Effects of Dietary Supplementation of DL-Methionine or DL-Methionine Hydroxyl Analogue (MHA-Ca) on Growth Performance and Blood and Liver Redox Status in Growing Pigs
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Trials and Growth Performance Measurements
2.2. Tissue Sample Collection and Laboratory Analysis
2.3. Data Statistical Analysis
3. Results and Discussion
3.1. Growth Performance of the Pigs
3.2. Antioxidative Status of the Pigs
3.2.1. Malondialdehyde (MDA) Content in Serum and Liver
3.2.2. Total Antioxidant Capacity (TAC) in Serum
3.2.3. Glutathione (GSH) Content in Serum
3.2.4. Glutathione Peroxidase (GPX) Activity in Serum and Liver
3.2.5. Superoxide Dismutase (SOD) Activity in Serum and Liver
3.2.6. Catalase (CAT) Activity in Serum and Liver
3.3. Overall Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Blachier, F.; Wu, G.; Yin, Y. (Eds.) Nutritional and Physiological Functions of Amino Acids in Pigs; Springer: Vienna, Austria, 2013; Available online: https://link.springer.com/book/10.1007/978-3-7091-1328-8 (accessed on 12 June 2024).
- Yang, Z.; Htoo, J.K.; Liao, S.F. Methionine nutrition in swine and related monogastric animals: Beyond protein biosynthesis. Anim. Feed Sci. Technol. 2020, 268, 114608. [Google Scholar] [CrossRef]
- Opapeju, F.O.; Htoo, J.K.; Dapoza, C.; Nyachoti, C.M. Bioavailability of methionine hydroxy analog-calcium salt relative to DL-methionine to support nitrogen retention and growth in starter pigs. Animal 2012, 6, 1750–1756. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.B.; Ferket, P.; Park, I.; Malheiros, R.D.; Kim, S.W. Effects of feed grade L-methionine on intestinal redox status, intestinal development, and growth performance of young chickens compared with conventional DL-methionine. J. Anim. Sci. 2015, 93, 2977–2986. [Google Scholar] [CrossRef] [PubMed]
- Estévez, M.; Geraert, P.A.; Liu, R.; Delgado, J.; Mercier, Y.; Zhang, W. Sulphur amino acids, muscle redox status and meat quality: More than building blocks—Invited review. Meat Sci. 2020, 163, 108087. [Google Scholar] [CrossRef]
- Swennen, Q.; Geraert, P.A.; Mercier, Y.; Everaert, N.; Stinckens, A.; Willemsen, H.; Li, Y.; Decuypere, E.; Buyse, J. Effects of dietary protein content and 2-hydroxy-4-methylthiobutanoic acid or DL-methionine supplementation on performance and oxidative status of broiler chickens. Br. J. Nutr. 2011, 106, 1845–1854. [Google Scholar] [CrossRef] [PubMed]
- Lefaucheur, L.; Le Dividich, J.; Mourot, J.; Monin, G.; Ecolan, P.; Krauss, D. Influence of environmental temperature on growth, muscle and adipose tissue metabolism, and meat quality in swine1. J. Anim. Sci. 1991, 69, 2844–2854. [Google Scholar] [CrossRef]
- Lv, M.; Yu, B.; Mao, X.B.; Zheng, P.; He, J.; Chen, D.W. Responses of growth performance and tryptophan metabolism to oxidative stress induced by diquat in weaned pigs. Animal 2012, 6, 928–934. [Google Scholar] [CrossRef]
