.5 | 4.98 |
Zn, mg/kg 2 | |||||||
28.6 | 7.49 | 1.99 | 0.75 | 1.68 | 6.99 | 23.5 | 4.23 b |
58.6 | 7.47 | 1.99 | 0.74 | 1.58 | 7.11 | 23.6 | 4.81 ab |
88.6 | 7.36 | 1.97 | 0.77 | 1.64 | 7.04 | 23.8 | 4.93 a |
118.6 | 7.44 | 1.93 | 0.76 | 1.67 | 7.03 | 23.6 | 5.03 a |
148.6 | 7.41 | 1.95 | 0.78 | 1.64 | 7.10 | 23.6 | 5.21 a |
SEM | 0.036 | 0.013 | 0.007 | 0.016 | 0.053 | 0.126 | 0.080 |
Probability | |||||||
Phytase | 0.6474 | 0.2340 | 0.2957 | 0.5611 | 0.2898 | 0.4066 | 0.0486 |
Zinc | 0.7886 | 0.4891 | 0.5462 | 0.3831 | 0.9388 | 0.9703 | 0.0009 |
Phytase vs. Zinc | 0.1001 | 0.1090 | 0.4574 | 0.8582 | 0.9141 | 0.8061 | 0.9596 |
Liver Zn | Metallothionein | CuZnSOD | Myo-Inositol Concentration | |
---|---|---|---|---|
Phytase, FYT/kg 2 | mg/kg 3,4 | (ng/mL) 3,5 | (U/mL) 6 | (µmol/dL) |
None | 88.0 | 6.79 | 10.86 | 140 |
4000 | 120.7 | 7.54 | 10.90 | 209 |
Zn, mg/kg 2 | ||||
28.6 | 94.1 b | 7.03 | 11.62 a | 180 |
58.6 | 104.0 ab | 7.11 | 11.54 a | 174 |
88.6 | 106.6 a | 7.15 | 11.17 ab | 174 |
118.6 | 107.3 a | 7.19 | 10.20 ab | 170 |
148.6 | 109.6 a | 7.34 | 9.89 b | 176 |
SEM | 2.212 | 0.120 | 0.208 | 4.662 |
Probability | ||||
Phytase | <0.0001 | <0.0029 | 0.8621 | <0.0001 |
Zinc | 0.0005 | 0.9441 | 0.0206 | 0.9728 |
Phytase vs. Zinc | 0.9142 | 0.9957 | 0.5698 | 0.9997 |
Apparent Ileal Digestibility 3 | Zn Excreta 4 | AME, kcal/kg | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Phytase, FYT/kg 2 | DM, % | IDEC, % | IDE, kcal/kg | CP, % | Zn, % | DM % | Intake mg/bird | Excretion mg/bird | Retention, mg/bird | Retention % | |
None | 67.8 | 70.9 | 3196 | 82.8 | 12.4 | 63.7 | 28.01 | 12.53 | 15.48 | 55.3 | 3115 |
4000 | 70.9 | 72.5 | 3264 | 84.7 | 24.6 | 66.0 | 27.65 | 10.25 | 17.40 | 62.9 | 3134 |
Zn, mg/kg 3 | |||||||||||
28.6 | 69.7 | 72.3 | 3268 | 84.4 | 13.3 | 64.7 | 9.86 e | 3.86 e | 6.00 e | 60.9 | 3131 |
58.6 | 69.6 | 72.1 | 3241 | 84.2 | 21.5 | 65.0 | 18.58 d | 7.29 d | 11.29 d | 60.8 | 3126 |
88.6 | 69.4 | 71.7 | 3216 | 83.9 | 20.3 | 65.4 | 27.17 c | 10.87 c | 16.32 c | 60.1 | 3123 |
118.6 | 69.8 | 71.3 | 3219 | 83.7 | 19.4 | 65.6 | 37.51 b | 15.58 b | 21.94 b | 58.5 | 3119 |
148.6 | 68.2 | 71.2 | 3207 | 82.6 | 17.9 | 64.5 | 46.03 a | 19.35 a | 26.65 a | 57.9 | 3125 |
SEM | 0.279 | 0.239 | 10.438 | 0.247 | 1.272 | 0.196 | 1.487 | 0.670 | 0.871 | 0.663 | 4.740 |
Probability | |||||||||||
Phytase | <0.0001 | <0.0005 | <0.0009 | <0.0001 | <0.0001 | <0.0001 | 0.5860 | <0.0001 | <0.0005 | <0.0001 | 0.0438 |
Zinc | 0.0955 | 0.4512 | 0.3139 | 0.1349 | 0.0948 | 0.2134 | <0.0001 | <0.0001 | <0.0001 | 0.1864 | 0.9577 |
Phytase*Zinc | 0.1763 | 0.8305 | 0.7679 | 0.9564 | 0.0686 | 0.0702 | 0.6898 | 0.3641 | 0.5515 | 0.7342 | 0.9839 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maria, D.D.B.; Vieira, S.L.; Horn, R.M.; Marchi, M.L.A.; Favero, A. Phytase Improves Zinc Utilization by Broiler Chickens. Animals 2024, 14, 3423. https://doi.org/10.3390/ani14233423
Maria DDB, Vieira SL, Horn RM, Marchi MLA, Favero A. Phytase Improves Zinc Utilization by Broiler Chickens. Animals. 2024; 14(23):3423. https://doi.org/10.3390/ani14233423
Chicago/Turabian StyleMaria, Douglas Drebes Brunhaus, Sergio Luiz Vieira, Raquel Medeiros Horn, Maria Luísa Adachi Marchi, and Andre Favero. 2024. "Phytase Improves Zinc Utilization by Broiler Chickens" Animals 14, no. 23: 3423. https://doi.org/10.3390/ani14233423
APA StyleMaria, D. D. B., Vieira, S. L., Horn, R. M., Marchi, M. L. A., & Favero, A. (2024). Phytase Improves Zinc Utilization by Broiler Chickens. Animals, 14(23), 3423. https://doi.org/10.3390/ani14233423