- Cao, S.; Wu, H.; Wang, C.; Zhang, Q.; Jiao, L.; Lin, F.; Hu, C.H. Diquat-induced oxidative stress increases intestinal permeability, impairs mitochondrial function, and triggers mitophagy in piglets. J. Anim. Sci. 2018, 96, 1795–1805. [Google Scholar] [CrossRef]
- NRC. Nutrient Requirements of Swine, 11th revised ed.; National Academy Press: Washington, DC, USA, 2012. [Google Scholar]
- Wang, M.Q.; Huyen, L.T.; Lee, J.W.; Ramos, S.H.; Htoo, J.K.; Kinh, L.V.; Lindemann, M.D. Bioavailability of the calcium salt of dl-methionine hydroxy analog compared with dl-methionine for nitrogen retention and the preference of nursery pigs for diets based on the 2 forms of methionine. J. Anim. Sci. 2020, 98, skaa349. [Google Scholar] [CrossRef]
- Evonik. AMINODat® 6.0. 2021. Platinum Version; Evonik Nutrition & Care GmbH: Hanau-Wolfgang, Germany, 2021. [Google Scholar]
- Wang, Y.; Chen, Y.; Zhang, X.; Lu, Y.; Chen, H. New insights in intestinal oxidative stress damage and the health intervention effects of nutrients: A review. J. Funct. Foods 2020, 75, 104248. [Google Scholar] [CrossRef]
- Castellano, R.; Perruchot, M.H.; Conde-Aguilera, J.A.; van Milgen, J.; Collin, A.; Tesseraud, S.; Mercier, Y.; Gondret, F. A Methionine deficient diet enhances adipose tissue lipid metabolism and alters anti-oxidant pathways in young growing pigs. PLoS ONE 2015, 10, e0130514. [Google Scholar] [CrossRef]
- Sies, H. Total antioxidant capacity: Appraisal of a concept. J. Nutr. 2007, 137, 1493–1495. [Google Scholar] [CrossRef] [PubMed]
- Bartosz, G. Non-enzymatic antioxidant capacity assays: Limitations of use in biomedicine. Free Radic. Res. 2010, 44, 711–720. [Google Scholar] [CrossRef] [PubMed]
- Mao, X.; Lv, M.; Yu, B.; He, J.; Zheng, P.; Yu, J.; Wang, Q.; Chen, D. The effect of dietary tryptophan levels on oxidative stress of liver induced by diquat in weaned piglets. J. Anim. Sci. Biotechnol. 2014, 5, 49. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Zong, E.Y.; Huang, P.F.; Yang, H.S.; Yan, S.L.; Li, J.Z.; Li, Y.L.; Ding, X.Q.; He, S.P.; Xiong, X.; et al. The effects of dietary sulfur amino acids on serum biochemical variables, mucosal amino acid profiles, and intestinal inflammation in weaning piglets. Livest. Sci. 2019, 220, 32–36. [Google Scholar] [CrossRef]
- Liu, L.; Chen, D.; Yu, B. Influences of selenium-enriched yeast on growth performance, immune function, and antioxidant capacity in weaned pigs exposure to oxidative stress. BioMed Res. Int. 2021, 2021, 5533210. [Google Scholar] [CrossRef]
- Zhou, Y.; Hu, X.; Zhong, S.; Yu, W.; Wang, J.; Zhu, W.; Yang, T.; Zhao, G.; Jiang, Y.; Li, Y. Effects of continuous LPS induction on oxidative stress and liver injury in weaned piglets. Vet. Sci. 2022, 10, 22. [Google Scholar] [CrossRef]
- Nita, M.; Grzybowski, A. The Role of the reactive oxygen species and oxidative stress in the pathomechanism of the age-related ocular diseases and other pathologies of the anterior and posterior eye segments in adults. Oxid. Med. Cell. Longev. 2016, 2016, 3164734. [Google Scholar] [CrossRef]
- Spreeuwenberg, M.A.; Verdonk, J.M.; Gaskins, H.R.; Verstegen, M.W. Small intestine epithelial barrier function is compromised in pigs with low feed intake at weaning. J. Nutr. 2001, 131, 1520–1527. [Google Scholar] [CrossRef]
- Yin, J.; Liu, M.; Ren, W.; Duan, J.; Yang, G.; Zhao, Y.; Fang, R.; Chen, L.; Li, T.; Yin, Y. Effects of dietary supplementation with glutamate and aspartate on diquat-induced oxidative stress in piglets. PLoS ONE 2015, 10, e0122893. [Google Scholar] [CrossRef]
- Miao, Z.Q.; Dong, Y.Y.; Qin, X.; Yuan, J.M.; Han, M.M.; Zhang, K.K.; Shi, S.R.; Song, X.Y.; Zhang, J.Z.; Li, J.H. Dietary supplementation of methionine mitigates oxidative stress in broilers under high stocking density. Poult. Sci. 2021, 100, 101231. [Google Scholar] [CrossRef] [PubMed]
- Atmaca, G. Antioxidant effects of sulfur-containing amino acids. Yonsei Med. J. 2004, 45, 776–788. [Google Scholar] [CrossRef] [PubMed]
- Liao, S.F.; Oladejo, E. Overview over methionine metabolism: Implications in swine nutrition and health. J. Anim. Sci. 2024, 102 (Suppl. S2), 18–19. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, H.; Chen, Y.P.; Ying, Z.X.; Su, W.P.; Zhang, L.L.; Wang, T. Effects of dietary l-methionine supplementation on the growth performance, carcass characteristics, meat quality, and muscular antioxidant capacity and myogenic gene expression in low birth weight pigs. J. Anim. Sci. 2017, 95, 3972–3983. [Google Scholar] [PubMed]
- Koo, B.; Choi, J.; Holanda, D.M.; Yang, C.; Nyachoti, C.M. Comparative effects of dietary methionine and cysteine supplementation on redox status and intestinal integrity in immunologically challenged-weaned pigs. Amino Acids 2023, 55, 139–152. [Google Scholar] [CrossRef]
- Rychen, G.; Rychen, G.; Aquilina, G.; Azimonti, G.; Bampidis, V.; de Lourdes Bastos, M.; Bories, G.; Chesson, A.; Cocconcelli, P.S.; Flachowsky, G.; et al. Safety and efficacy of hydroxy analogue of methionine and its calcium salt (ADRY+®) for all animal species. EFSA J. 2018, 16, 5198. [Google Scholar]
- Willemsen, H.; Swennen, Q.; Everaert, N.; Geraert, P.A.; Mercier, Y.; Stinckens, A.; Decuypere, E.; Buyse, J. Effects of dietary supplementation of methionine and its hydroxy analog DL-2-hydroxy-4-methylthiobutanoic acid on growth performance, plasma hormone levels, and the redox status of broiler chickens exposed to high temperatures. Poult. Sci. 2011, 90, 2311–2320. [Google Scholar] [CrossRef]
Composition (%) | |||
---|---|---|---|
Ingredients | Diet 1 | Diet 2 | Diet 3 |
Corn | 73.965 | 73.805 | 73.638 |
Soybean meal | 22.770 | 22.770 | 22.770 |
L-Lysine-HCl, 78.8% | 0.360 | 0.360 | 0.360 |
DL-Methionine | 0.150 | 0.310 | |
MHA-Ca 2 | – | – | 0.477 |
L-Threonine | 0.130 | 0.130 | 0.130 |
L-Tryptophan | 0.040 | 0.040 | 0.040 |
Limestone | 0.850 | 0.850 | 0.850 |
Dicalcium phosphate | 1.400 | 1.400 | 1.400 |
Salt | 0.200 | 0.200 | 0.200 |
Mineral premix 3 | 0.070 | 0.070 | 0.070 |
Vitamin premix 4 | 0.065 | 0.065 | 0.065 |
Diet, total | 100.000 | 100.000 | 100.000 |
Requirement 2 | Diet 1 | Diets 2 and 3 | |
---|---|---|---|
Net energy (kcal/kg) | 2440 | 2531 | 2534 |
Crude protein (%, SID) | 14.49 | 14.49 | 14.57 |
Lys (%, SID) | 1.00 | 1.00 | 1.00 |
Met + Cys (%, SID) | 0.62 | 0.62 | 0.78 |
Thr (%, SID) | 0.65 | 0.65 | 0.65 |
Trp (%, SID) | 0.20 | 0.20 | 0.20 |
Arg (%, SID) | 0.40 | 0.99 | 0.99 |
His (%, SID) | 0.32 | 0.39 | 0.39 |
Leu (%, SID) | 1.00 | 1.32 | 1.32 |
Ile (%, SID) | 0.55 | 0.60 | 0.60 |
Val (%, SID) | 0.68 | 0.68 | 0.68 |
Phe (%, SID) | 0.60 | 0.73 | 0.73 |
Phe + Tyr (%, SID) | 0.95 | 1.18 | 1.17 |
tCa (%) | 0.66 | 0.67 | 0.67 |
tP (%) | 0.56 | 0.56 | 0.56 |
Diquat Challenged 2 | Contrast p-Value 3 | |||||||
---|---|---|---|---|---|---|---|---|
Item | G 1 | G 2 | G 3 | G 4 | SEM | G 2 vs. G 1 | G 3 vs. G 2 | G 4 vs. G 3 |
Phase 1 (Days 1 to 22) | ||||||||
Initial BW, kg | 21.7 | 21.3 | 21.1 | 22.3 | 0.75 | 0.73 | 0.83 | 0.24 |
Final BW, kg | 39.9 | 39.3 | 39.0 | 39.8 | 1.45 | 0.78 | 0.88 | 0.69 |
ADG, kg/day | 0.87 | 0.86 | 0.85 | 0.83 | 0.05 | 0.87 | 0.95 | 0.74 |
ADFI, kg/day | 1.67 | 1.63 | 1.59 | 1.71 | 0.08 | 0.73 | 0.76 | 0.30 |
G:F ratio | 0.52 | 0.53 | 0.54 | 0.49 | 0.02 | 0.86 | 0.58 | 0.03 |
Phase 2 (Days 22 to 29) | ||||||||
Initial BW, kg | 39.9 | 39.3 | 39.0 | 39.8 | 1.45 | 0.78 | 0.88 | 0.69 |
Final BW, kg | 47.7 | 43.5 | 42.0 | 42.2 | 1.66 | 0.09 | 0.52 | 0.92 |
ADG, kg/day | 1.11 | 0.60 | 0.43 | 0.34 | 0.10 | 0.0020 | 0.24 | 0.57 |
ADFI, kg/day | 2.40 | 1.68 | 1.56 | 1.41 | 0.12 | 0.0002 | 0.50 | 0.41 |
G:F ratio | 0.47 | 0.34 | 0.23 | 0.19 | 0.06 | 0.13 | 0.24 | 0.66 |
Diquat Challenged 2 | Contrast p-Value 3 | |||||||
---|---|---|---|---|---|---|---|---|
Item | G 1 | G 2 | G 3 | G 4 | SEM | G 2 vs. G 1 | G 3 vs. G 2 | G 4 vs. G 3 |
Serum | ||||||||
Day 1 | 5.19 | 5.47 | 5.03 | 4.78 | 0.54 | 0.71 | 0.57 | 0.74 |
Day 22 | 4.96 | 4.92 | 5.36 | 4.68 | 0.58 | 0.96 | 0.60 | 0.41 |
Day 29 | 5.66 | 8.34 | 8.80 | 7.25 | 0.73 | 0.01 | 0.66 | 0.14 |
Liver | ||||||||
Day 29 | 2.47 | 2.15 | 2.37 | 2.48 | 0.17 | 0.19 | 0.36 | 0.66 |
Diquat Challenged 2 | Contrast p-Value 3 | |||||||
---|---|---|---|---|---|---|---|---|
Item | G 1 | G 2 | G 3 | G 4 | SEM | G 2 vs. G 1 | G 3 vs. G 2 | G 4 vs. G 3 |
Day 1 | 5.46 | 5.33 | 5.50 | 5.50 | 0.17 | 0.60 | 0.48 | 0.98 |
Day 22 | 9.04 | 9.39 | 9.21 | 9.47 | 0.16 | 0.11 | 0.41 | 0.24 |
Day 29 | 12.5 | 12.3 | 12.6 | 12.4 | 0.11 | 0.14 | 0.05 | 0.15 |
Diquat Challenged 2 | Contrast p-Value 3 | |||||||
---|---|---|---|---|---|---|---|---|
Item | G 1 | G 2 | G 3 | G 4 | SEM | G 2 vs. G 1 | G 3 vs. G 2 | G 4 vs. G 3 |
Day 1 | 25.9 | 21.3 | 19.7 | 16.0 | 2.22 | 0.61 | 0.84 | 0.46 |
Day 22 | 22.8 | 28.1 | 40.5 | 31.2 | 2.87 | 0.49 | 0.11 | 0.25 |
Day 29 4 | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. |
Diquat Challenged 2 | Contrast p-Value 3 | |||||||
---|---|---|---|---|---|---|---|---|
Item | G 1 | G 2 | G 3 | G 4 | SEM | G 2 vs. G 1 | G 3 vs. G 2 | G 4 vs. G 3 |
Serum | ||||||||
Day 1 | 82.6 | 90.3 | 100.4 | 98.7 | 6.75 | 0.45 | 0.30 | 0.85 |
Day 22 | 102.6 | 106.8 | 106.6 | 105.9 | 8.26 | 0.72 | 0.99 | 0.95 |
Day 29 | 119.3 | 106.8 | 135.0 | 123.4 | 4.53 | 0.06 | <0.0001 | 0.08 |
Liver | ||||||||
Day 29 | 19.5 | 15.9 | 20.8 | 20.8 | 1.46 | 0.10 | 0.02 | 0.99 |
Diquat Challenged 2 | Contrast p-Value 3 | |||||||
---|---|---|---|---|---|---|---|---|
Item | G 1 | G 2 | G 3 | G 4 | SEM | G 2 vs. G 1 | G 3 vs. G 2 | G 4 vs. G 3 |
Serum | ||||||||
Day 1 | 5.35 | 5.49 | 4.90 | 4.68 | 0.53 | 0.85 | 0.40 | 0.76 |
Day 22 | 4.27 | 5.29 | 5.46 | 4.58 | 0.74 | 0.35 | 0.87 | 0.39 |
Day 29 | 5.65 | 5.49 | 5.22 | 5.18 | 0.39 | 0.84 | 0.74 | 0.96 |
Liver | ||||||||
Day 29 | 0.73 | 0.51 | 0.71 | 0.75 | 0.05 | 0.01 | 0.08 | 0.79 |
Diquat Challenged 2 | Contrast p-Value 3 | |||||||
---|---|---|---|---|---|---|---|---|
Item | G 1 | G 2 | G 3 | G 4 | SEM | G 2 vs. G 1 | G 3 vs. G 2 | G 4 vs. G 3 |
Serum | ||||||||
Day 1 | 49.4 | 43.0 | 44.4 | 44.2 | 2.52 | 0.39 | 0.57 | 0.94 |
Day 22 | 67.1 | 62.6 | 54.1 | 51.6 | 2.72 | 0.25 | 0.03 | 0.53 |
Day 29 | 67.8 | 58.1 | 59.3 | 59.2 | 6.10 | 0.27 | 0.90 | 0.99 |
Liver | ||||||||
Day 29 | 26.6 | 23.4 | 21.9 | 22.3 | 2.53 | 0.37 | 0.67 | 0.91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oladejo, E.O.; Hasan, M.S.; Sotak, S.C.; Htoo, J.K.; Brett, J.; Feugang, J.M.; Liao, S.F. Effects of Dietary Supplementation of DL-Methionine or DL-Methionine Hydroxyl Analogue (MHA-Ca) on Growth Performance and Blood and Liver Redox Status in Growing Pigs. Animals 2024, 14, 3397. https://doi.org/10.3390/ani14233397
Oladejo EO, Hasan MS, Sotak SC, Htoo JK, Brett J, Feugang JM, Liao SF. Effects of Dietary Supplementation of DL-Methionine or DL-Methionine Hydroxyl Analogue (MHA-Ca) on Growth Performance and Blood and Liver Redox Status in Growing Pigs. Animals. 2024; 14(23):3397. https://doi.org/10.3390/ani14233397
Chicago/Turabian StyleOladejo, Emmanuel O., Md Shamimul Hasan, Susan C. Sotak, John K. Htoo, James Brett, Jean M. Feugang, and Shengfa F. Liao. 2024. "Effects of Dietary Supplementation of DL-Methionine or DL-Methionine Hydroxyl Analogue (MHA-Ca) on Growth Performance and Blood and Liver Redox Status in Growing Pigs" Animals 14, no. 23: 3397. https://doi.org/10.3390/ani14233397
APA StyleOladejo, E. O., Hasan, M. S., Sotak, S. C., Htoo, J. K., Brett, J., Feugang, J. M., & Liao, S. F. (2024). Effects of Dietary Supplementation of DL-Methionine or DL-Methionine Hydroxyl Analogue (MHA-Ca) on Growth Performance and Blood and Liver Redox Status in Growing Pigs. Animals, 14(23), 3397. https://doi.org/10.3390/ani14233397